
November 1991 Order Number: 271092-005

M80C287
80-BIT CHMOS III NUMERIC PROCESSOR EXTENSION

Military

Y High Performance 80-Bit Internal
Architecture

Y Implements ANSI/IEEE Standard 754-
1985 for Binary Floating-Point
Arithmetic

Y Implements Extended M387 Numerics
Coprocessor Instruction Set

Y Two to Three Times M8087/M80287
Performance at Equivalent Clock Speed

Y Low Power Consumption

Y Upward Object-Code Compatible from
M8087 and M80287

Y Interfaces with M80286 and M80C286
CPUs

Y Expands CPU’s Data Types to Include
32-, 64-, 80-Bit Floating Point, 32-, 64-
Bit Integers and 18-Digit BCD Operands

Y Directly Extends CPU’s Instruction Set
to Trigonometric, Logarithmic,
Exponential, and Arithmetic
Instructions for All Data Types

Y Full-Range Transcendental Operations
for SINE, COSINE, TANGENT.
ARCTANGENT and LOGARITHM

Y Built-In Exception Handling

Y Operates in Both Real and Protected
Mode Systems

Y Eight 80-Bit Numeric Registers, Usable
as Individually Addressable General
Registers or as a Register Stack

Y Available in 40-pin CERDIP
(See Packaging Outlines and Dimensions, order Ý231369)

Y Military Temperature Range:
b55§C to a125§C (TC)

The Intel M80C287 is a high-performance numerics processor extension that extends the architecture of the
M80C286 CPU with floating point, extended integer, and BCD data types. A computing system that includes
the M80C287 fully conforms to the IEEE Floating Point Standard. Using a numerics oriented architecture, the
M80C287 adds over seventy mnemonics to the instruction set of the M80C286 CPU, making a complete
solution for high-performance numerics processing. The M80C287 is implemented with 1.5 micron, high-speed
CHMOS III technology and packaged in a 40-pin CERDIP. The M80C287 is upward object-code compatible
from the M80287 and M8087 numerics coprocessors. With proper socket design, either an M80287 or an
M80C287 can use the same socket.

271092–1

Figure 1. M80C287 Block Diagram

M80C287

M80C287 Data Registers

79 78 64 63 0

R0 Sign Exponent Significand

R1

R2

R3

R4

R5

R6

R7

15 0 31 15 0

Control Register Instruction Pointer

Status Register Data Pointer

Tag Word

Figure 2. M80C287 Register Set

FUNCTIONAL DESCRIPTION

The M80C287 Numeric Processor Extension (NPX)
provides arithmetic instructions for a variety of nu-
meric data types. It also executes numerous built-in
transcendental functions (e.g. tangent, sine, cosine,
and log functions). The M80C287 effectively ex-
tends the register and instruction set of the CPU for
existing data types and adds several new data types
as well. Figure 2 shows the additional registers visi-
ble to programs in a system that includes the
M80C287. Essentially, the M80C287 can be treated
as an additional resource or an extension to the
M80C286 CPU. The M80C286 CPU together with an
M80C287 NPX can be used as a single unified sys-
tem.

The M80C287 has two operating modes. After reset,
the M80C287 is in the real-address mode. It can be
placed into protected mode by executing the
FSETPM instruction. It can be switched back to real-
address mode by executing the FRSTPM instruction
(note that this feature is useful only with CPU’s that
can also switch back to real-address mode). These
instructions control the format of the administrative
instructions FLDENV, FSTENV, FRSTOR, and
FSAVE. Regardless of operating mode, all refer-
ences to memory for numerics data or status infor-
mation are performed by the M80C286 CPU, and
therefore obey the memory-management and pro-
tection rules of the M80C286 CPU.

In real-address mode, a system that includes the
M80C287 is completely upward compatible with
software for the M8086/M8087 and for M80286/
M80287 real-address mode.

In protected mode, a system that includes the
M80C287 is completely upward compatible with
software for M80286/M80287 protected mode sys-
tems.

The only differences of operation that may appear
when M8086/M8087 programs are ported to a pro-
tected-mode M80C287 system are in the format of
operands for the administrative instructions
FLDENV, FSTENV, FRSTOR, and FSAVE. These in-
structions are normally used only by exception han-
dlers and operating systems, not by applications
programs.

PROGRAMMING INTERFACE

The M80C287 adds to the CPU additional data
types, registers, instructions, and interrupts specifi-
cally designed to facilitate high-speed numerics pro-
cessing. To use the M80C287 requires no special
programming tools, because all new instructions and
data types are directly supported by the assembler
and compilers for high-level languages. All 8086/
8088 development tools that support the M8087 can
also be used to develop software for the M80C286/
M80C287 in real-address mode. All M80286 devel-
opment tools that support the M80287 can also be
used to develop software for the M80C286/
M80C287. The M80C287 supports all M387 NPX in-
structions, producing the same binary results.

All communication between the M80C286 CPU and
the M80C287 is transparent to applications soft-
ware. The M80C286 CPU automatically controls the
M80C287 whenever a numerics instruction is exe-
cuted. All physical memory and virtual memory of
the M80C286 CPU are available for storage of the
instructions and operands of programs that use the
M80C287. All memory addressing modes are avail-
able for addressing numerics operands.

The instructions that the M80C287 adds to the in-
struction set are listed at the end of this data sheet.

2

M80C287

Data Types

Table 1 lists the seven data types that the M80C287
supports and presents the format for each type. Op-
erands are stored in memory with the least signifi-
cant digit at the lowest memory address. Programs
retrieve these values by generating the lowest ad-
dress. For maximum system performance, all oper-
ands should start at physical-memory addresses
that correspond to the word size of the CPU; oper-
ands may begin at any other addresses, but will re-
quire extra memory cycles to access the entire oper-
and.

Internally, the M80C287 holds all numbers in the ex-
tended-precision real format. Instructions that load
operands from memory automatically convert oper-
ands represented in memory as 16-, 32-, or 64-bit
integers, 32- or 64-bit floating-point numbers, or 18-
digit packed BCD numbers into extended-precision
real format. Instructions that store operands in mem-
ory perform the inverse type conversion.

Numeric Operands

A typical NPX instruction accepts one or two oper-
ands and produces one (or sometimes two) results.
In two-operand instructions, one operand is the con-
tents of an NPX register, while the other may be a
memory location. The operands of some instructions
are predefined; for example, FSQRT always takes
the square root of the number in the top stack ele-
ment.

Register Set

Figure 2 shows the M80C287 register set. When an
M80C287 is present in a system, programmers may
use these registers in addition to the registers nor-
mally available on the CPU.

DATA REGISTERS

M80C287 computations use the M80C287’s data
registers. These eight 80-bit registers provide the
equivalent capacity of 20 32-bit registers. Each of
the eight data registers in the M80C287 is 80 bits
wide and is divided into ‘‘fields’’ corresponding to
the NPX’s extended-precision real data type.

The M80C287 register set can be accessed either
as a stack, with instructions operating on the top one
or two stack elements, or as individually addressable
registers. The TOP field in the status word identifies
the current top-of-stack register. A ‘‘push’’ operation
decrements TOP by one and loads a value into the
new top register. A ‘‘pop’’ operation stores the value
from the current top register and then increments

TOP by one. The M80C287 register stack grows
‘‘down’’ toward lower-addressed registers.

Instructions may address the data registers either
implicitly or explicitly. Many instructions operate on
the register at the TOP of the stack. These instruc-
tions implicitly address the register at which TOP
points. Other instructions allow the programmer to
explicitly specify which register to use. This explicit
register addressing is also relative to TOP.

TAG WORD

The tag word marks the content of each numeric
data register, as Figure 3 shows. Each two-bit tag
represents one of the eight data registers. The prin-
cipal function of the tag word is to optimize the
NPX’s performance and stack handling by making it
possible to distinguish between empty and nonemp-
ty register locations. It also enables exception han-
dlers to identify special values (e.g. NaNs or denor-
mals) in the contents of a stack location without the
need to perform complex decoding of the actual
data.

STATUS WORD

The 16-bit status word (in the status register) shown
in Figure 4 reflects the overall state of the M80C287.
It may be read and inspected by programs.

Bit 15, the B-bit (busy bit) is included for M8087
compatibility only. It always has the same value as
the ES bit (bit 7 of the status word); it does not
indicate the status of the BUSY output of M80C287.

Bits 13–11 (TOP) point to the M80C287 register that
is the current top-of-stack.

The four numeric condition code bits (C3–C0) are
similar to the flags in a CPU; instructions that per-
form arithmetic operations update these bits to re-
flect the outcome. The effects of these instructions
on the condition code are summarized in Tables 2
through 5.

Bit 7 is the error summary (ES) status bit. This bit is
set if any unmasked exception bit is set; it is clear
otherwise. If this bit is set, the ERROR signal is as-
serted.

Bit 6 is the stack flag (SF). This bit is used to distin-
guish invalid operations due to stack overflow or un-
derflow from other kinds of invalid operations. When
SF is set, bit 9 (C1) distinguishes between stack
overflow (C1e1) and underflow (C1e0).

3

M80C287

Table 1. M80C287 Data Type Representation in Memory

271092–2

NOTES:
1. S e Sign bit (0 e positive, 1 e negative)
2. dn e Decimal digit (two per byte)
3. X e Bits have no significance: M80C287 ignores when loading, zeroes when storing
4. U e Position of implicit binary point
5. I e Integer bit of significand; stored in temporary real, implicit in single and double precision
6. Exponent Bias (normalized values):
Single: 127 (7FH)
Double: 1023 (3FFH)
Extended Real: 16383 (3FFFH)
7. Packed BCD: (b1)S (D17 . . . D0)
8. Real: (b1)S (2E-BIAS) (F0 F1 . . .)

15 0

TAG (7) TAG (6) TAG (5) TAG (4) TAG (3) TAG (2) TAG (1) TAG (0)

NOTE:
The index i of tag(i) is not top-relative. A program typically uses the ‘‘top’’ field of Status Word to determine which tag(i)
field refers to logical top of stack.
TAG VALUES:

00 e Valid
01 e Zero
10 e QNaN, SNaN, Infinity, Denormal and Unsupported Formats
11 e Empty

Figure 3. M80C287 Tag Word

4

M80C287

Figure 4 shows the six exception flags in bits 5–0 of
the status word. Bits 5–0 are set to indicate that the
M80C287 has detected an exception while execut-
ing an instruction. A later section entitled ‘‘Exception
Handling’’ explains how they are set and used.

Note that when a new value is loaded into the status
word by the FLDENV or FRSTOR instruction, the

value of ES (bit 7) and its reflection in the B-bit (bit
15) are not derived from the values loaded from
memory but rather are dependent upon the values of
the exception flags (bits 5–0) in the status word and
their corresponding masks in the control word. If ES
is set in such a case, the ERROR output of the
M80C287 is activated immediately.

271092–3

ES is set if any unmasked exception bit is set; cleared otherwise.
See Table 2.2 for interpretation of condition code.
TOP Values:

000 e Register 0 is Top of Stack
001 e Register 1 is Top of Stack

#
#
#

111 e Register 7 is Top of Stack
For definitions of exceptions, refer to the section entitled ‘‘Exception Handling.’’

Figure 4. Status Word

5

M80C287

Table 2. Condition Code Interpretation

Instruction C0 (S) C3 (Z) C1 (A) C2 (C)

FPREM, FPREM1 Three Least Significant Bits
Reduction

(See Table 3) of Quotient
0 e Complete

Q2 Q0 Q1
1 e Incomplete

or O/U

FCOM, FCOMP,

FCOMPP, FTST,
Result of Comparison Zero Operand is Not Comparable

FUCOM, FUCOMP,
(See Table 2.4) or O/U (Table 2.4)

FUCOMPP, FICOM,

FICOMP

FXAM Operand Class Sign Operand Class

(See Table 2.5) or O/U (Table 2.5)

FCHS, FABS, FXCH,

FINCTOP, FDECTOP,

Constant Loads,
UNDEFINED

Zero
UNDEFINED

FXTRACT, FLD, or O/U

FILD, FBLD,

FSTP (Ext Real)

FIST, FBSTP,

FRNDINT, FST

FSTP, FADD, FMUL,

FDIV, FDIVR,
UNDEFINED

Roundup
UNDEFINED

FSUB, FSUBR, or O/U

FSCALE, FSQRT,

FPATAN, F2XM1,

FYL2X, FYL2XP1

FPTAN, FSIN, Roundup
Reduction

FCOS, FSINCOS
UNDEFINED

or O/U
0 e Complete

Undefined
1 e Incomplete

if C2 e 1

FLDENV, FRSTOR Each Bit Loaded from Memory

FLDCW, FSTENV,

FSTCW, FSTSW,
UNDEFINED

FCLEX, FINIT,

FSAVE

O/U When both IE and SF bits of status word are set, indicating a stack exception, this bit distinguishes between
stack overflow (C1 e 1) and underflow (C1 e 0).

Reduction If FPREM or FPREM1 produces a remainder that is less than the modulus, reduction is complete. When
reduction is incomplete the value at the top of the stack is a partial remainder, which can be used as input to
further reduction. For FPTAN, FSIN, FCOS, and FSINCOS, the reduction bit is set if the operand at the top of
the stack is too large. In this case the original operand remains at the top of the stack.

Roundup When the PE bit of the status word is set, this bit indicates whether one was added to the least significant bit of
the result during the last rounding.

UNDEFINED Do not rely on finding any specific value in these bits.

6

M80C287

Table 3. Condition Code Interpretation after FPREM and FPREM1 Instructions

Condition Code Interpretation after

C2 C3 C1 C0
FPREM and FPREM1

1 X X X Incomplete Reduction: Further iteration required for complete
reduction.

Q1 Q0 Q2 Q MOD 8 Complete Reduction: C0, C3, C1 contain three
least significant bits of quotient.

0 0 0 0

0 1 0 1

1 0 0 2

0
1 1 0 3

0 0 1 4

0 1 1 5

1 0 1 6

1 1 1 7

Table 4. Condition Code

Resulting from Comparison

Order C3 C2 C0

TOP l Operand 0 0 0

TOP k Operand 0 0 1

TOP e Operand 1 0 0

Unordered 1 1 1

Table 5. Condition Code

Defining Operand Class

C3 C2 C1 C0 Value at TOP

0 0 0 0 aUnsupported

0 0 0 1 aNaN

0 0 1 0 bUnsupported

0 0 1 1 bNan

0 1 0 0 aNormal

0 1 0 1 aInfinity

0 1 1 0 bNormal

0 1 1 1 bInfinity

1 0 0 0 a0

1 0 0 1 aEmpty

1 0 1 0 b0

1 0 1 1 bEmpty

1 1 0 0 aDenormal

1 1 1 0 bDenormal

CONTROL WORD

The NPX provides several processing options that
are selected by loading a control word from memory
into the control register. Figure 5 shows the format
and encoding of fields in the control word.

The low-order byte of this control word configures
exception masking. Bits 5–0 of the control word
contain individual masks for each of the six excep-
tions that the M80C287 recognizes.

The high-order byte of the control word configures
the M80C287 operating mode, including precision,
rounding, and infinity control.

The ‘‘infinity control bit’’ (bit 12) is not meaningful
to the M80C287, and programs must ignore its
value. To maintain compatibility with the M8087
and M80287, this bit can be programmed; howev-
er, regardless of its value, the M80C287 always
treats infinity in the affine sense (b% k a%).
This bit is initialized to zero both after a hardware
reset and after the FINIT instruction.

The rounding control (RC) bits (bits 11–10) pro-
vide for directed rounding and true chop, as well
as the unbiased round to nearest even mode
specified in the IEEE standard. Rounding control
affects only those instructions that perform
rounding at the end of the operation (and thus
can generate a precision exception); namely,
FST, FSTP, FIST, all arithmetic instructions (ex-
cept FPREM, FPREM1, FXTRACT, FABS, and
FCHS), and all transcendental instructions.

The precision control (PC) bits (bits 9–8) can be
used to set the M80C287 internal operating preci-
sion of the significand at less than the default of
64 bits (extended precision). This can be useful in
providing compatibility with early generation arith-
metic processors of smaller precision. PC affects
only the instructions ADD, SUB, DIV, MUL, and
SQRT. For all other instructions, either the preci-
sion is determined by the opcode or extended
precision is used.

7

M80C287

INSTRUCTION AND DATA POINTERS

Because the NPX operates in parallel with the CPU,
any exceptions detected by the NPX may be report-
ed after the CPU has executed the ESC instruction
which caused it. To allow identification of the failing
numeric instruction, the M80C287 contains registers
that aid in diagnosis. These registers supply the op-
code of the failing numeric instruction, the address
of the instruction, and the address of its numeric
memory operand (if appropriate).

The instruction and data pointers are provided for
user-written exception handlers. Whenever the
M80C287 executes a new ESC instruction, it saves
the address of the instruction (including any prefixes
that may be present), the address of the operand (if

present), and the opcode. CPUs with 32-bit internal
architectures contain 32-bit versions of these regis-
ters and do not use the contents of the NPX regis-
ters. This difference is not apparent to programmers,
however.

The instruction and data pointers appear in one of
four formats depending on the operating mode of
the system (protected mode or real-address mode)
and (for CPUs with 32-bit internal architectures) de-
pending on the operand-size attribute in effect (32-
bit operand or 16-bit operand). (See Figures 6 and 7)
The ESC instructions FLDENV, FSTENV, FSAVE,
and FRSTOR are used to transfer these values be-
tween the registers and memory. Note that the value
of the data pointer is undefined if the prior ESC in-
struction did not have a memory operand.

271092–4

Precision Control
00–24 bits (single precision)
01–(reserved)
10–53 bits (double precision)
11–64 bits (extended precision)

Rounding Control
00–Round to nearest or even
01–Round down (toward b%)
10–Round up (toward a%)
11–Chop (truncate toward zero)

*The ‘‘infinity control’’ bit is not meaningful to the M80C287. To maintain compatibility with the M80287, this bit can be
programmed; however, regardless of its value, the M80C287 treats infinity in the affine sense (b% k a%).

Figure 5. Control Word

8

M80C287

Protected Mode Format
15 7 0

Control Word a0

Status Word a2

Tag Word a4

IP Offset a6

CS Selector a8

Operand Offset aA

Operand Selector aC

Figure 6. Protected Mode Instruction and Data

Pointer Image in Memory

Real-Address Mode Format
15 7 0

Control Word a0

Status Word a2

Tag Word a4

Instruction Pointer 15..0 a6

IP 19..16 0 OPCODE 10..0 a8

Operand Pointer 15..0 aA

OP 19..16 0 0 0 0 0 0 0 0 0 0 0 0 aC

Figure 7. Real Mode Instruction and Data

Pointer Image in Memory

Table 6. CPU Interrupt Vectors Reserved for NPX

Interrupt
Cause of Interrupt

Number

7 In a system with a CPU that has control registers, an ESC instruction was encountered when
EM or TS of CPU control register zero (CR0) was set. EM e 1 indicates that software
emulation of the instruction is required. When TS is set, either an ESC or WAIT instruction
causes interrupt 7. This indicates that the current NPX context may not belong to the current
task.

9 In a protected-mode system, an operand of a coprocessor instruction wrapped around an
addressing limit (0FFFFH for expand-up segments, zero for expand-down segments) and
spanned inaccessible addresses (See Note). The failing numerics instruction is not restartable.
The address of the failing numerics instruction and data operand may be lost; an FSTENV does
not return reliable addresses. The segment overrun exception should be handled by executing
an FNINIT instruction (i.e., an FINIT without a preceding WAIT). The exception can be avoided
by never allowing numerics operands to cross the end of a segment.

13 In a protected-mode system, the first word of a numeric operand is not entirely within the limit
of its segment. The return address pushed onto the stack of the exception handler points at the
ESC instruction that caused the exception, including any prefixes. The M80C287 has not
executed this instruction; the instruction pointer and data pointer register refer to a previous,
correctly executed instruction.

16 The previous numerics instruction caused an unmasked exception. The address of the faulty
instruction and the address of its operand are stored in the instruction pointer and data pointer
registers. Only ESC and WAIT instructions can cause this interrupt. The CPU return address
pushed onto the stack of the exception handler points to a WAIT or ESC instruction (including
prefixes). This instruction can be restarted after clearing the exception condition in the NPX.
FNINIT, FNCLEX, FNSTSW, FNSTENV, and FNSAVE cannot cause this interrupt.

NOTE:
An operand may wrap around an addressing limit when the segment limit is near an addressing limit and the operand is near
the largest valid address in the segment. Because of the wrap-around, the beginning and ending addresses of such an
operand will be at opposite ends of the segment. There are two ways that such an operand may also span inaccessible
addresses: 1) if the segment limit is not equal to the addressing limit (e.g. addressing limit is FFFFH and segment limit is
FFFDH) the operand will span addresses that are not within the segment (e.g. an 8-byte operand that starts at valid offset
FFFCH will span addresses FFFC–FFFFH and 0000–0003H; however addresses FFFEH and FFFFH are not valid, because
they exceed the limit); 2) if the operand begins and ends in present and accessible segments but intermediate bytes of the
operand fall in a not-present segment or page or in a segment or page to which the procedure does not have access rights.

Interrupt Description

CPU interrupts are used to report exceptional condi-
tions while executing numeric programs in either real
or protected mode. Table 6 shows these interrupts
and their functions.

Exception Handling

The M80C287 detects six different exception condi-
tions that can occur during instruction execution. Ta-
ble 7 lists the exception conditions in order of prece-
dence, showing for each the cause and the

9

M80C287

Table 7. Exceptions

Exception Cause
Default Action

(If Exception is Masked)

Invalid Operation on a signalling NaN, Result is a quiet NaN, integer indefinite,
unsupported format, indeterminate form or BCD indefinite.Operation
(0*%, 0/0, (a%) a (b%), etc.), or
stack overflow/underflow (SF is also
set).

Denormalized At least one of the operands is The operand is normalized, and normal
denormalized, i.e., it has the smallest processing continues.Operand
exponent but a nonzero significand.

Zero Divisor The divisor is zero while the dividend is a Result is %.
noninfinite, nonzero number.

Overflow The result is too large in magnitude to fit Result is largest finite value or %.
in the specified format.

Underflow The true result is nonzero but too small Result is denormalized or zero.
to be represented in the specified
format, and, if underflow exception is
masked, denormalization causes loss of
accuracy.

Inexact The true result is not exactly Normal processing continues.
representable in the specified formatResult
(e.g. (/3); the result is rounded according(Precision)
to the rounding mode.

default action taken by the M80C287 if the excep-
tion is masked by its corresponding mask bit in the
control word.

Any exception that is not masked by the control
word sets the corresponding exception flag of the
status word, sets the ES bit of the status word, and
asserts the ERROR signal. When the CPU attempts
to execute another ESC instruction or WAIT, excep-
tion 16 occurs. The exception condition must be re-
solved via an interrupt service routine. The return
address pushed onto the CPU stack upon entry to
the service routine does not necessarily point to the
failing instruction nor to the following instruction. The
M80C287 saves the address of the floating-point in-
struction that caused the exception and the address
of any memory operand required by that instruction.

Initialization

After FNINIT or RESET, the control word contains
the value 037FH (all exceptions masked, precision
control 64 bits, rounding to nearest) the same values
as in an 80287 after RESET. For compatibility with
the M8087 and M80287, the bit that used to indicate
infinity control (bit 12) is set to zero; however, re-

gardless of its setting, infinity is treated in the affine
sense. After FNINIT or RESET, the status word is
initialized as follows:

All exceptions are set to zero.

Stack TOP is zero, so that after the first push the
stack top will be register seven (111B).

The condition code C3–C0 is undefined.

The B-bit is zero.

The tag word contains FFFFH (all stack locations
are empty).

M80C286/M80C287 initialization software should
execute an FNINIT instruction (i.e an FINIT without a
preceding WAIT) after RESET. The FNINIT is not
strictly required for either M80287 or M80C287 soft-
ware, but Intel recommends its use to help ensure
upward compatibility with other processors.

M8087 and M80287 Compatibility

This section summarizes the differences between
the M80C287 and the M80287. Any migration from
the M8087 directly to the M80C287 must also take
into account the differences between the M8087
and the M80287 as listed in Appendix A.

10

M80C287

Many changes have been designed into the
M80C287 to directly support the IEEE standard in
hardware. These changes result in increased per-
formance by eliminating the need for software that
supports the standard.

GENERAL DIFFERENCES

The M80C287 supports only affine closure for infini-
ty arithmetic, not projective closure.

Operands for FSCALE and FPATAN are no longer
restricted in range (except for g%); F2XM1 and
FPTAN accept a wider range of operands.

Rounding control is in effect for FLD constant .

Software cannot change entries of the tag word to
values (other than empty) that differ from actual reg-
ister contents.

After reset, FINIT, and incomplete FPREM, the
M80C287 resets to zero the condition code bits C3–
C0 of the status word.

In conformance with the IEEE standard, the
M80C287 does not support the special data formats
pseudozero, pseudo-NaN, pseudoinfinity, and un-
normal.

The denormal exception has a different purpose on
the M80C287. A system that uses the denormal-ex-
ception handler solely to normalize the denormal op-
erands, would better mask the denormal exception
on the M80C287. The M80C287 automatically nor-
malizes denormal operands when the denormal ex-
ception is masked.

EXCEPTIONS

A number of differences exist due to changes in the
IEEE standard and to functional improvements to
the architecture of the M80C287:

1. When the overflow or underflow exception is
masked, the M80C287 differs from the M80287
in rounding when overflow or underflow occurs.
The M80C287 produces results that are consist-
ent with the rounding mode.

2. When the underflow exception is masked, the
M80C287 sets its underflow flag only if there is
also a loss of accuracy during denormalization.

3. Fewer invalid-operation exceptions due to de-
normal operands, because the instructions
FSQRT, FDIV, FPREM, and conversions to BCD
or to integer normalize denormal operands be-
fore proceeding.

4. The FSQRT, FBSTP, and FPREM instructions
may cause underflow, because they support de-
normal operands.

5. The denormal exception can occur during the
transcendental instructions and the FXTRACT
instruction.

6. The denormal exception no longer takes prece-
dence over all other exceptions.

7. When the denormal exception is masked, the
M80C287 automatically normalizes denormal
operands. The M8087/M80287 performs unnor-
mal arithmetic, which might produce an unnor-
mal result.

8. When the operand is zero, the FXTRACT in-
struction reports a zero-divide exception and
leaves b% in ST(1).

9. The status word has a new bit (SF) that signals
when invalid-operation exceptions are due to
stack underflow or overflow.

10. FLDextended precision no longer reports denor-
mal exceptions, because the instruction is not
numeric.

11. FLD single/double precision when the operand
is denormal converts the number to extended
precision and signals the denormalized operand
exception. When loading a signalling NaN, FLD
single/double precision signals an invalid-oper-
and exception.

12. The M80C287 only generates quiet NaNs (as on
the M80287); however, the M80C287 distin-
guishes between quiet NaNs and signaling
NaNs. Signaling NaNs trigger exceptions when
they are used as operands; quiet NaNs do not
(except for FCOM, FIST, and FBSTP which also
raise IE for quiet NaNs).

13. When stack overflow occurs during FPTAN and
overflow is masked, both ST(0) and ST(1) con-
tain quiet NaNs. The M8087/M80287 leaves the
original operand in ST(1) intact.

14. When the scaling factor is g%, the FSCALE
(ST(0), ST(1)) instruction behaves as follows
(ST(0) and ST(1) contain the scaled and scaling
operands respectively):

FSCALE(0,%) generates the invalid operation
exception.

FSCALE(finite, b%) generates zero with the
same sign as the scaled operand.

FSCALE(finite, a%) generates -in with the
same sign as the scaled operand.

The M8087/M80287 returns zero in the first
case and raises the invalid-operation exception
in the other cases.

11

M80C287

15. The M80C287 returns signed infinity/zero as the
unmasked response to massive overflow/under-
flow. The M8087 and M80287 support a limited
range for the scaling factor; within this range ei-
ther massive overflow/underflow do not occur or
undefined results are produced.

HARDWARE INTERFACE

Signal Description

In the following signal descriptions, the M80C287
pins are grouped by function as follows:

1. Execution controlÐCLK, CKM, RESET

2. NPX handshakeÐPEREQ, PEACK, BUSY,
ERROR

3. Bus interface pinsÐD15–D0, NPWR, NPRD

4. Chip/Port SelectÐNPS1, NPS2, CMD0, CMD1

5. Power suppliesÐVCC, VSS

Table 8 lists every pin by its identifier, gives a brief
description of its function, and lists some of its char-
acteristics. Figure 8 shows the locations of pins on
the CERDIP package. Table 9 helps to locate pin
identifiers in Figure 8.

271092–5

*The corresponding pins of the M80287 differ.

Figure 8. CERDIP Pin Configuration

Table 8. Pin Summary

Pin Name Function
Active Input/

State Output

CLK CLocK I

CKM ClocKing Mode I

RESET System reset High I

PEREQ Processor Extension REQuest High O

PEACK Processor Extension ACKnowledge Low I

BUSY Busy status Low O

ERROR Error status Low O

D15–D0 Data pins High I/O

NPRD Numeric Processor ReaD Low I

NPWR Numeric Processor WRite Low I

NPS1 NPX select 1 Low I

NPS2 NPX select 2 High I

CMD0 CoMmanD 0 High I

CMD1 CoMmanD 1 High I

VCC System power I

VSS System ground I

12

M80C287

Table 9. CERDIP Pin Cross-Reference

Pin CERDIP

Name Package

CLK 32

CKM 39

RESET 35

PEREQ 24

PEACK 36

BUSY 25

ERROR 26

D0 23

D1 22

D2 21

D3 20

D4 19

D5 18

D6 17

D7 16

D8 15

D9 14

D10 12

D11 11

D12 8

D13 7

D14 6

D15 5

NPRD 27

NPWR 28

NPS1 34

NPS2 33

CMD0 29

CMD1 31

VCC 3,9,13,37,40

VSS 1,4,10,30,38

No Connect 2

CLOCK (CLK)

This input provides the basic timing for internal oper-
ation. This pin does not require MOS-level input; it
will operate at either TTL or MOS levels up to the
maximum allowed frequency. A minimum frequency
must be provided to keep the internal logic properly
functioning. Depending on the signal on CKM, the
signal on CLK can be divided by two to produce the
internal clock signal.

CLOCKING MODE (CKM)

This pin is a strapping option. When it is strapped to
VCC (HIGH), the CLK input is used directly; when
strapped to VSS (LOW), the CLK input is divided by

two to produce the internal clock signal. During the
RESET sequence, this input must be stable at least
four internal clock cycles (i.e. CLK clocks when CKM
is HIGH; 2 c CLK clocks when CKM is LOW) before
RESET goes LOW.

SYSTEM RESET (RESET)

A LOW to HIGH transition on this pin causes the
M80C287 to terminate its present activity and to en-
ter a dormant state. RESET must remain active
(HIGH) for at least four CLK periods (i.e., the RESET
signal presented to the M80C287 must be at least
four M80C287 clocks long, regardless of the fre-
quency of the CPU). Note that the M80C287 is ac-
tive internally for 25 clock cycles after the termina-
tion of the RESET signal (the HIGH to LOW tran-
sition of RESET); therefore, the first instruction
should not be written to the M80C287 until 25 clocks
after the falling edge of RESET. Table 10 shows the
status of the output pins during the reset sequence.
After a reset, all output pins return to their inactive
states.

Table 10. Output Pin Status during Reset

Output Pin Name Value During Reset

BUSY HIGH

ERROR HIGH

PEREQ LOW

D15–D0 Tristate OFF

PROCESSOR EXTENSION REQUEST (PEREQ)

When active, this pin signals to the CPU that the
M80C287 is ready for data transfer to/from its data
FIFO. With M80286 or M80C286 CPUs, PEREQ can
be deactivated after assertion of PEACK. These
CPUs rely on the NPX to deassert PEREQ when all
operands have been transfered. When there are
more than five data transfers, PEREQ is deactiviated
after the first three transfers and subsequently after
every four transfers. This signal always goes inactive
before BUSY goes inactive.

BUSY STATUS (BUSY)

When active, this pin signals to the CPU that the
M80C287 is currently executing an instruction. It
should be connected to the CPU’s BUSY pin. During
the RESET sequence this pin is HIGH.

13

M80C287

ERROR STATUS (ERROR)

This pin reflects the ES bit of the status register.
When active, it indicates that an unmasked excep-
tion has occurred. This signal can be changed to
inactive state only by the following instructions (with-
out a preceding WAIT): FNINIT, FNCLEX,
FNSTENV, FNSAVE, FLDCW, FLDENV, and
FRSTOR. This pin should be connected to the
ERROR pin of the CPU. ERROR can change state
only when BUSY is active.

PROCESSOR EXTENSION ACKNOWLEDGE
(PEACK)

During execution of escape instructions, an M80286
or M80C286 CPU asserts PEACK to acknowledge
that the request signal (PEREQ) has been recog-
nized and that data transfer is in progress. The
M80286/M80C286 also drives this signal HIGH dur-
ing RESET.

This input may be asynchronous with respect to the
M80C287 clock except during a RESET sequence,
when it must satisfy setup and hold requirements
relative to RESET.

DATA PINS (D15–D0)

These bidirectional pins are used to transfer data
and opcodes between the CPU and M80C287. They
are normally connected directly to the correspond-
ing CPU data pins. Other buffers/drivers driving the
local data bus must be disabled when the CPU
reads from the NPX. HIGH state indicates a value of
one. D0 is the least significant data bit.

NUMERIC PROCESSOR WRITE (NPWR)

A signal on this pin enables transfers of data from
the CPU to the NPX. This input is valid only when
NPS1 and NPS2 are both active.

NUMERIC PROCESSOR READ (NPRD)

A signal on this pin enables transfers of data from
the NPX to the CPU. This input is valid only when
NPS1 and NPS2 are both active.

NUMERIC PROCESSOR SELECTS (NPS1 and
NPS2)

Concurrent assertion of these signals indicates that
the CPU is performing an escape instruction and en-
ables the M80C287 to execute that instruction. No
data transfer involving the M80C287 occurs unless
the device is selected by these lines.

COMMAND SELECTS (CMD0 AND CMD1)

These pins along with the select pins allow the CPU
to direct the operation of the M80C287.

SYSTEM POWER (VCC)

System power provides the a5Vg5% DC supply
input. All VCC pins should be tied together on the
circuit board and local decoupling capacitors should
be used between VCC and VSS.

SYSTEM GROUND (VSS)

All VSS pins should be tied together on the circuit
board and local decoupling capacitors should be
used between VCC and VSS.

Processor Architecture

As shown by the block diagram on the front page,
the M80C287 NPX is internally divided into three
sections: the bus control logic (BCL), the data inter-
face and control unit, and the floating point unit
(FPU). The FPU (with the support of the control unit
which contains the sequencer and other support
units) executes all numerics instructions. The data
interface and control unit is responsible for the data
flow to and from the FPU and the control registers,
for receiving the instructions, decoding them, and
sequencing the microinstructions, and for handling
some of the administrative instructions. The BCL is
responsible for CPU bus tracking and interface.

BUS CONTROL LOGIC

The BCL communicates solely with the CPU using I/
O bus cycles. The BCL appears to the CPU as a
special peripheral device. It is special in two re-
spects: the CPU initiates I/O automatically when it
encounters ESC instructions, and the CPU uses re-
served I/O addresses to communicate with the BCL.
The BCL does not communicate directly with memo-
ry. The CPU performs all memory access, transfer-
ring input operands from memory to the M80C287
and transferring outputs from the M80C287 to mem-
ory. A dedicated communication protocol makes
possible high-speed transfer of opcodes and oper-
ands between the M80C286 CPU and M80C287.

DATA INTERFACE AND CONTROL UNIT

The data interface and control unit latches the data
and, subject to BCL control, directs the data to the
FIFO or the instruction decoder. The instruction de-

14

M80C287

Table 11. Bus Cycles Definition

NPS1 NPS2 CMD0 CMD1 NPRD NPWR Bus Cycle Type

x 0 x x x x M80C287 not selected

1 x x x x x M80C287 not selected

0 1 0 0 1 0 Opcode write to M80C287

0 1 0 0 0 1 CW or SW read from M80C287

0 1 1 0 0 1 Read data from M80C287

0 1 1 0 1 0 Write data to M80C287

0 1 0 1 1 0 Write exception pointers

0 1 0 1 0 1 Reserved

0 1 1 1 0 1 Reserved

0 1 1 1 1 0 Reserved

coder decodes the ESC instructions sent to it by the
CPU and generates controls that direct the data flow
in the FIFO. It also triggers the microinstruction se-
quencer that controls execution of each instruction.
If the ESC instruction is FINIT, FCLEX, FSTSW,
FSTSW AX, FSTCW, FSETPM, or FRSTPM, the
control executes it independently of the FPU and the
sequencer. The data interface and control unit is the
one that generates the BUSY, PEREQ, and ERROR
signals that synchronize M80C287 activities with the
CPU.

FLOATING-POINT UNIT

The FPU executes all instructions that involve the
register stack, including arithmetic, logical, transcen-
dental, constant, and data transfer instructions. The
data path in the FPU is 84 bits wide (68 significant
bits, 15 exponent bits, and a sign bit) which allows
internal operand transfers to be performed at very
high speeds.

Bus Cycles

The pins NPS1, NPS2, CMD0, CMD1, NPRD, and
NPWR identify bus cycles for the NPX. Table 11 de-
fines the types of M80C287 bus cycles.

M80C287 ADDRESSING

The NPS1, NPS2, CMD0, and CMD1 signals allow
the NPX to identify which bus cycles are intended for
the NPX. The NPX responds to I/O cycles when the
I/O address is 00F8H, 00FAH, 00FCH. The corre-
spondence between I/O addresses and control sig-
nals is defined by Table 12. To guarantee correct
operation of the NPX, programs must not perform
any I/O operations to these reserved port address-
es.

Table 12. I/O Address Decoding

I/O Address
M80C287 Select and

(Hexadecimal)
Command Inputs

NPS2 NPS1 CMD1 CMD0

00F8 1 0 0 0

00FA 1 0 0 1

00FC 1 0 1 0

CPU/NPX SYNCHRONIZATION

The pins BUSY, PEREQ, and ERROR are used for
various aspects of synchronization between the
CPU and the NPX.

BUSY is used to synchronize instruction transfer
from the M80C286 CPU to the M80C287. When the
M80C287 recognizes an ESC instruction, it asserts
BUSY. For most ESC instructions, the M80C286
CPU waits for the M80C287 to deassert BUSY be-
fore sending the new opcode.

The NPX uses the PEREQ pin of the CPU to signal
that the NPX is ready for data transfer to or from its
data FIFO. The NPX does not directly access mem-
ory; rather, the CPU provides memory access serv-
ices for the NPX. Thus, memory access on behalf of
the NPX always obeys the rules applicable to the
mode of the CPU, whether the CPU be in real-ad-
dress mode or protected mode.

Once the M80C286 CPU initiates an M80C287 in-
struction that has operands, the M80C286 CPU
waits for PEREQ signals that indicate when the
M80C287 is ready for operand transfer. Once all op-
erands have been transferred (or if the instruction
has no operands) the CPU continues program exe-
cution while the M80C287 executes the ESC instruc-
tion.

15

M80C287

In M8086/M8087 systems, WAIT instructions may
be required to achieve synchronization of both com-
mands and operands. In M80C287 systems, howev-
er, WAIT instructions are required only for operand
synchronization; namely, after NPX stores to memo-
ry (except FSTSW and FSTCW) or load from memo-
ry. (In M80C286/M80C287 systems, WAIT is re-
quired before FLDENV and FRSTOR; with other
CPU’s, WAIT is not required in these cases.) Used
this way, WAIT ensures that the value has already
been written or read by the NPX before the CPU
reads or changes the value.

Once it has started to execute a numerics instruction
and has transferred the operands from the CPU, the
M80C287 can process the instruction in parallel with
and independent of the host CPU. When the NPX
detects an exception, it asserts the ERROR signal,
which causes a CPU interrupt.

Bus Operation

With respect to bus interface, the M80C287 is fully
asynchronous with the CPU, even when it operates
from the same clock source as the CPU. The CPU
initiates a bus cycle for the NPX by activating both
NPS1 and NPS2, the NPX select signals. During the
CLK period in which NPS1 and NPS2 are activated,
the M80C287 also examines the NPRD and NPWR
input signals to determine whether the cycle is a
read or a write cycle and examines the CMD0 and
CMD1 inputs to determine whether an opcode, oper-
and, or control/status register transfer is to occur.
The M80C287 activates its BUSY output some time
after the leading edge of the NPRD or NPWR signal.
Input and output data are referenced to the trailing
edges of the NPRD and NPWR signals.

The M80C287 activates the PEREQ signal when it is
ready for data transfer. In M80286/80C286 systems,
the CPU activates PEACK when no more data trans-
fers are required, which causes the M80C287 to de-
activate PEREQ, halting the data transfer.

M80287/M80C287 Socket
Compatibility and CPU Interfacing

In general, the M80C287 can fit in existing M80287
sockets, provided that the necessary connections to
VCC and VSS are made and that the clock require-
ments are met. The pinouts for the M80C287 are
identical to those of the M80287 except for the pins
marked by asterisk (*) in Figure 8. The pins marked
by asterisk are status lines for monitoring ESCAPE
instructions and bus cycles. These lines are not crit-
ical for proper operation of an M80287. Note that
when the clock is fed in directly (CKM e 1) the
M80C287 requires a 50% duty cycle clock signal,
whereas the M80287 requires a 33% duty cycle.
Also note that with CKM e 0, the M80C287 divides
the clock input by two, not by three as on the
M80287.

The interface between the M80C287 and the
M80286/M80C286 CPU (illustrated in Figure 9) has
these characteristics:

The M80C287 resides on the local data bus of
the CPU.

The CPU and M80C287 share the same RESET
signals. They may also share the same clock in-
put; however, for greatest performance, an exter-
nal oscillator may be needed.

The corresponding BUSY, ERROR, PEREQ, and
PEACK pins are connected together.

NPS2 is tied HIGH permanently, while NPS1,
CMD1, and CMD0 come from the latched ad-
dress pins. The M80286 generates I/O address-
es 00F8H, 00FAH, and 00FCH during NPX bus
cycles. Address 00FEH is reserved.

The M80C287 NPRD and NPWR inputs are con-
nected to I/O read and write signals from local
bus control logic.

16

M80C287

271092–7

Figure 9. M80C286/M80C287 System Configuration

17

M80C287

ELECTRICAL DATA

ABSOLUTE MAXIMUM RATINGS*

Case temperature (TC)
under bias ÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀb55§C to a125§C

Storage temperature ÀÀÀÀÀÀÀÀÀÀÀb65§C to a150§C
Voltage on any pin

with respect to groundÀÀÀÀÀÀÀb0.5 to VCCa0.5V

Power dissipation ÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀ1.5 Watt

NOTICE: This data sheet contains information on
products in the sampling and initial production phases
of development. The specifications are subject to
change without notice. Verify with your local Intel
Sales office that you have the latest data sheet be-
fore finalizing a design.

*WARNING: Stressing the device beyond the ‘‘Absolute
Maximum Ratings’’ may cause permanent damage.
These are stress ratings only. Operation beyond the
‘‘Operating Conditions’’ is not recommended and ex-
tended exposure beyond the ‘‘Operating Conditions’’
may affect device reliability.

Power and Frequency Requirements

The typical relationship between ICC and the fre-
quency of operation F is as follows:

ICCtyp e 55 a 5*F mA , where F is in MHz.

When the frequency is reduced below the minumum
operating frequency specified in the AC Characteris-
tics table, the internal states of the M80C287 may
become indeterminate. The M80C287 clock cannot
be stopped; otherwise, ICC would increase signifi-
cantly beyond what the equation above indicates.

Operating Conditions

Symbol Parameter Min Max Units

TC Case Temperature (Instant On) b55 a125 §C
VCC Digital Supply Voltage 4.75 5.25 V

DC CHARACTERISTICS (Over Specified Operating Conditions)

Symbol Parameter Min Max Units Comments

VIL Input LOW Voltage b0.5 a0.8 V

VIH Input HIGH Voltage 2.2 VCCa0.5 V

VICL Clock Input LOW Voltage b0.5 a0.8 V

VICH Clock Input HIGH Voltage 2.2 VCCa0.5 V

VOL Output LOW Voltage 0.45 V IOL e 3 mA

VOH Output HIGH Voltage 2.4 V IOH e b800 mA

ICC Power Supply Current 115 mA CLK e 10 MHz

ILI Input Leakage Current g10 mA 0V s VIN s VCC

ILO I/O Leakage Current g10 mA 0.45V s VOUT s VCC b 0.45

CIN Input Capacitance 10 pF FC e 1 MHz

CO I/O or Output Capacitance 20 pF FC e 1 MHz

CCLK Clock Capacitance 12 pF FC e 1 MHz

18

M80C287

AC CHARACTERISTICS (Over Specified Operating Conditions)

Symbol Parameter

10 MHz

CommentsMin Max

(ns) (ns)

t6 Data setup to NPWR 50

t7 Data hold from NPWR 18

t8 NPWR active time 91.5

t9 NPRD active time 91.5

t10 Command valid to NPRD 0

t11 Command valid to NPWR 0

t12 Min delay from PEREQ active 50

to NPRD active

t33 PEACK active time 61.5

t34 PEACK inactive time 76.5

t35 PEACK inactive to 40

NPRD, NPWR inactive

t36 PEACK active setup to 40

NPRD, NPWR active

t37 NPRD, NPWR inactive b30

to PEACK active

t38 PEACK Setup to RESET 80

Falling Edge

t39 PEACK Hold from RESET 80

Falling Edge

t18 Command hold from NPWR 20

t19 Command hold from NPRD 20

t20 NPRD, NPWR, RESET to 54 Note 1

CLK setup time

t21 NPRD, NPWR, RESET from 38 Note 1

CLK hold time

t24 RESET to CLK setup 22 Note 1

t25 RESET from CLK hold 20 Note 1

t26 Command inactive time

Write to write 76.5

Read to read 76.5

Read to write 76.5

Write to read 76.5

NOTE:
1. This is an asynchronous input. This specification is given for testing purposes only, to assure recognition at a specific CLK
edge (not tested).

19

M80C287

Timing Responses

Symbol Parameter

10 MHz

CommentsMin Max

(ns) (ns)

t27 NPRD inactive to data float 25 Note 1

t28 NPRD active to data valid 60 Note 2

t29 ERROR active to BUSY inactive 100 Note 3

t30 NPWR active to BUSY active 100 Note 3

t31 NPRD, NPWR or PEACK 100 Note 4

active to PEREQ inactive

t32 Data hold from NPRD inactive 3 Note 2

NOTES:
1. The float condition occurs when the measured output current is less than IOL on D15–D0.
2. D15–D0 loading: CL e 100pf.
3. BUSYÝ loading: CL e 100pf.
4. On last data transfer of numeric instruction.

Clock Timings

Symbol Parameter

10 MHz

CommentsMin Max

(ns) (ns)

t1a CLK period CKMe1 100 250

t1b CKMe0 50 125

t2a CLK low time CKMe1 35

t2b CKMe0 11 Note 5, 9

t3a CLK high time CKMe1 35

t3b CKMe0 18 Note 6, 9

t4 CLK fall time 10 Note 7

t5 CLK rise time 10 Note 8

NOTES:
5. At 0.8V.
6. At 2.0V.
7. CKMe1: 3.5V to 1.0V
8. CKMe1: 1.0V to 3.5V
9. Proper operation can also be achieved by meeting the CPU specification

20

M80C287

271092–8

Figure 10. AC Drive and Measurement PointsÐCLK Input

271092–9

Figure 11. AC Setup, Hold, and Delay Time MeasurementsÐGeneral

271092–10

Figure 12. AC Test Loading on Outputs

RESET, NPWR, NPRD inputs are asynchronous to
CLK. Timing requirements in Figures 16 through 19
are given for testing purposes only, to assure recog-
nition at a specific CLK edge.

21

M80C287

271092–11

Figure 13. Data Transfer Timing (Initiated by CPU)

271092–12

Figure 14. Data Channel Timing (Initiated by M80C287)

22

M80C287

271092–13

Figure 15. ERROR Output Timing

271092–14

Figure 16. CLK, RESET Timing (CKMe1)

271092–15

Figure 17. CLK, NPRD, NPWR Timing (CKMe1)

271092–16

NOTE:
RESET must meet timing shown to guarantee known phase of internal divide by 2 circuit.

Figure 18. CLK, RESET Timing (CKMe0)

23

M80C287

271092–17

Figure 19. CLK, NPRD, NPWR Timing (CKMe0)

271092–18

Figure 20. RESET, PEACK Setup and Hold Timing

24

M80C287

M80C287 EXTENSIONS TO THE
CPU’S INSTRUCTION SET

Instructions for the M80C287 assume one of the five
forms shown in Table 13. In all cases, instructions
are at least two bytes long and begin with the bit
pattern 11011B, which identifies the ESCAPE class
of instruction. Instructions that refer to memory oper-
ands specify addresses using the CPU’s addressing
modes.

MOD (Mode field) and R/M (Register/Memory spec-
ifier) have the same interpretation as the corre-
sponding fields of CPU instructions (refer to Pro-
grammer’s Reference Manual for the CPU). The
DISP (displacement) is optionally present in instruc-

tions that have MOD and R/M fields. Its presence
depends on the values of MOD and R/M, as for in-
structions of the CPU.

The instruction summaries that follow assume that
the instruction has been prefetched, decoded, and is
ready for execution; that bus cycles do not require
wait states; that there are no local bus HOLD re-
quests delaying processor access to the bus; and
that no exceptions are detected during instruction
execution. Timings are given in internal M80C287
clocks and include the time for opcode and data
transfer between the CPU and the NPX. If the in-
struction has MOD and R/M fields that call for both
base and index registers, add one clock.

Table 13. Instruction Formats

Instruction Optional

First Byte Second Byte
Field

1 11011 OPA 1 MOD 1 OPB R/M DISP

2 11011 MF OPA MOD OPB* R/M DISP

3 11011 d P OPA 1 1 OPB* ST(i)

4 11011 0 0 1 1 1 1 OP

5 11011 0 1 1 1 1 1 OP

15–11 10 9 8 7 6 5 4 3 2 1 0

OP e Instruction opcode, possibly split into two fields OPA and OPB

MF e Memory Format
00–32-bit real
01–32-bit integer
10–64-bit real
11–16-bit integer

d e Destination
0–Destination is ST(0)
1–Destination is ST(i)

R XOR d e 0-Destination (Op) Source
R XOR d e 1-Source (Op) Destination

*In FSUB and FDIV, the low-order bit of the OPB is the R (reversed) bit

P e Pop
0–Do not pop stack
1–Pop stack after operation

ESC e 11011

ST(i) e Register stack element i
000 e Stack top
001 e Second stack element

#
#
#

111 e Eighth stack element

25

M80C287

M80C287 Extension to the CPU’s Instruction Set

Encoding Clock Count Range

Instruction Byte Byte Optional 32-Bit 32-Bit 64-Bit 16-Bit
0 1 Bytes 2–3 Real Integer Real Integer

DATA TRANSFER

FLD e Load1

Integer/real memory to ST(0) ESC MF 1 MOD 000 R/M SIB/DISP 36 61–68 45 61–65

Long integer memory to ST(0) ESC 111 MOD 101 R/M SIB/DISP 76–87

Extended real memory to ST(0) ESC 011 MOD 101 R/M SIB/DISP 48

BCD memory to ST(0) ESC 111 MOD 100 R/M SIB/DISP 270–279

ST(i) to ST(0) ESC 001 11000 ST(i) 21

FST e Store

ST(0) to integer/real memory ESC MF 1 MOD 010 R/M SIB/DISP 51 86–100 56 88–101

ST(0) to ST(i) ESC 101 11010 ST(i) 18

FSTP e Store and Pop

ST(0) to integer/real memory ESC MF 1 MOD 011 R/M SIB/DISP 51 86–100 56 88–101

ST(0) to long integer memory ESC 111 MOD 111 R/M SIB/DISP 91–108

ST(0) to extended real ESC 011 MOD 111 R/M SIB/DISP 61

ST(0) to BCD memory ESC 111 MOD 110 R/M SIB/DISP 520–542

ST(0) to ST(i) ESC 101 11001 ST (i) 19

FXCH e Exchange

ST(i) and ST(0) ESC 001 11001 ST(i) 25

COMPARISON

FCOM e Compare

Integer/real memory to ST(0) ESC MF 0 MOD 010 R/M SIB/DISP 42 72–79 51 71–75

ST(i) to ST(0) ESC 000 11010 ST(i) 31

FCOMP e Compare and pop

Integer/real memory to ST ESC MF 0 MOD 011 R/M SIB/DISP 42 72–79 51 71–77

ST(i) to ST(0) ESC 000 11011 ST(i) 33

FCOMPP e Compare and pop twice

ST(1) to ST(0) ESC 110 1101 1001 33

FTST e Test ST(0) ESC 001 1110 0100 35

FUCOM e Unordered compare ESC 101 11100 ST(i) 31

FUCOMP e Unordered compare

and pop ESC 101 11101 ST(i) 33

FUCOMPP e Unordered compare
and pop twice ESC 010 1110 1001 33

FXAM e Examine ST(0) ESC 001 11100101 37–45

CONSTANTS

FLDZ e Load a0.0 into ST(0) ESC 001 1110 1110 27

FLD1 e Load a1.0 into ST(0) ESC 001 1110 1000 31

FLDPI e Load pi into ST(0) ESC 001 1110 1011 47

FLDL2T e Load log2(10) into ST(0) ESC 001 1110 1001 47

Shaded areas indicate instructions not available in M8087/M80287.

NOTE:
1. When loading single- or double-precision zero from memory, add 5 clocks.

26

M80C287

M80C287 Extension to the CPU’s Instruction Set (Continued)

Encoding Clock Count Range

Instruction Byte Byte Optional 32-Bit 32-Bit 64-Bit 16-Bit
0 1 Bytes 2–3 Real Integer Real Integer

CONSTANTS (Continued)

FLDL2E e Load log2(e) into ST(0) ESC 001 1110 1010 47

FLDLG2 e Load log10(2) into ST(0) ESC 001 1110 1100 48

FLDLN2 e Load loge(2) into ST(0) ESC 001 1110 1101 48

ARITHMETIC

FADD e Add

Integer/real memory with ST(0) ESC MF 0 MOD 000 R/M SIB/DISP 40–48 73–78 49–79 71–85

ST(i) and ST(0) ESC d P 0 11000 ST(9) 30–382

FSUB e Subtract

Integer/real memory with ST(0) ESC MF 0 MOD 10 R R/M SIB/DISP 40–48 73–98 49–77 71–833

ST(i) and ST(0) ESC d P 0 1110 R R/M 33–414

FMUL e Multiply

Integer/real memory with ST(0) ESC MF 0 MOD 001 R/M SIB/DISP 43–51 77–88 52–77 76–87

ST(i) and ST(0) ESC d P 0 1100 1 R/M 25–535

FDIV e Divide

Integer/real memory with ST(0) ESC MF 0 MOD 11 R R/M SIB/DISP 105 136–1436 114 136–1407

ST(i) and ST(0) ESC d P 0 1111 R R/M 958

FSQRTi e Square root ESC 001 1111 1010 129–136

FSCALE e Scale ST(0) by ST(1) ESC 001 1111 1101 74–93

FPREM e Partial remainder of ESC 001 1111 1000 81–162
ST(0) d ST(1)

FPREM1 e Partial remainder

(IEEE) ESC 001 1111 0101 102–192

FRNDINT e Round ST(0) ESC 001 1111 1100 73–87
to integer

FXTRACT e Extract components
of ST(0) ESC 001 1111 0100 75–83

FABS e Absolute value of ST(0) ESC 001 1110 0001 29

FCHS e Change sign of ST(0) ESC 001 1110 0000 31–37

Shaded areas indicate instructions not available in M8087/M80287.

NOTES:
2. Add 3 clocks to the range when d e 1.
3. Add 1 clock to each range when R e 1.
4. Add 3 clocks to the range when d e 0.
5. Typical e 48 (When d e 0, 42–50, typical e 45).
6. Add 1 clock to the range when R e 1.
7. 135–141 when R e 1.
8. Add 3 clocks to the range when d e 1.
9. b0 s ST(0) s a%.

27

M80C287

M80C287 Extension to the CPU’s Instruction Set (Continued)

Encoding
Instruction Byte Byte Optional Clock Count Range

0 1 Bytes 2–3

TRANSCENDENTAL

FCOS e Cosine of ST(0) ESC 001 1111 1111 130–77910

FPTAN11 e Partial tangent of ST(0) ESC 001 1111 0010 198–504j

FPATAN e Partial arctangent ESC 001 1111 0011 321–494

FSIN e Sine of ST(0) ESC 001 1111 1110 129–77810

FSINCOS e Sine and cosine of ST(0) ESC 001 1111 1011 201–81610

F2XM112 e 2ST(0) b 1 ESC 001 1111 0000 215–483

FYL2X13 e ST(1) * log2(ST(0)) ESC 001 1111 0001 127–545

FYL2XP114 e ST(1) * log2(ST(0) a 1.0) ESC 001 1111 1001 264–554

PROCESSOR CONTROL

FINIT e Initialize NPX ESC 011 1110 0011 25

FSETPM e Set protected mode ESC 011 1110 0100 12

FRSTPM e Reset protected mode ESC 011 1111 0100 12

FSTSW AX e Store status word ESC 111 1110 0000 18

FLDCW e Load control word ESC 001 MOD 101 R/M SIB/DISP 33

FSTCW e Store control word ESC 101 MOD 111 R/M SIB/DISP 18

FSTSW e Store status word ESC 101 MOD 111 R/M SIB/DISP 18

FCLEX e Clear exceptions ESC 011 1110 0010 8

FSTENV e Store environment ESC 001 MOD 110 R/M SIB/DISP 192–193

FLDENV e Load environment ESC 001 MOD 100 R/M SIB/DISP 85

FSAVE e Save state ESC 101 MOD 110 R/M SIB/DISP 521–522

FRSTOR e Restore state ESC 101 MOD 100 R/M SIB/DISP 396

FINCSTP e Increment stack pointer ESC 001 1111 0111 28

FDECSTP e Decrement stack pointer ESC 001 1111 0110 29

FFREE e Free ST(12) ESC 101 1100 0 ST(12) 25

FNOP e No operations ESC 001 1101 0000 19

Shaded areas indicate instructions not available in M8087/M80287.

NOTES:
10. These timings hold for operands in the range lxl k q/4. For operands not in this range, up to 78 additional clocks may
be needed to reduce the operand.
11. 0 s l ST(0) l k 263.
12. b1.0 s ST(0) s 1.0.
13. 0 s ST(0) k %, b% k ST(1) k a%.
14. 0 s lST(0)l k (2 b SQRT(2))/2, b% k ST(1) k a%.

28

M80C287

APPENDIX A
COMPATIBILITY BETWEEN

THE M80287 AND THE M8087

The M80286/M80287 operating in Real-Address
mode will execute M8086/M8087 programs without
major modification. However, because of differences
in the handling of numeric exceptions by the
M80287 NPX and the M8087 NPX, exception-han-
dling routines may need to be changed.

This appendix summarizes the differences between
the M80287 NPX and the M8087 NPX, and provides
details showing how M8086/M8087 programs can
be ported to the M80286/M80287.

1. The NPX signals exceptions through a dedicated
ERROR line to the M80286. The NPX error signal
does not pass through an interrupt controller (the
M8087 INT signal does). Therefore, any interrupt-
controller-oriented instructions in numeric excep-
tion handlers for the M8086/M8087 should be de-
leted.

2. The M8087 instructions FEN/FNENI and FDISI/
FNDISI perform no useful function in the M80287.
If the M80287 encounters one of these opcodes
in its instruction stream, the instruction will effec-
tively be ignoredÐnone of the M80287 internal
states will be updated. While M8086/M8087 con-
taining these instructions may be executed on the
M80286/M80287, it is unlikely that the exception-
handling routines containing these instructions
will be completely portable to the M80287.

3. Interrupt vector 16 must point to the numeric ex-
ception handling routine.

4. The ESC instruction address saved in the
M80287 includes any leading prefixes before the
ESC opcode. The corresponding address saved
in the M8087 does not include leading prefixes.

5. In Protected-Address mode, the format of the
M80287’s saved instruction and address pointers
is different than for the M8087. The instruction
opcode is not saved in Protected modeÐexcep-
tion handlers will have to retrieve the opcode from
memory if needed.

6. Interrupt 7 will occur in the M80286 when execut-
ing ESC instructions with either TS (task
switched) or EM (emulation) of the M80286 MSW
set (TS e 1 or EM e 1). If TS is set, then a WAIT
instruction will also cause interrupt 7. An excep-
tion handler should be included in M80286/
M80287 code to handle these situations.

7. Interrupt 9 will occur if the second or subsequent
words of a floating-point operand fall outside a
segment’s size. Interrupt 13 will occur if the start-
ing address of a numeric operand falls outside a
segment’s size. An exception handler should be
included in M80286/M80287 code to report these
programming errors.

8. Except for the processor control instructions, all
of the M80287 numeric instructions are automati-
cally synchronized by the M80286 CPUÐthe
M80286 automatically tests the BUSY line from
the M80287 to ensure that the M80287 has com-
pleted its previous instruction before executing
the next ESC instruction. No explicit WAIT instruc-
tions are required to assure this synchronization.
For the M8087 used with M8086 and M8088 proc-
essors, explicit WAITs are required before each
numeric instruction to ensure synchronization. Al-
though M8086/M8087 programs having explicit
WAIT instructions will execute perfectly on the
M80286/M80287 without reassembly, these
WAIT instructions are unnecessary.

9. Since the M80287 does not require WAIT instruc-
tions before each numeric instruction, the
ASM286 assembler does not automatically gener-
ate these WAIT instructions. The ASM86 assem-
bler, however, automatically precedes every ESC
instruction with a WAIT instruction. Although nu-
meric routines generated using the ASM86 as-
sembler will generally execute correctly on the
M80286/M80287, reassembly using ASM286
may result in a more compact code image.

The processor control instructions for the M80287
may be coded using either a WAIT or No-WAIT
form of mnemonic. The WAIT forms of these in-
structions cause ASM286 to precede the ESC in-
struction with a CPU WAIT instruction, in the iden-
tical manner as does ASM86.

A-1

