MIR500 Series

2W, Ultra-High Isolation DIP, Single & Dual Output DC/DC Converters

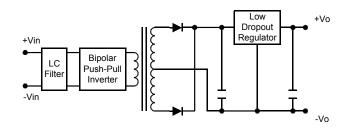
Key Features

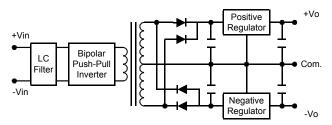
- Low Cost
- 6000VDC Isolation
- MTBF > 600,000 Hours
- Short Circuit Protection
- Input 5, 12 and 24VDC
- Output 5, 12, 15, ±5, ±12 and ±15VDC
- Regulated Outputs
- Low Isolation Capacitance
- Low Leakage Current
- Complies with EN55022 Class A

Minmax's MIR500 2W DC/DC's are specially designed to provide ultra-high levels of isolation 6000VDC in a low-profile DIP package.

The series consists of 18 models with input voltages of 5V, 12V and 24VDC which offers regulated output voltages of 5V, 12V, 15VDC in both single and dual output configurations.

The MIR500 series is an excellent selection for a variety of applications including mixed analog/digital subsystems, railroad/transportation equipments, medical equipment subsystems, process/machine control equipments and automatic test instrumentation.





Block Diagram

Single Output

Dual Output

MIR500 Series

Model Selection Guide

Model Number	Input Voltage	Output Voltage	Output	Current	Input C	Current	Reflected Ripple Current	Efficiency	
			Max.	Min.	@Max. Load	@No Load		@Max. Load	
	VDC	VDC	mA	mA	mA (Typ.)	mA (Typ.)	mA (Typ.)	% (Тур.)	
MIR501		5	400		645			62	
MIR502		12	165		629			63	
MIR503	5	15	133		623	100	45	64	
MIR504	(4.5 ~ 5.5)	±5	±100	0	476	100	15	42	
MIR505		±12	±83		699			57	
MIR506		±15	±66		695			57	
MIR511		5	400		269			62	
MIR512		12	165		262	50		63	
MIR513	12	15	133		260			64	
MIR514	(10.8 ~ 13.2)	±5	±100	0	185		8	45	
MIR515		±12	±83		281			59	
MIR516		±15	±66		280			59	
MIR521		5	400		134			62	
MIR522		12	165		131			63	
MIR523	24	15	133		130	22	2	64	
MIR524	(21.6 ~ 26.4)	±5	±100	0	93	30	3	45	
MIR525		±12	±83	1	143			58	
MIR526]	±15	±66	1	142			58	

Absolute Maximum Ratings

Paramet	Min.	Max.	Unit	
	5VDC Input Models	-0.7	7.5	VDC
Input Surge Voltage (1000 mS)	12VDC Input Models	-0.7	15	VDC
(1000 110)	24VDC Input Models	-0.7	30	VDC
Lead Temperature (1.5mm fro		260	C	
Internal Power Dissipation		2,000	mW	

Exceeding the absolute maximum ratings of the unit could cause damage. These are not continuous operating ratings.

Environmental Specifications

Parameter	Conditions	Min.	Max.	Unit		
Operating Temperature	Ambient	-25	+60	Ĉ		
Operating Temperature	Case	-25	+90	Ĉ		
Storage Temperature		-40	+125	Ĉ		
Humidity			95	%		
Cooling	Free-Air Convection					
Conducted EMI	EN55022 Class A					

Notes :

- 1. Specifications typical at Ta=+25°C, resistive load, nominal input voltage, rated output current unless otherwise noted.
- 2. Transient recovery time is measured to within 1% error band for a step change in output load of 50% to 100%.
- *3. Ripple & Noise measurement bandwidth is 0–20 MHz.*
- 4. All DC/DC converters should be externally fused at the front end for protection.
- 5. Other input and output voltage may be available, please contact factory.
- 6. Specifications subject to change without notice.

Input Specifications

Parameter	Model	Min.	Тур.	Max.	Unit				
	5V Input Models	4.5	5	5.5					
Input Voltage Range	12V Input Models	10.8	12	13.2	VDC				
	24V Input Models	21.6	24	26.4	1				
Reverse Polarity Input Current				0.5	А				
Short Circuit Input Power	All Models			2000	mW				
Input Filter			Pi Filter						

Output Specifications

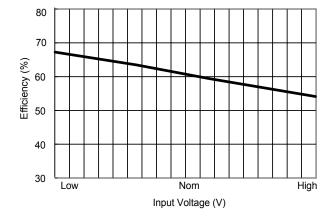
Parameter	Conditions	Min.	Тур.	Max.	Unit	
Output Voltage Accuracy			±2.0	±4.0	%	
Output Voltage Balance	Dual Output, Balanced Loads		±2.0	±4.0	%	
Line Regulation	Vin=Min. to Max.		±0.3	±0.5	%	
Load Regulation	lo=10% to 100%		±0.5	±1.0	%	
Ripple & Noise (20MHz)			30	50	mV P-P	
Ripple & Noise (20MHz)	Over Line, Load & Temp.			100	mV P-P	
Ripple & Noise (20MHz)				5	mV rms	
Over Load		120			%	
Transient Recovery Time	50% Lond Chan Change			50	uS	
Transient Response Deviation	50% Load Step Change			±6	%	
Temperature Coefficient			±0.01	±0.02	%/°C	
Output Short Circuit		Continuous	•	•		

General Specifications

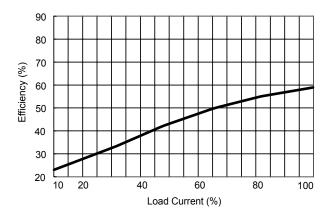
Parameter	Conditions	Min.	Тур.	Max.	Unit
Isolation Voltage Rated	60 Seconds	6000			VDC
Isolation Voltage Test	Flash Tested for 1 Second	8000			VDC
Leakage Current	240VAC, 60Hz			2	υA
Isolation Resistance	500VDC	10			GΩ
Isolation Capacitance	100KHz,1V		20	30	рF
Switching Frequency		25		80	KHz
MTBF	MIL-HDBK-217F @ 25°C, Ground Benign	600			K Hours

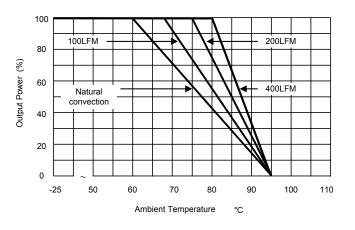
Capacitive Load

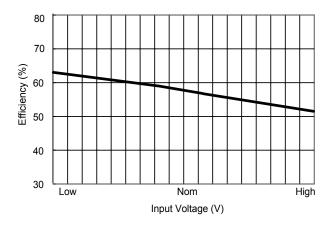
Models by Vout	5V	12V	15V	±5V #	±12V #	±15V #	Unit
Maximum Capacitive Load	680	680	680	270	270	270	иF

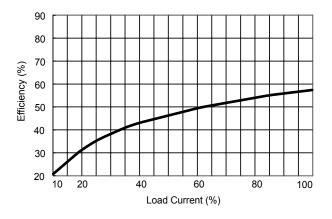

For each output

Input Fuse Selection Guide


5V Input Models	12V Input Models	24V Input Models				
1000mA Slow – Blow Type	500mA Slow – Blow Type	250mA Slow – Blow Type				




Efficiency vs Input Voltage (Single Output)

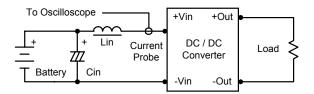

Efficiency vs Output Load (Single Output)

Derating Curve

Efficiency vs Input Voltage (Dual Output)

Efficiency vs Output Load (Dual Output)

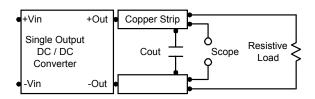
MIR500 Series

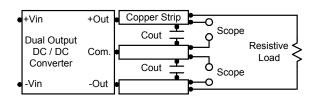

Test Configurations

Input Reflected-Ripple Current Test Setup

Input reflected-ripple current is measured with a inductor Lin (4.7uH) and Cin (220uF, ESR < 1.0Ω at 100 KHz) to simulate source impedance.

Capacitor Cin. offsets possible battery impedance.


Current ripple is measured at the input terminals of the module, measurement bandwidth is 0–500 KHz.



Peak-to-Peak Output Noise Measurement Test

Use a Cout 0.33uF ceramic capacitor.

Scope measurement should be made by using a BNC socket, measurement bandwidth is 0-20 MHz. Position the load between 50 mm and 75 mm from the DC/DC Converter.

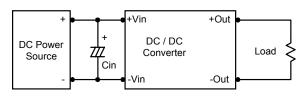
Design & Feature Considerations

Maximum Capacitive Load

The MIR500 series has limitation of maximum connected capacitance at the output.

The power module may be operated in current limiting mode during start-up, affecting the ramp-up and the startup time.

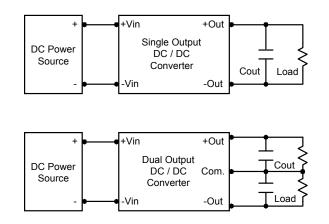
For optimum performance we recommend 270uF maximum capacitive load for dual outputs and 680uF capacitive load for single outputs.


The maximum capacitance can be found in the data sheet.

Input Source Impedance

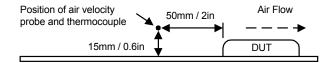
The power module should be connected to a low ac-impedance input source. Highly inductive source impedances can affect the stability of the power module.

In applications where power is supplied over long lines and output loading is high, it may be necessary to use a capacitor at the input to ensure startup.

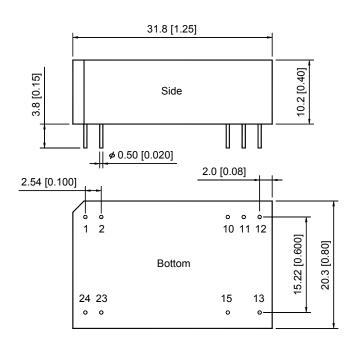

Capacitor mounted close to the power module helps ensure stability of the unit, it is recommended to use a good quality low Equivalent Series Resistance (ESR < 1.0Ω at 100KHz) capacitor of a 4.7uF for the 5V input devices and a 2.2uF for the 12V and 24V devices.

Output Ripple Reduction

A good quality low ESR capacitor placed as close as practicable across the load will give the best ripple and noise performance.

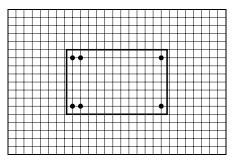

To reduce output ripple, it is recommended to use 1.5uF capacitors at the output.

Thermal Considerations


Many conditions affect the thermal performance of the power module, such as orientation, airflow over the module and board spacing. To avoid exceeding the maximum temperature rating of the components inside the power module, the case temperature must be kept below 90°C.

The derating curves are determined from measurements obtained in an experimental apparatus.

Mechanical Dimensions


Tolerance	Millimeters	Inches
	X.X±0.25	X.XX±0.01
	X.XX±0.13	X.XXX±0.005
Pin	±0.05	±0.002

Pin Connections

Pin	Single Output	Dual Output
1	+Vin	+Vin
2	+Vin	+Vin
10	No Pin	Common
11	No Pin	Common
12	-Vout	No Pin
13	+Vout	-Vout
15	No Pin	+Vout
23	-Vin	-Vin
24	-Vin	-Vin

Connecting Pin Patterns Top View (2.54 mm / 0.1 inch grids)

Single Output

Dual Output

					Г										Т				
					Г	Н	,						н	•					
	-																		
		-					-	-	-					-					_
-	-				╟	H	┝		-		-	-		-	Н				_
					L		-	-	-	-	-			-					
_		_			_		_	_		-				_				-	_
	_								_										
_		_	-	_			_	_	-					_	_				
_																			

Physical Characteristics

Case Size	:	31.8×20.3×10.2 mm 1.25×0.80×0.40 inches
Case Material	:	Non-Conductive Black Plastic
Weight	:	12.4g
Flammability	:	UL94V-0

The MIR500 converter is encapsulated in a low thermal resistance molding compound that has excellent resistance/electrical characteristics over a wide temperature range or in high humidity environments. The encapsulant and unit case are both rated to UL 94V–0 flammability specifications.

Leads are tin plated for improved solderability.

