
SEMIX 151GD126HDs

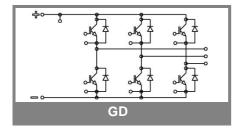
SEMiX[®] 13s

Trench IGBT Modules

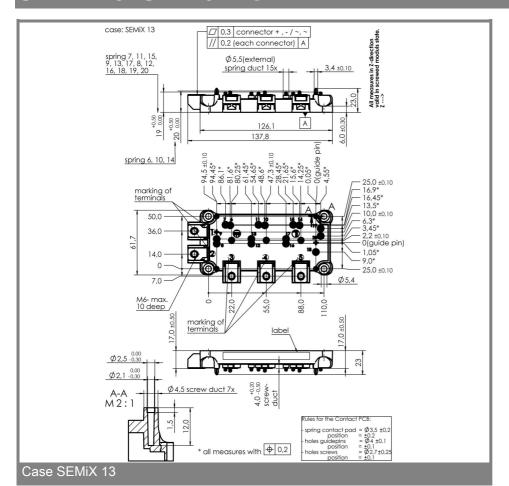
SEMiX 151GD126HDs

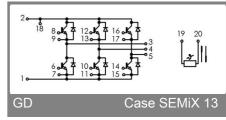
Target Data

Features


- Homogeneous Si
- Trench = Trenchgate technology
- V_{CE(sat)} with positive temperature coefficient
- · High short circuit capability

Typical Applications


- AC inverter drives
- UPS
- Electronic welding


Absolute	Maximum Ratings T _c	se = 25°C, unless otherwise specified						
Symbol	Conditions	Values	Units					
IGBT								
V_{CES}		1200	V					
I _C	T _c = 25 (80) °C	150 (120)	Α					
I _{CRM}	t _p = 1 ms	200	Α					
V_{GES}		± 20	V					
T_{vj} , (T_{stg})	$T_{OPERATION} \leq T_{stg}$	- 40 + 150 (125)	°C					
V _{isol}	AC, 1 min.	4000	V					
Inverse diode								
I _F	T _c = 25 (80) °C	125 (85)	Α					
I _{FRM}	$t_p = 1 \text{ ms}$	200	Α					
I _{FSM}	$t_p = 10 \text{ ms; sin.; } T_j = 25 \text{ °C}$	700	Α					

Characteristics T _{case} = 25°C, unless otherwise specifie						
Symbol	Conditions	min.	typ.	max.	Units	
IGBT						
$V_{GE(th)}$	$V_{GE} = V_{CE}$, $I_C = 4 \text{ mA}$	5	5,8	6,5	V	
I _{CES}	$V_{GE} = 0, V_{CE} = V_{CES}, T_j = 25 (125) °C$;		0,3	mA	
$V_{CE(TO)}$	$T_j = 25 (125) ^{\circ}C$		1 (0,9)	1,2 (1,1)	V	
r _{CE}	$V_{GE} = 15 \text{ V}, T_j = 25 (125) ^{\circ}\text{C}$		7 (11)		mΩ	
V _{CE(sat)}	$I_{Cnom} = 100 \text{ A}, V_{GE} = 15 \text{ V},$		1,7 (2)	2,15 (2,45)	V	
	T _j = 25 (125) °C, chip level					
C _{ies}	under following conditions				nF	
C _{oes}	$V_{GE} = 0$, $V_{CE} = 25 V$, $f = 1 MHz$				nF	
C _{res}					nF	
L _{CE}			0 = (1)		nH	
R _{CC'+EE'}	terminal-chip, T _c = 25 (125) °C		0,7 (1)		mΩ	
$t_{d(on)}/t_r$	V _{CC} = 600 V, I _{Cnom} = 100 A				ns	
t _{d(off)} /t _f	V _{GE} = ± 15 V				ns	
E _{on} (E _{off})	$R_{Gon} = R_{Goff} = 6.8 \Omega$, $T_j = 125 °C$		9 (16)		mJ	
Inverse d						
$V_F = V_{EC}$	I_{Fnom} = 100 A; V_{GE} = 0 V; T_j = 25 (128 °C, chip level	5)	1,6 (1,6)	1,8 (1,8)	V	
$V_{(TO)}$	T _j = 25 (125) °C		1 (0,8)	1,1 (0,9)	V	
r _T	$T_{j} = 25 (125) ^{\circ}C$		6 (8)	7 (9)	mΩ	
I _{RRM}	$I_{Fnom} = 100 \text{ A}; T_j = 25 (125) ^{\circ}\text{C}$				Α	
Q_{rr}	di/dt = 4000 A/µs				μC	
E _{rr}	V _{GE} = -15 V				mJ	
Thermal of	characteristics					
$R_{th(j-c)}$	per IGBT			0,21	K/W	
R _{th(j-c)D}	per Inverse Diode			0,47	K/W	
$R_{th(j-c)FD}$	per FWD				K/W	
R _{th(c-s)}	per module		0,04		K/W	
Tempera	ture sensor					
R ₂₅	T _c = 25 °C		5 ±5%		kΩ	
B _{25/85}	$R_2 = R_1 \exp[B(1/T_2-1/T_1)]$; T[K];B		3420		K	
Mechanic	cal data	·			1	
M_s/M_t	to heatsink (M5) / for terminals (M6)	3/2,5		5 /5	Nm	
W			290		g	

SEMiX 151GD126HDs

This is an electrostatic discharge sensitive device (ESDS), international standard IEC 60747-1, Chapter IX.

This technical information specifies semiconductor devices but promises no characteristics. No warranty or guarantee expressed or implied is made regarding delivery, performance or suitability.