

This new family of gate arrays uses many innovative techniques to achieve 110K gates per chip with system clock speeds of up to 70MHz. The combination of high speed, high gate complexity and low power operation places Zarlink Semiconductor at the forefront of ASIC capability.

General Description

The CLA60000 gate array family is Zarlink Semiconductor's fifth-generation CMOS gate array product. These arrays allow even higher integration densities at enhanced system clock rates as need for many of today's system applications.

The largest array in the family at 110K gates offers a tenfold increase in raw gate availability then channelled gate arrays. In addition, many new designs features have been incorporated such as analog functionality, slew rate output control, and intermediate I/O buffering for optimum data transfer through peripheral cells.

Also, the low-power characteristics of Zarlink Semiconductor CMOS processing have been incorporated in these arrays, easing the thermal management problems associated with complex designs of 20,000 gates and above.

Features

- Channel less arrays to 110,000 gates
- 1.4 micron dual layer metal silicon CMOS process
- Typical Gate Delays of 700ps (NAND2)
- Comprehensive cell library including microcells, macrocells, and paracells
- Power distribution optimized for maximum noise
 immunity
- Slew controlled outputs with up to 24mA drivers
- Fully supported by design software (PDS2) and popular workstations
- Very high latch up immunity

Figure 1 - CLA60000 Chip Microplot

All CLA60000 arrays have the same construction. A core of uncommitted transistors is arranged for optimum connection as logic functions and surrounded by uncommitted peripheral (I/O) circuitry. The channel less array architecture is an important feature - the absence of discrete wiring channels increases flexibility, reduces track capacitance whilst significantly increasing transistor sizes for improved logic performance.

The construction of the basic building blocks have been planned to support basic logic functions, macro functions, and core memory functions (RAM and ROM) with high routability. Logic programmability is given by dual level metal, with interconnecting vias, plus a forth level of programmability (contacts).

The overall architecture of these gate arrays has been designed to exploit many new and emerging developments in CAD tools. Increasing demands are now being made for design tools which are faster, easier to use, and more accurate. The Zarlink Semiconductor Design System (PDS2) allows full control over all aspects of design including logic capture, simulation and layout.

Product Range

The CLA60000 product range is shown below. Actual gate utilization can be typically 40-70% of the uncommitted gate count depending on circuit structure.

Product	Uncommitted Gate Count	Pads Including Power
CLA61XXX	2040	40
CLA62XXX	5488	64
CLA63XXX	10608	88
CLA64XXX	19928	120
CLA65XXX	35784	160
CLA66XXX	55616	200
CLA67XXX	80560	240
CLA68XXX	110112	280

Core Arrangement

A four transistor (2 NMOS and 2 PMOS) groups forms the basis of the core array. This array element is repeated in a regular fashion over the complete core area to give a 'Full Field' (sea-of-gates) array. The unique design of the basic four transistor cells give the Zarlink Semiconductor arrays a major advantage over all competitors. Thesilicon layout has been configured so that the basic logic cells, fliplarge hierarchical cells can flops and be interconnected easily with through-cell routing channels. It also ensures that an optimum overall data flow and control signal distribution scheme is possible.

Figure 2 - Array Core Cell

Complete rows of array elements can be used as routing channels to conform to the earlier channeled Zarlink Semiconductor arrays or, if desired, compact hierarchical logic blocks and localized routing areas can be defined like a cell based design layout. The array structure has been designed to be totally flexible in architecture with the distribution of logic blocks and routing channels being definable by the designer.

I/O Buffer Arrangement

The I/O buffers are the interface to external circuitry and are therefore required to be robust and flexible. The inputs and outputs can withstand electro-static discharges, are not susceptible to latch up (an inherent CMOS problem) and provide the designer with multiple interface options.

Figure 3 - I/O Block

The CLA60000 I/O buffers contain all the components for static protection, input pull-up and pull down resistors, various output drive currents and input interface signals such as CMOS and TTL. In addition, the I/O buffer contains all the components for intermediate buffering stages including Schmitt triggers, TTL threshold detectors, tristate control, signal re-timing flip-flops and slew rate control for the output drivers. Some analog interface cells can also be implemented using the available components. I/O buffer locations can also be configured as supply pads (VDD and VSS).

Figure 4 - Slew Control

Slew control of output drivers is a useful benefit where outputs are driving large capacitive loads such as busses. Noise transients caused by voltage coupling into peripheral power supplies can give switching problems, resulting in mis-operation. The extent of this voltage disruption is depended on the number of outputs switching, supply pad locations and the inductance of the chip bond wire/package leads. The CLA60000 family uses proprietary design techniques to reduce this phenomenon by offering output switching control (di/dt) as part of the intermediate buffers.

The power distribution scheme for the CLA60000 arrays is very flexible (shown in figure 5): three separate power rings are used, one for the internal core logic, one for the large output driver cells and one for the intermediate buffer regions. Each of the separate power rings isolate any noise generated by the low-impedance output drivers from the core logic and intermediate buffers. The power rings can be connect to separate pad locations or, if required, combined at a single Input or Output pad location. In addition, it is possible to isolate sections of the peripheral supply ring for the implementation of basic analog circuits.

The distribution of the supply rails across the core of the array can be automatically positioned for the interconnect of the base cells and hierarchical blocks. This allows greater design flexibility and provides additional signal routing channels. Supply interconnection is added during autolaying leaving unpopulated areas available for signal routing.

Low core power dissipation is very important for high complexity circuits (see section on Thermal Management).

Figure 5 - Power Supply Organization

PDS2 - The Zarlink Semiconductor ASIC Design System

PDS2 is Zarlink Semiconductor's ASIC computer-aided design system. It provides a fully integrated, technology independent VLSI design system for all Zarlink Semiconductor Semi-Custom CMOS products.

PDS2 allows the designer to perform all design activities from schematic entry, circuit debugging, fault grading, through to chip layout and generation of a test program for the production test of the finished ICs.

Logical design of CLA60000 is realized with the same software as is used for the CLA5000 and MVA5000 families of CMOS semi-custom products. PDS2 runs on DEC VEX equipment (under VMS)* and comprise schematic entry, logic and fault simulation, extensive result examination facilities and advanced library and configuration management

tools. Layout and routing is also supported on PDS2 along with full back annotation. Hierarchical logical design is possible up to 20 levels.

Supplemented by a three day training course for firsttime users, PDS2 may be used either at a Zarlink Semiconductor Design Centre or under licence at the designer's premises.

Design Support and Interfaces

Zarlink Semiconductor offers a variety of design interfaces to customers. For each interface, Zarlink Semiconductor requires a given set of information to be forwarded by the designer which is assessed at Design Reviews (1 to 4). At each stage, the design must be deemed to be acceptable by Zarlink Semiconductor Project Engineers before commencing the next stage of work. Design Reviews may be held in the designer's premises or at a Zarlink Semiconductor Design Centre.

Further information on PDS2 or the interfacing requirements to the Zarlink Semiconductor technologies is available from any Zarlink Semiconductor Sales Office or Design Centre. * DEC, VAX and VMS are trademarks of Digital Equipment Corporation, USA

Design Interfaces

	PDS2 U	ISED AT	PDS2 U	SED BY CUSTO	MER ON	Zarlink COMPLETES DESIGN		
	Zarlink DES	IGN CENTRE		OWN PREMISE	S	TURN KEY	WORK STATION	
OPTIONS	A	В	С	D	E	F	G	
DESIGN REVIEW 1								
LOGICAL DESIGN	CUSTOMER	CUSTOMER	CUSTOMER	CUSTOMER	CUSTOMER	Zarlink	Zarlink	
DESIGN REVIEW 2								
PHYSICAL DESIGN	Zarlink	CUSTOMER	Zarlink	CUSTOMER	CUSTOMER (AT DESIGN CENTRE)	Zarlink	Zarlink	
DESIGN REVIEW 3								
PROTOTYPE MANUFACTURING				Zarlink				
PROTOTYPE EVALUATION				CUSTOMER				
DESIGN REVIEW 4								
PRODUCTION				Zarlink				

Figure 6 - Access Routes to Zarlink Semi-custom

Zarlink Semiconductor operates a design audit procedure with four formal review meetings:

- REVIEW 1: Checks that the required specification can be met by the CLA60000 gate array.
- LOGICALConversion of the logic into hierarchical netlist. Circuit function is simulated for the
eventual environmental conditions to be met by the chip, including definition of the test
pattern and fault simulation.
- REVIEW 2: Checks that logic simulation results are acceptable to both parties, and finalizes objectives for physical design (package, pinout, etc.)
- PHYSICALPackage and pinout are defined. Cells are placed and routed within the array using ZarlinkDESIGN:Semiconductor's interactive layout package. A final simulation is performed which takes
account of real track loads.
- REVIEW 3: Establishes that it is appropriate to proceed with chip manufacture by comparing all PDS2 results with customer's specifications.
- PROTOTYPES: Zarlink Semiconductor manufactures four custom masks develops a test program from the customer' simulation vectors, fabricates wafers and supplies 10 tested, packaged prototypes as standard. Additional prototypes may be supplied at extra cost.
- REVIEW 4: Confirms that the customer has fully examined the prototype and approves the chip design for full-scale production.

The schematic entry and logical design work may be done by Zarlink Semiconductor, or the customer may licence the PDS2 tools with Zarlink Semiconductor providing training to enable the engineer to undertake this phase of development in house. Design rooms and equipment are also available for customer use at any Zarlink Semiconductor design centres at attractive rental rates.

For the physical design phase, customers are encouraged to work with Zarlink Semiconductor layout engineers to ensure the best possible final performance. This can be completed either at a Zarlink Semiconductor design centre or at the customers premises.

Design Thermal Management

As gate integration capacity improves with CMOS process geometry reduction, the ability of silicon to exceed the power capabilities of accepted packaging technology is a very real problem. Semi-Custom designers now have the ability to design circuits of 50,000 gates and over, and chip power consumption is (or should be) a very important concern.

With complexities approaching 100K gates, the core power at gate level becomes increasingly more dominant. It becomes essential to offer ultra low power core logic to maintain an acceptable overall chip power budget (typically 1 Watt for standard surface mount packaging). The consequences of higher power consumption are elevated chip temperatures and reductions in product reliability, otherwise relatively expensive special packaging has to be considered which is bulkier and more costly.

Zarlink Semiconductor's CLA60000 arrays offer low power factors. At 5mW per gate per MHz gate power and 2mW per gate load, power is lower than most competitive arrays, with lower operating temperatures and higher inherent long term reliability.

CLA60000 Power Dissipation Calculation

CLA60000 series power dissipation for any array can be estimated by following this example (calculated for the CLA68XXX).

Number of available gates	110112	Dissipation/output buffers/MHz/pF (μ W)	25
Percent gates used	40%	Output loading in pF	50
Number of used gates	44045		
Number of gates switching each clock cycle (15%)	6607	Power/output buffer/MHz (mW)	1.25
Power dissipation/gate/MHz (µW) (gate fanout typically 2 loads)	9	Total output buffer dissipation/MHz (mW)	27.5
Total core dissipation/MHz (mW)	59.5	Total Power dissipation/MHz (mW)	87
Number of available I/O pads	280		•
Percent of I/O pads used as Outputs	40	Total Power at 10MHz clock rate (W)	0.87
Number of I/O pads used as Outputs	112		0.07
Number of output buffers switching each clock cycle (20%)	22	Total Power at 25MHz clock rate (W)	2.18

1.4 Micron CMOS Process

The 1.4 micron CMOS process Zarlink Semiconductor process variant VJ) uses the latest manufacturing techniques at Zarlink Semiconductor's Class 1, 6-inch fabrication facility in Roborough, England. The process can be described as a twin well, self aligned LOCOS isolated technology on an epitaxial substrate giving low defect density and high reliability.

Effective channel length is 1.1 micron. Usable gate packaging density is 600 gates/sq.mm on two levels of metal. Devices will operate up to a maximum junction temperature of 170 Deg.C, and show excellent hardness, ESD, and stable performance.

		IVIAX	UNITS
Voltage	-0.5	7.0	V
Voltage	-0.5	Vdd+0.5	V
Voltage	-0.5	Vdd+0.5	V
Temperature:			
Ceramic	-65	150	Deg.C
Plastic	-40	125	Deg.C
	Voltage Voltage Voltage Temperature: Ceramic Plastic	Voltage-0.5Voltage-0.5Voltage-0.5Temperature:-0.5Ceramic-65Plastic-40	Voltage -0.5 7.0 Voltage -0.5 Vdd+0.5 Voltage -0.5 Vdd+0.5 Temperature: -0.5 Vdd+0.5 Ceramic -65 150 Plastic -40 125

RECOMMENDED OPERATING LIMITS									
PARAMETER	MIN	MAX	UNITS						
Supply Voltage	3.0	6.0	V						
Input Voltage	Vss	Vdd	V						
Output Voltage	Vss	Vdd	V						
Current per pad		100	mA						
Operating Temperature:									
Commercial Grade	0	70	Deg.C						
Industrial Grade	-40	85	Deg.C						
Military Grade	-55	125	Deg.C						

AC Characteristics for Selected Cells

The CLA60000 technology library contains all the timing information for each cell in the design library. This information is accessible to the simulator, which calculates propagation delays for all signal paths in the circuit design. The PDS2 simulator can automatically derate timings according to the various factors such as:

- Supply voltage variation (from nominal 5V)
- Chip temperature
- Processing tolerance
- Gate fanout
- Input transition time
- Input signal polarity
- Interconnecting wiring

For initial assessments of feasibility, worst case estimations of path delays can be done in the following manner, using the dynamic Characteristics table as a guide to the normal propagation delays at 25 Deg. C and 5V supply.

- For temperatures, Zarlink Semiconductor's has derived a derating multipler (Kt) of +0.3% per Deg. C
- For supply voltage derating, a factor of (Kv) 25% per volt of VDD Change should be used.

- For manufacturing variation (Kp), the tolerance is ±50%
- The maximum variation on typical delays over the Commercial grade product will be at 4.5V and 70 Deg. C ambient temperature.

tpd (max)

- = Kp x Kv x Kt x tpd (typ)
- = 1.50 x (1+(5.0 4.5) 0.25) x (1+(70-25) 0.003) x tpd (typ)
- = 1.50 x 1.13 x 1.13 x tpd (typ) = 1.91 x tpd (typ)

The minimum delay, at 5.5V and 0 Deg. C will be:

tpd (min)

- = 0.66 x (1-(5.5-5.0) x 0.25) x (1-(25-0)0.003) x tpd (typ)
- $= 0.66 \times 0.87 \times 0.93 \times \text{tpd}$ (typ)
- = 0.53 x tpd (typ)

A similar calculation may be applied for any voltage and temperature relevant to the application. An additional "safety factor" of $\pm 20\%$ may be applied if desired for conservative design. For worst case military grade characteristics, the performance derating multiplier is 2.57 times the commercial typical.

Fanout is in gate load units

				Typical Propagation	Worst case Propagation Delay (nS)				
		INTERNAL CORE CELLS		Delay (nS)	Commercial		Industrial		
Name	Cells	Description	Symbol	Fanout=2	Far	Fanout		Fanout	
					2	4	2	4	
INV2	1	INVERTER DUAL DRIVE	tpLH tpHL	0.64 0.39	1.43 0.87	1.65 1.05	1.50 0.91	1.72 1.10	
NAND2	2	2 - INPUT NAND GATE	tpLH tpHL	0.82 0.67	1.83 1.51	2.27 2.01	1.92 1.58	2.38 2.11	
NOR 2	2	2 - INPUT NOR GATE	tpLH tpHL	1.11 0.58	2.48 1.30	3.24 1.66	2.60 1.36	3.40 1.74	
DF	4	MASTER SLAVE	tpLH tpHL	1.04 0.93	2.32 2.08	2.76 2.44	2.44 2.18	2.90 2.56	
DFRS	6	MASTER SLAVE D - TYPE WITH SET AND RESET	tpLH tpHL	1.19 1.12	2.66 2.52	3.10 3.02	2.79 2.65	3.25 3.17	

				Typical Propagation	Worst case Propagation Delay (nS)				
	IN	TERMEDIATE BUFFER CELLS	Delay (nS)	Comm	nercial	Industrial			
Name	Cells	Description	Symbol	Fanout=2	Fan	Fanout		Fanout	
					2	4	2	4	
IBGATE	-	LARGE 2 INPUT NAND GATE + 2 INPUT NOR	tpLH tpHL	0.76 0.50	1.69 1.13	2.05 1.40	1.77 1.19	2.15 1.47	
IBDF	-	MASTER SLAVE D-TYPE FLIP FLOP	tpLH tpHL	1.04 0.93	2.32 2.08	2.76 2.44	2.44 2.18	2.90 2.56	
IBCMOS1	-	CMOS INPUT BUFFER WITH 2 INPUT NAND GATE	tpLH tpHL	1.11 0.72	2.48 1.61	2.88 1.83	2.60 1.69	3.02 1.92	

				Typical Propagation	Worst case Propagation Delay (nS)				
	IN	TERMEDIATE BUFFER CELLS	Delay (nS)	Comm	nercial	Industrial			
Name	Cells	Description	Symbol	Fanout=2	Fan	Fanout		Fanout	
					2	4	2	4	
OP 3	-	STANDARD OUTPUT BUFFER	tpLH tpHL	2.83 2.06	2.83 2.06	10.03 5.66	2.79 2.16	10.53 2.27	
OP 6	-	MEDIUM OUTPUT BUFFER	tpLH tpHL	0.86 0.70	1.93 1.52	5.53 3.12	2.02 1.59	5.80 3.28	
OP 12	-	LARGE OUTPUT BUFFER	tpLH tpHL	0.70 0.56	1.52 1.23	3.12 2.03	1.60 1.29	3.28 2.13	

Note:

Commercial Worst case is Industrial Worst case is Military worst case is 4.5V, 70 Deg.C operating, Worst Case processing4.5V, 85 Deg.C operating, Worst Case processing4.5V, 125 Deg.C operating, Worst Case processing

DC Electrical Characteristics

All characteristics at Commercial Grade voltage and temperature (Note 1)

0114540			0)/14		VALUE			
CHARAC	TERISTIC		SYM	Min	Тур	Max	UNIT	CONDITIONS
LOW LEVEL INPUT VO	OLTAGE		VIL				V	
TLL Inputs	(IBTTI	_1/IBTTL2)				0.8		
CMOS Inputs	(IBCMOS1/	IBCMOS2)				1.0		
HIGH LEVEL INPUT V	OLTAGE		VIH				V	
TLL Inputs	(IBTTI	_1/IBTTL2)		2.0				
CMOS inputs	(IBCMOS1/	IBCMOS2)		VDD - 1.0				
INPUT HYSTERESIS	(IBST1)	Rising	VT+		2.75		V	VIL to VIH
		Falling	VT-		1.92			VIH to VIL
	(IBST2)	Rising	VT+		2.20			VIL to VIH
		Falling						VIH to VIL
INPUT CURRENT CMOS/TTL INPUTS			IIN	-5		+5	μA	VIN = VDD or VSS
Inputs with 1Kohm Res	sistors			±0.2	±5	±10	mA	VIN = VDD or VSS
Inputs with 2Kohm Res	sistors			±0.1	±2.5	±5	mA	VIN = VDD or VSS
Inputs with 4Kohm Res	sistors			±0.05	±1.2	±2.5	mA	VIN = VDD or VSS
Inputs with 100Kohm F	Resistors			±10	±50	±200	mA	VIN = VDD or VSS
Resistor values nomina	al - See note	e 2						
HIGH LEVEL OUTPUT	VOLTAGE		VOH				V	
All outputs				VDD -0.05				IOH=-1μA
Smallest drive cell	O	P1/OPOS1		VDD-1.0	VDD-0.5			IOH=-1mA
Low drive cell	O	P2/OPOS2		VDD-1.0	VDD-0.5			IOH=-2mA
Standard drive cell	O	P3/OPOS3		VDD-1.0	VDD-0.5			IOH=-3mA
Medium drive cell	O	P6/OPOS6		VDD-1.0	VDD-0.5			IOH=-6mA
Large drive cell	OP1	2/OPOS12		VDD-1.0	VDD-0.5			IOH=-12mA
LOW LEVEL OUTPUT	VOLTAGE		VOL				V	
All Outputs						VSS +0.05		IOL=1µA
Smallest Drive Cell	OI	P1/OPOD1			0.2	0.4		IOL=2mA

DC Electrical Characteristics (continued)

All characteristics at Commercial Grade voltage and temperature (Note 1)

	CVM		VALUE			CONDITIONS	
CHARACTERISTIC	STIVI	Min	Тур	Max	UNIT		
Low drive cell OP2/OPOS2			0.2	0.4		IOL=4mA	
Standard drive cell OP3/OPOS3			0.2	0.4		IOL=6mA	
Medium drive cell OP6/OPOS6			0.2	0.4		IOL=12mA	
Large drive cell OP12/OPOS12			0.2	0.4		IOL=24mA	
TRISTATE OUTPUT LEAKAGE CURRENT	IOZ				μA		
OUTPUT SHORT CIRCUIT CURRENT	IOS				mA		
STANDBY SUPPLY CURRENT (per gate)	IDDSB		10		nA		

Note 1: Commercial grade is 0-70 deg. C, 5V ±10% power supply voltage

Note 2: Resistor value spreads (Min-Max):

LOW VALUE (Rtyp 1K) 0.5 - 2Kohm

LOW VALUE (Rtyp 2K) 1.0 - 4Kohm

LOW VALUE (Rtyp 4K) 2K - 8Kohm

HIGH VALUE (Rtyp 100K) 25K - 250Kohm

- Note 3: Standard driver output OP3 etc. Short circuit current for other outputs will scale. Not more than one output may be shorted at a time for a maximum duration of one second.
- Note 4: Excluding peripheral buffers.
- Note 5: Excludes package leadframe capacitance or bidirectional pins.
- Note 6: Excludes package.

Packaging

Production quantities of the CLA60000 family are available in Industry-standard ceramic and plastic packages according to the codes shown below. Prototype samples are normally supplied in ceramic only. Where plastic production packages are requested, Ceramic prototypes will be supplied in the nearest equivalent and tested to the final test specification.

DC	DILMON	Dual in Line, Multilayer ceramic. Brazed leads. Metal sealed lid Through board.
DG	CERDIP	Dual in Line, Ceramic body. Alloy leadframe. Glass sealed. Through board.
DP	PLASDI	Dual in Line, Copper or Alloy leadframe. Plastic moulded. Through board.
AC	P.G.A.	Pin Grid Array. Multilayer Ceramic. Metal sealed lid. Through board.
MP	SMALL OUTLINE	Dual in Line 'Gullwing' formed leads. Plastic moulded. Surface mount.
LC	LCC	Leadless Chip Carrier. Multilayer ceramic. Metal sealed lid.
		Surface mount.
HC	LEADED CHIP CARRIER	Quad Multilayer ceramic. Brazed 'J' formed leads. Metal sealed lid. Surface mount.
GC	LEADED CHIP CARRIER	Quad Multilayer ceramic. Brazed 'Gullwing' leads. Metal sealed lid. Surface mount.
HG	QUAD CERPAC	Quad ceramic body. 'J' formed leads. Glass sealed. Surface mount.
GG	QUAD CERPAC	Quad ceramic body. 'Gullwing' formed leads. Glass sealed.
		Surface mount.
ΗP	PLCC	Quad Leaded plastic Chip Carrier. 'J' formed leads. Plastic moulded. Surface mount.
GP	PQFP	Quad plastic Flat Pack. 'Gullwing' formed leads. Glass sealed.
		Surface mount.

8

Packaging Options

The package style and pin count information is intended only as a guide. Detailed package specifications are available from Zarlink Semiconductor Design Centres on request. Available packages are being continuously updated, so if a particular package is not listed, please enquire through your Zarlink Semiconductor Sales Representative.

	LEADS	STYLE	CLA61	CLA62	CLA63	CLA64	CLA65	CLA66	CLA67	CLA68
	16	DC	Х							
	16	DG	Х							
	16	DP	Х							
	18	DC	Х							
	18	DG								
	18	DP	Х							
D	20	DC	Х							
U	20	DG	Х							
A	20	DP	Х							
L	22	DC	Х	Х	X					
	22	DG		Х						
L I	22	DP	Х	Х						
N	24	DC	Х	Х	X	Х				
	24	DG	Х	Х	Х					
L	24	DP	Х	Х	Х					
I.	28	DC	Х	Х	Х	Х				
N	28	DG	Х	Х	Х	Х				
E	28	DP	X	X	X					
	40	DC	Х	Х	Х	Х	Х			
	40	DG		Х	Х					
	40	DP	Х	Х	Х	Х				
	48	DC		Х	Х	Х	Х			
	48	DG								
	48	DP		Х	Х	Х				
	16	MP	Х							
	18	MP	Х	Х	Х					
	20	MP	Х							
	24	MP	Х							
	28	MP	Х	Х						
	28	HP	Х	X	X	Х				
	28	LC	Х	X	X					
	28	HC	Х	X	X					
	28	HG	Х	Х	X					
	44	HP	X	X	X	X	X			
	44	GP	Х	Х	X					
	44	LC	X	X	X	X				
	44	HC	X	X	X	X				
	44	HG	X	X	X	X				
Q	48	GP		X	X	X				
U	64	GP		X	X	X				
A	68	HP		X	X	X	X			
D	68	LC		X	X	X	X	X	Х	
	68	HC		X	X	X	X			
	68	HG		X	X	X	X			
	80	GP			X	X				
	84	HP			X	X	X			
	84	LC			X	X	X	X		
	84	HC			X	X	X	X		
	84	HG		X	X	X	X	X		
	100	GP			X	X				
	100	GG			X	X				
	120	GP				X	X			X
	132	GC					X	X	X	
	160	GP								X
	172	GC						X	X	X
	196	GC						X		
	68	AC		X		X	X			
	84	AC			X	X	X	X	Х	
	100	AC			X	X	X			
Ġ	120	AC				X	X			
A	132	AC					X	X		
	144	AC					X	X		
	180	AC					X	X		

Cell Library

A most comprehensive cell library is available in CLA60000. The implementation of a cell has involved the silicon planning, design rule checking, automatic generation of a SPICE file for performance analysis, SPICE simulation and result extraction, generation of data sheets, generation of the PDS2 simulator library code and verification of cell attributes for layout tools.

The two micron CMOS array (CLA5000) cell library can be converted to equivalent cells on the CLA60000 arrays to allow system upgrades. In addition, many new functions have been made available such as RAMs, ROMs, and DSP Macros. Some macro cells are also available for implementing structured test philosophies. Also separate documentation on build-in test for gate arrays will be available in the near future.

CLA60000 Library (Library version V1R2)

Logic Array:

BUF 2INV	Non-inverting Signal Buffer Dual Inverter	A2O4I	Quad 2-Input ANDs to 4-Input NOR Gate
INV2 INV4	Inverter Dual Drive	O2A4I	Quad 2-Input ORs to 4-Input NAND Gate
INV8	Inverter x 8 Drive	A4O2I	Dual 4-Input ANDs to 2-INPUT NOR Gate
	2-Input Nand Gate	O4A2I	Dual 4-Input ORs to 2-Input NAND Gate
ND3	3-Input Nand Gate	3A2O3I	Triple 2-input ANDs to 3-Input NOR
NAND3	3-Input Nand Gate + Inverter	000401	
2NAND	3 Dual 3-Input NAND Gate	302A3I	Gate
NAND4	4-Input NAND Gate	۵202 <u>2</u> 21	2-Input AND to 2-Input OR to 2-Input
NAND5	5-Input NAND Gate		NAND
NAND6	6-Input NAND Gate	02A2O2I	2-Input OR to 2-Input AND to 2-Input
NAND8	8-Input NAND Gate		NOR
NOR2	2-Input NOR Gate	GND	GND Cell
NR3	3-Input NOR Gate	VDD	VDD Cell
NOR3	3-Input NOR Gate + Inverter	EXOR	Exclusive OR Gate + NAND Gate +
2NOR3	Dual 3-Input NOR Gate		Inverter
NOR4	4-Input NOR Gate	EXNOR	Exclusive NOR Gate + NOR Gate +
NOR5	5-Input NOR Gate	EXOP2	2-Input Exclusive OR Gate
NOR 6	6-Input NOR Gate	EXNOR2	2-Input Exclusive ON Gate
NOR8	8-Input NOR Gate	EXOR 3	3-Input Exclusive OR Gate
		EXNOR3	3-Input Exclusive NOR Gate
A2021	2-Input AND to 2-Input NOR Gate + Inverter	EXNORS	
O2A2I	2-Input OR to 2-input NAND Gate +	HADD	Half Adder + Inverter
	Inverter	SUM	Sum Block
2A2O2	Dual 2-Input AND to 2-Input NOR Gate	CARRY	Carry Block + NOR Gate
202A2I	Dual 2-INput OR to 2-Input NAND Gate	FADD	Full Adder + NOR Gate
2ANOR	2-Input ANDs to 2-Input NOR Gate		
20NAND	2-Input ORs to 2-Input NAND Gate	MUX2TO1	2 to 1 Multiplexor
A2O3I	2-Input AND to 3-Input NOR Gate	MUX4TO1	4 to 1 Multiplexor
O2A3I	2-Input OR to 3-Input NAND Gate	MUX8TO1	8 to 1 Multiplexor
A3O2I	3-Input AND to 2-Input NOR Gate	MUXI2TO1	2 to 1 Inverting Multiplexor
O3A2I	3-Input OR to 2-Input NAND Gate	MUXI4TO1	4 to 1 Inverting Multiplexor
		MUXI8TO1	8 to 1 Inverting Multiplexor

CLKA 2CLKA CLKAP CLKAM CLKB DRV3 DRV6	Basic Clock Driver Dual Basic Clock Driver Basic Clock Driver + Inverter Basic Clock Driver + Inverter Large Clock Driver + Inverter Triple Output Internal Driver Hex Output Internal Driver
ТМ	Buffered Transmission Gate
2TM	Transmission Gate for 2 to 1
BDR	Bus Driver
DL	Data Latch
DL2	Data Latch
DLRS	Data Latch with Set and Reset
DLARS	Data Latch with Set and Reset
DF	Master-Slave D-Type Flip-Flop
DFRS	Master-Slave D-Type Flip-Flop with Set and Reset
MDF	Multiplexed Master-Slave D-Type Flip- Flop
MDFRS	Multiplexed Master-Slave D-Type Flip- Flop with Set and Reset
M3DF	3 to 1 Multiplexed Master-Slave D-Type Flip-Flop
M3DFRS	3 to 1 Multiplexed Master-Slave D-Type Flip-Flop with Set and Reset
JK	J K Flip-Flop
JKRS	J K Flip-FLop with Set and Reset
JBARK	J K Flip-Flop
JBARKRS	J K Flip-Flop with Set and Reset
BDL	Buffered Data Latch
BDLRS	Buffered Data Latch with Set and Reset
BDLARS	Buffered Data Latch with Set and Reset
BDF	Buffered Master-Slave D-Type Flip-Flop
BDFRS	Buffered Master-Slave D-Type Flip-Flop with Set and Reset
BMDF	Buffered Multiplexed Master-Slave D- Type Flip-Flop
BMDFRS	Buffered Multiplexed Master-Slave D- Type Flip-Flop with Set and Reset
TRID	Tri-State Driver

Intermediate Buffers:

IBST1	Input Buffer with CMOS switching level
IBST2	Input Buffer with 2V switching level
IBSK1	Driver with Lightly Skewed Outputs
IBSK2	Driver with Medium Skewed Outputs
IBSK3	Driver with Heavily Skewed Outputs
IBTRID	Tri-State Driver

IBTRID1	Tri-State Driver with Lightly Skewed	
IBTRID2	Tri-State Driver with Medium Skewed	
IBTRID3	Tri-State Driver with Heavily Skewed Outputs + 2 Inverters	
IBGATE	Large 2-Input NAND Gate + Large 2- Input NOR Gate	
IB2D	Dual High Power Inverters	
IBCLKB	Large Clock Driver	
IBDF	Master-Slave D-Type Flip-Flop	
IBDFA	Master-Slave D-Type Flip-Flop	
IBCMOS1	CMOS Input Buffer and Large 2-Input NAND Gate	
IBCMOS2	CMOS Input Buffer and Data Latch	
IBTTL1	TTL Input Buffer and Large 2-Input NAND Gate	
IBTTL2	TTL Input Buffer and Data Latch	
Input Buffer:		

IPNR	Input Cell (with no Pullup or Pulldown resistors)
IPR1P	Input Cell with 1K-Ohm Pull-up Resistor
IPR1M	Input Cell with 1K-Ohm Pull-down Resistor
IPR2P	Input Cell with 2K-Ohm Pull-up Resistor
IPR2M	Input Cell with 2K-Ohm Pull-down Resistor
IPR3P	Input Cell with 4K-Ohm Pull-up Resistor
IPR3M	Input Cell with 4K-Ohm Pull-down Resistor
IPR4P	Input Cell with 100K-Ohm Pull-up Resistor
IPR4M	Input Cell with 100K-Ohm Pull-down Resistor

Output Buffers:

OP1	Smallest Drive Output Buffer
OP2	Small Drive Output Buffer
OP3	Standard Drive Output Buffer
OP6	Medium Drive Output Buffer
OP12	Large Drive Output Buffer
OP5B OP11B	Standard Drive Non-Inverting Output Buffer Large Drive Non-Inverting Output Buffer
OPT1	Smallest Drive Tri-State Output Buffer
OPT2	Small Drive Tri-State Output Buffer
OPT3	Standard Drive Tri-State Output Buffer
OPT6	Medium Drive Tri-State Output Buffer

OPT12	Large Drive Tri-State Output Buffer
OPT4B	Standard Drive Non-Inverting Tri-State Output Buffer
OPT10B	Large Drive Non-Inverting Tri-State Output Buffer
OPOD1	Smallest Drive Open-Drain Output Buffer
OPOD2	Small Drive Open-Drain Output Buffer
OPOD3	Standard Drive Open-Drain Output Buffer
OPOD6	Medium Drive Open-Drain Output Buffer
OPOD12	Large Drive Open-Drain Output Buffer
OPOD5B	Standard Drive Non-Inverting Open
	Drain Output Buffer
OPOD11B	Large Drive Non-Inverting Open Drain Output Buffer
OPOS1	Smallest Drive Open-Source Output Buffer
OPOS2	Small Drive Open-Source Output Buffer
OPOS3	Standard Drive Open-Source Output Buffer
OPOS6	Medium Drive Open-Source Output Buffer
OPOS12	Large Drive Open-Source Output Buffer
OPOS5B	Standard Drive Non-Inverting Open- Source Output Buffer
OPOS11B	Large Drive Non-Inverting Open-Source Output Buffer

Supply Pads:

OPVP OPVM OPVPB OPVMB	VDD Power Pad (Outputs) GND Power Pad (Outputs) VDD Power Pad (Outputs):Break in VDD GND Power Pad (Outputs):Break in GND
OPVPBB	VDD Power Pad (Outputs):Break in VDD and GND
OPVMBB	GND Power Pad (Outputs):Break in GND and VDD
IBVP	VDD Power Pad (Buffers)
IBVM	GND Power Pad (Buffers)
IBVPB	VDD Power Pad (Buffers):Break in VDD
IBVMB	GND Power Pad (Buffers):Break in GND
IBVPBB	VDD Power Pad (Buffers):Break in VDD and GND
IBVMBB	GND Power Pad (Buffers):Break in GND and VDD

LAVP3	Power Pad for Logic Array
LAVP4	Power Pad for Logic Array
LAVP5	Power Pad for Logic Array
LAVM1	Power Pad for Logic Array
LAVM2	Power Pad for Logic Array
LAVM3	Power Pad for Logic Array
LAVM4	Power Pad for Logic Array
LAVM5	Power Pad for Logic Array
LAGND	Power Pad for Logic Array
LAVDD	Power Pad for Logic Array

Power Pad for Logic Array

Analogue Cells:

LAVP2

OSC1 Crystal Oscillator Peripheral Cell

ANIPCMP1 Comparator - Standard

ANIPCMP2 Comparator - Low Power

ANADC4 Four Bit Analogue To Digital Converter ANDAC4 Four Bit Digital To Analogue Converter ANVREFGN Reference Generator/Power On Reset ANVREFSHShunt Regulator/Power On Reset

a) Memory Cells

RAM2	2 bit memory
RAM4	4 bit memory
RAM8	8 bit memory
RAM16	16 bit memory
RAM32	32 bit memory
RAM64	64 bit memory

b) Single port decoder cells

RAD2S	2 words (1-16 bits RAM)
RAD2SL	2 words (17-64 bits RAM)
RAD4S	4 words (1-16 bits RAM)
RAD4SL	4 words (17-64 bits RAM)
RAD8S	8 words (1-16 bits RAM)
RAD8SL	8 words (17-64 bits RAM)
RAD16S	16 words (1-16 bits RAM)
RAD16SL	16 words (17-64 bits RAM)
RAD32S	32 words (1-16 bits RAM)
RAD32SL	32 words (17-64 bits RAM)
RAD64S	64 words (1-16 bits RAM)
RAD64SL	64 words (17-64 bits RAM)

LAVP1 Power Pad for Logic Array

c) Dual port decoder cells

RAD2D	2 words (1-16 bits RAM)
RAD2DL	2 words (17-64 bits RAM)
RAD4D	4 words (1-16 bits RAM)
RAD4DL	4 words (17-64 bits RAM)
RAD8D	8 words (1-16 bits RAM)
RAD8DL	8 words (17-64 bits RAM)
RAD16D	16 words (1-16 bits RAM)
RAD16DL	16 words (17-64 bits RAM)
RAD32D	32 words (1-16 bits RAM)
RAD32DL	32 words (17-64 bits RAM)
RAD64D	64 words (1-16 bits RAM)
RAD64DL	64 words (17-64 bits RAM)

Macro Cells:

a) Adders

ADA4	4 bit binary full adders with fast carry
ADG4	Look ahead carry generator

b) Counters

CNA4	BCD counter/4 bit latch BCD decoder/ driver
CNB4	4 bit counter latch
CNC4	4 bit synchronous counter
CND4	4 bit synchronous binary up/down counter
CND4A	4 bit synchronous binary up/down counter with reset
CNE4	4 bit decade counter
CNF4	4 bit synchronous binary counter
CNG4	4 bit synchronous binary counter with enable

c) Decoders

DRA3T8	3 line to 8 line decoder/demultiplexer
DRA4T16	4 line to 16 line decoder/demultiplexer
DRA4T16A	4 line to 16 line decoder/demultiplexer with no enable
DRB3T8	3 line to 8 line decoder/demultiplexer with address registers
DRC3T8	3 line to 8 line decoder/demultiplexer with address latches
DRD2T4	2 line to 4 line decoder/demultiplexer
DRF4T101	4 line to 10 line BCD decoder
DRG4T10	4 line to 10 line Excess 3 to decimal

decoder

DRH4T10	4 line to 10 line Excess Gray to decimal decoder			
DRI10	BCD to decimnal decoder/driver			
DRJ7	BCD to 7-Segment decoder/driver			
DRK7	BCD to 7-Segment decoder/driver			
d) Encoders				
	8 line to 2 line priority apoder			
ENR015 ENR10T4	10 line to 4 line priority encoder			
e) Flip-Flo	ps			
FFA8	8 bit bistable latches			
FFB6	6 bit D-type flip-flops with clear			
FFC4	4 bit D-type flip-flops with clear and			
	Complementary outputs			
FFD8	Octal D-type hip-hops with clear			
f) ALU/Fund	ction generator			
FGA4 Arithmetic logic unit/function generator				
g) Magnitude comparator				
MCA4	4 bit magnitude comparators			
h) Multipli	ers			
MLA10	Decade rate multiplier			
MLB4X4	4 bit binary multiplier with tristate			
MLW7	7 bit slice Wallace tree with tristate outputs			
i) Multiplexors				
MXA8T1	8 line to 1 line data selector/multiplexer			
MXB4T1	4 line to 1 line data selector/multiplexer			
MXB4T1A	4 line to 1 line data selector/multiplexer			
	with inverted tristate outputs			
MXC2T1	Quad 2 line to 1 line data selector/			
MXC2T1A	Quad 2 line to 1 line data selector/			
	multiplexer with inverted outputs			
	4 line to 1 line data selector/multiplexer			
WIXE411	multiplexer			

MXF2T1 Quad 2 line to 1 line multiplexer with storage

j) Parity generators			SRD4	4 bit parallel in serial out shift registers
			SRE4	4 bit parallel in serial out shift registers
	PGA	9 bit odd/even generator/check	SRE4	4 bit parallel in serial out shift registers with J.KBAR input
k) Shift registers		SRF8	8 bit shift and store register with tristate outputs	
	SRA2	2 bit parallel out serial shift registers with clear	SRG4	4 bit bidirectional universal shift registers
	SRA4	4 bit parallel out serial shift registers	SRJ4	4 bit parallel access shift registers
	Cluth	with clear	SRK5	5 bit shift register
	SRA8	8 bit parallel out serial shift registers with clear	i) Monitor	
	SRA8A	8 bit parallel out serial shift registers with no clear	PERF	Performance monitor for CLA60000
	SRB2	2 bit parallel in serial shift registers with clear	m) Built in	Test
	SRB4	4 bit parallel in serial shift registers with clear		
	SRB8	8 bit parallel in serial out shift registers with clear	RGBIT	Control unit for use in BIST circuit
	SRB8A	8 bit parallel in serial out shift registers with no clear	RGDIAG RGHOLD	Diagnostic unit for use in BIST circuits Hold Bit for use in BIST circuit
	SRC8	8 bit parallel in serial out shift registers	RGTBIT	Test Bit for use in BIST circuit

SRF8	8 bit shift and store register with tristate outputs			
SRG4	4 bit bidirectional universal shift registers			
SRJ4	4 bit parallel access shift registers			
SRK5	5 bit shift register			
i) Monitor				
PERF	Performance monitor for CLA60000			
m) Built in Test				
RGBIT	User Bit for use in BIST circuit			
RGCTL	Control unit for use in BIST circuits			
RGDIAG	Diagnostic unit for use in BIST circuits			
RGHOLD	Hold Bit for use in BIST circuit			

http://www.zarlink.com

World Headquarters - Canada Tel: +1 (613) 592 0200 Fax: +1 (613) 592 1010

North America - West Coast Tel: (858) 675-3400 Fax: (858) 675-3450

> **Asia/Pacific** Tel: +65 333 6193

Fax: +65 333 6192

North America - East Coast Tel: (978) 322-4800 Fax: (978) 322-4888

Europe, Middle East, and Africa (EMEA) Tel: +44 (0) 1793 518528 Fax: +44 (0) 1793 518581

Information relating to products and services furnished herein by Zarlink Semiconductor Inc. trading as Zarlink Semiconductor or its subsidiaries (collectively "Zarlink") is believed to be reliable. However, Zarlink assumes no liability for errors that may appear in this publication, or for liability otherwise arising from the application or use of any such information, product or service or for any infringement of patents or other intellectual property rights owned by third parties which may result from such application or use. Neither the supply of such information or purchase of product or service conveys any license, either express or implied, under patents or other intellectual property rights owned by Zarlink or licensed from third parties by Zarlink, whatsoever. Purchasers of products are also hereby notified that the use of product in certain ways or in combination with Zarlink, or non-Zarlink furnished goods or services may infringe patents or other intellectual property rights owned by Zarlink.

This publication is issued to provide information only and (unless agreed by Zarlink in writing) may not be used, applied or reproduced for any purpose nor form part of any order or contract nor to be regarded as a representation relating to the products escrices concerned. The products, their specifications, services and other information appearing in this publication are subject to change by Zarlink without notice. No warranty or guarantee express or implied is made regarding the capability, performance or suitability of any product or service. Information concerning possible methods of use is provided as a guide only and does not constitute any guarantee that such methods of use will be satisfactory in a specific piece of equipment. It is the user's responsibility to fully determine the performance and suitability of any equipment using such information and to ensure that any publication or data used is up to date and has not been superseded. Manufacturing does not necessarily include testing of all functions or parameters. These products errorbucts are not suitability for user. All products whose failure to perform may result in significant injury or death to the user. All products and materials are sold and services provided subject to Zarlink Semiconductor's conditions of sale which are available on request.

Purchase of Zarlink's I²C components conveys a licence under the Philips I²C Patent rights to use these components in an I²C System, provided that the system conforms to the I²C Standard Specification as defined by Philips

Zarlink and the Zarlink Semiconductor logo are trademarks of Zarlink Semiconductor Inc. Copyright 2001, Zarlink Semiconductor Inc. All rights reserved.

TECHNICAL DOCUMENTATION - NOT FOR RESALE