This new family of gate arrays uses many innovative techniques to achieve 110 K gates per chip with system clock speeds of up to 70 MHz . The combination of high speed, high gate complexity and low power operation places Zarlink Semiconductor at the forefront of ASIC capability.

General Description

The CLA60000 gate array family is Zarlink Semiconductor's fifth-generation CMOS gate array product. These arrays allow even higher integration densities at enhanced system clock rates as need for many of today's system applications.

The largest array in the family at 110 K gates offers a tenfold increase in raw gate availability then channelled gate arrays. In addition, many new designs features have been incorporated such as analog functionality, slew rate output control, and intermediate I/O buffering for optimum data transfer through peripheral cells.

Also, the low-power characteristics of Zarlink Semiconductor CMOS processing have been incorporated in these arrays, easing the thermal management problems associated with complex designs of 20,000 gates and above.

Features

- Channel less arrays to 110,000 gates
- 1.4 micron dual layer metal silicon CMOS process
- Typical Gate Delays of 700ps (NAND2)
- Comprehensive cell library including microcells, macrocells, and paracells
- Power distribution optimized for maximum noise immunity
- Slew controlled outputs with up to 24 mA drivers
- Fully supported by design software (PDS2) and popular workstations
- Very high latch up immunity

Figure 1 - CLA60000 Chip Microplot
All CLA60000 arrays have the same construction. A core of uncommitted transistors is arranged for optimum connection as logic functions and surrounded by uncommitted peripheral (I/O) circuitry. The channel less array architecture is an important feature - the absence of discrete wiring channels increases flexibility, reduces track capacitance whilst significantly increasing transistor sizes for improved logic performance.
The construction of the basic building blocks have been planned to support basic logic functions, macro functions, and core memory functions (RAM and ROM) with high routability. Logic programmability is given by dual level metal, with interconnecting vias, plus a forth level of programmability (contacts).

The overall architecture of these gate arrays has been designed to exploit many new and emerging developments in CAD tools. Increasing demands are now being made for design tools which are faster, easier to use, and more accurate. The Zarlink Semiconductor Design System (PDS2) allows full control over all aspects of design including logic capture, simulation and layout.

Product Range

The CLA60000 product range is shown below. Actual gate utilization can be typically $40-70 \%$ of the uncommitted gate count depending on circuit structure.

Product	Uncommitted Gate Count	Pads Including Power
CLA61XXX	2040	40
CLA62XXX	5488	64
CLA63XXX	10608	88
CLA64XXX	19928	120
CLA65XXX	35784	160
CLA66XXX	55616	200
CLA67XXX	80560	240
CLA68XXX	110112	280

Core Arrangement

A four transistor (2 NMOS and 2 PMOS) groups forms the basis of the core array. This array element is repeated in a regular fashion over the complete core area to give a 'Full Field' (sea-of-gates) array. The unique design of the basic four transistor cells give the Zarlink Semiconductor arrays a major advantage over all competitors. Thesilicon layout has been configured so that the basic logic cells, flipflops and large hierarchical cells can be interconnected easily with through-cell routing channels. It also ensures that an optimum overall data flow and control signal distribution scheme is possible.

Figure 2 - Array Core Cell

Complete rows of array elements can be used as routing channels to conform to the earlier channeled Zarlink Semiconductor arrays or, if desired, compact hierarchical logic blocks and localized routing areas can be defined like a cell based design layout. The array structure has been designed to be totally flexible in architecture with the distribution of logic blocks and routing channels being definable by the designer.

I/O Buffer Arrangement

The I/O buffers are the interface to external circuitry and are therefore required to be robust and flexible. The inputs and outputs can withstand electro-static discharges, are not susceptible to latch up (an inherent CMOS problem) and provide the designer with multiple interface options.

Figure 3-I/O Block
The CLA60000 I/O buffers contain all the components for static protection, input pull-up and pull down resistors, various output drive currents and input interface signals such as CMOS and TTL. In addition, the I/O buffer contains all the components for intermediate buffering stages including Schmitt triggers, TTL threshold detectors, tristate control, signal re-timing flip-flops and slew rate control for the output drivers. Some analog interface cells can also be implemented using the available components. I/O buffer locations can also be configured as supply pads (VDD and VSS).

Figure 4 - Slew Control

Slew control of output drivers is a useful benefit where outputs are driving large capacitive loads such as busses. Noise transients caused by voltage coupling into peripheral power supplies can give switching problems, resulting in mis-operation. The extent of this voltage disruption is depended on the number of outputs switching, supply pad locations and the inductance of the chip bond wire/package leads. The CLA60000 family uses proprietary design techniques to reduce this phenomenon by offering output switching control (di/dt) as part of the intermediate buffers.

The power distribution scheme for the CLA60000 arrays is very flexible (shown in figure 5): three separate power rings are used, one for the internal core logic, one for the large output driver cells and one for the intermediate buffer regions. Each of the separate power rings isolate any noise generated by
the low-impedance output drivers from the core logic and intermediate buffers. The power rings can be connect to separate pad locations or, if required, combined at a single Input or Output pad location. In addition, it is possible to isolate sections of the peripheral supply ring for the implementation of basic analog circuits.

The distribution of the supply rails across the core of the array can be automatically positioned for the interconnect of the base cells and hierarchical blocks. This allows greater design flexibility and provides additional signal routing channels. Supply interconnection is added during autolaying leaving unpopulated areas available for signal routing.

Low core power dissipation is very important for high complexity circuits (see section on Thermal Management).

Figure 5 - Power Supply Organization

PDS2 - The Zarlink Semiconductor ASIC Design System

PDS2 is Zarlink Semiconductor's ASIC computer-aided design system. It provides a fully integrated, technology independent VLSI design system for all Zarlink Semiconductor Semi-Custom CMOS products.

PDS2 allows the designer to perform all design activities from schematic entry, circuit debugging, fault grading, through to chip layout and generation of a test program for the production test of the finished ICs.

Logical design of CLA60000 is realized with the same software as is used for the CLA5000 and MVA5000 families of CMOS semi-custom products. PDS2 runs on DEC VEX equipment (under VMS)* and comprise schematic entry, logic and fault simulation, extensive result examination facilities and advanced library and configuration management
tools. Layout and routing is also supported on PDS2 along with full back annotation. Hierarchical logical design is possible up to 20 levels.

Supplemented by a three day training course for firsttime users, PDS2 may be used either at a Zarlink Semiconductor Design Centre or under licence at the designer's premises.

Design Support and Interfaces

Zarlink Semiconductor offers a variety of design interfaces to customers. For each interface, Zarlink Semiconductor requires a given set of information to be forwarded by the designer which is assessed at Design Reviews (1 to 4). At each stage, the design must be deemed to be acceptable by Zarlink Semiconductor Project Engineers before commencing the next stage of work. Design Reviews may be held in the designer's premises or at a Zarlink Semiconductor Design Centre.

CLA60000 Series

Further information on PDS2 or the interfacing requirements to the Zarlink Semiconductor technologies is available from any Zarlink Semiconductor Sales Office or Design Centre.

* DEC, VAX and VMS are trademarks of Digital Equipment Corporation, USA

Design Interfaces

	PDS2 USED AT Zarlink DESIGN CENTRE		PDS2 USED BY CUSTOMER ON OWN PREMISES			Zarlink COMPLETES DESIGN				
			$\begin{aligned} & \text { TURN } \\ & \text { KEY } \end{aligned}$	WORK STATION						
OPTIONS	A	B				C	D	E	F	G
DESIGN REVIEW 1										
LOGICAL DESIGN	CUSTOMER	CUSTOMER	CUSTOMER	CUSTOMER	CUSTOMER	Zarlink	Zarlink			
DESIGN REVIEW 2										
PHYSICAL DESIGN	Zarlink	CUSTOMER	Zarlink	CUSTOMER	CUSTOMER (AT DESIGN CENTRE)	Zarlink	Zarlink			
DESIGN REVIEW 3										
PROTOTYPE MANUFACTURING				Zarlink						
PROTOTYPE EVALUATION				CUSTOMER						
DESIGN REVIEW 4										
PRODUCTION				Zarlink						

Figure 6 - Access Routes to Zarlink Semi-custom
Zarlink Semiconductor operates a design audit procedure with four formal review meetings:
REVIEW 1: Checks that the required specification can be met by the CLA60000 gate array.
LOGICAL Conversion of the logic into hierarchical netlist. Circuit function is simulated for the DESIGN: eventual environmental conditions to be met by the chip, including definition of the test pattern and fault simulation.

REVIEW 2: Checks that logic simulation results are acceptable to both parties, and finalizes objectives for physical design (package, pinout, etc.)

PHYSICAL Package and pinout are defined. Cells are placed and routed within the array - using Zarlink
DESIGN: Semiconductor's interactive layout package. A final simulation is performed which takes account of real track loads.
REVIEW 3: Establishes that it is appropriate to proceed with chip manufacture by comparing all PDS2 results with customer's specifications.
PROTOTYPES: Zarlink Semiconductor manufactures four custom masks develops a test program from the customer' simulation vectors, fabricates wafers and supplies 10 tested, packaged prototypes as standard. Additional prototypes may be supplied at extra cost.

REVIEW 4: Confirms that the customer has fully examined the prototype and approves the chip design for full-scale production.

The schematic entry and logical design work may be done by Zarlink Semiconductor, or the customer may licence the PDS2 tools with Zarlink Semiconductor providing training to enable the engineer to undertake this phase of development in house. Design rooms and equipment are also available for customer use at any Zarlink Semiconductor design centres at attractive rental rates.

For the physical design phase, customers are encouraged to work with Zarlink Semiconductor layout engineers to ensure the best possible final performance. This can be completed either at a Zarlink Semiconductor design centre or at the customers premises.

Design Thermal Management

As gate integration capacity improves with CMOS process geometry reduction, the ability of silicon to exceed the power capabilities of accepted packaging technology is a very real problem. Semi-Custom designers now have the ability to design circuits of 50,000 gates and over, and chip power consumption is (or should be) a very important concern.

With complexities approaching 100 K gates, the core power at gate level becomes increasingly more dominant. It becomes essential to offer ultra low power core logic to maintain an acceptable overall chip power budget (typically 1 Watt for standard surface mount packaging).

The consequences of higher power consumption are elevated chip temperatures and reductions in product reliability, otherwise relatively expensive special packaging has to be considered which is bulkier and more costly.

Zarlink Semiconductor's CLA60000 arrays offer low power factors. At 5 mW per gate per MHz gate power and 2 mW per gate load, power is lower than most competitive arrays, with lower operating temperatures and higher inherent long term reliability.

CLA60000 Power Dissipation Calculation

CLA60000 series power dissipation for any array can be estimated by following this example (calculated for the CLA68XXX).

Number of available gates	110112
Percent gates used	40%
Number of used gates	44045
Number of gates switching each clock cycle (15%)	6607
Power dissipation $/ \mathrm{gate} / \mathrm{MHz}(\mu \mathrm{W})$	
(gate fanout typically 2 loads$)$	9
Total core dissipation $/ \mathrm{MHz}(\mathrm{mW})$	59.5
Number of available I/O pads	280
Percent of I/O pads used as Outputs	40
Number of I/O pads used as Outputs	112
Number of output buffers switching each clock cycle (20%)	22

Dissipation/output buffers/MHz/pF $(\mu \mathrm{W})$	25
Output loading in pF	50
Power/output buffer/MHz (mW)	1.25
Total output buffer dissipation/MHz (mW)	27.5
Total Power dissipation $/ \mathrm{MHz}(\mathrm{mW})$	87

1.4 Micron CMOS Process

The 1.4 micron CMOS process Zarlink Semiconductor process variant VJ) uses the latest manufacturing techniques at Zarlink Semiconductor's Class 1, 6-inch fabrication facility in Roborough, England. The process can be described as a twin well, self aligned LOCOS isolated technology on an epitaxial substrate giving low defect density and high reliability.

Effective channel length is 1.1 micron. Usable gate packaging density is 600 gates/sq.mm on two levels of metal. Devices will operate up to a maximum junction temperature of 170 Deg.C, and show excellent hardness, ESD, and stable performance.

ABSOLUTE MAXIMUM RATINGS					RECOMMENDED OPERATING LIMITS			
PARAMETER		MIN	MAX	UNITS	PARAMETER	MIN	MAX	UNITS
Supply	Voltage	-0.5	7.0	V	Supply Voltage	3.0	6.0	V
Input	Voltage	-0.5	Vdd +0.5	V	Input Voltage	Vss	Vdd	V
Output	Voltage	-0.5	Vdd +0.5	V	Output Voltage	Vss	Vdd	V
Storage	Temperature:				Current per pad		100	mA
	Ceramic	-65	150	Deg.C	Operating Temperature:			
	Plastic	-40	125	Deg.C	Commercial Grade	0	70	Deg.C
Operation above these absolute maximum ratings may permanently damage device characteristics and may affect reliability.					Industrial Grade	-40	85	Deg.C
					Military Grade	-55	125	Deg.C

CLA60000 Series

AC Characteristics for Selected Cells

The CLA60000 technology library contains all the timing information for each cell in the design library. This information is accessible to the simulator, which calculates propagation delays for all signal paths in the circuit design. The PDS2 simulator can automatically derate timings according to the various factors such as:

Supply voltage variation (from nominal 5V)
Chip temperature
Processing tolerance
Gate fanout
Input transition time
Input signal polarity
Interconnecting wiring
For initial assessments of feasibility, worst case estimations of path delays can be done in the following manner, using the dynamic Characteristics table as a guide to the normal propagation delays at 25 Deg. C and 5V supply.

- For temperatures, Zarlink Semiconductor's has derived a derating multipler (Kt) of $+0.3 \%$ per Deg. C
- For supply voltage derating, a factor of (Kv) 25% per volt of VDD Change should be used.
- For manufacturing variation (Kp), the tolerance is $\pm 50 \%$
- The maximum variation on typical delays over the Commercial grade product will be at 4.5 V and 70 Deg. C ambient temperature.

tpd (max)

$=K p \times K v \times K t \times \operatorname{tpd}(t y p)$
$=1.50 \times(1+(5.0-4.5) 0.25) \times(1+(70-25) 0.003) \times \mathrm{tpd}$ (typ)
$=1.50 \times 1.13 \times 1.13 \times \operatorname{tpd}(\operatorname{typ})=1.91 \times \operatorname{tpd}(\operatorname{typ})$
The minimum delay, at 5.5 V and 0 Deg. C will be:

tpd (min)

$=0.66 \times(1-(5.5-5.0) \times 0.25) \times(1-(25-0) 0.003) \times \mathrm{tpd}$ (typ)
$=0.66 \times 0.87 \times 0.93 \times$ tpd (typ)
$=0.53 \times \mathrm{tpd}$ (typ)
A similar calculation may be applied for any voltage and temperature relevant to the application. An additional "safety factor" of $\pm 20 \%$ may be applied if desired for conservative design. For worst case military grade characteristics, the performance derating multiplier is 2.57 times the commercial typical.

Fanout is in gate load units

Note:

Commercial Worst case is Industrial Worst case is Military worst case is
4.5V, 70 Deg.C operating, Worst Case processing
4.5V, 85 Deg.C operating, Worst Case processing
4.5V, 125 Deg.C operating, Worst Case processing

DC Electrical Characteristics

All characteristics at Commercial Grade voltage and temperature (Note 1)

CHARACTERISTIC	SYM	VALUE			UNIT	CONDITIONS
		Min	Typ	Max		
LOW LEVEL INPUT VOLTAGE TLL Inputs (IBTTL1/IBTTL2) CMOS Inputs (IBCMOS1/IBCMOS2)	VIL			$\begin{aligned} & 0.8 \\ & 1.0 \end{aligned}$	V	
HIGH LEVEL INPUT VOLTAGE TLL Inputs (IBTTL1/IBTTL2) CMOS inputs (IBCMOS1/IBCMOS2)	VIH	$\begin{gathered} 2.0 \\ \text { VDD }-1.0 \end{gathered}$			V	
INPUT HYSTERESIS (IBST1) Rising Falling (IBST2) Rising Falling	$\begin{aligned} & \text { VT+ } \\ & \text { VT- } \\ & \text { VT+ } \end{aligned}$		$\begin{aligned} & 2.75 \\ & 1.92 \\ & 2.20 \end{aligned}$		V	VIL to VIH VIH to VIL VIL to VIH VIH to VIL
INPUT CURRENT CMOS/TTL INPUTS Inputs with 1Kohm Resistors Inputs with 2Kohm Resistors Inputs with 4Kohm Resistors Inputs with 100Kohm Resistors Resistor values nominal - See note 2	IIN	$\begin{gathered} -5 \\ \pm 0.2 \\ \pm 0.1 \\ \pm 0.05 \\ \pm 10 \end{gathered}$	$\begin{gathered} \pm 5 \\ \pm 2.5 \\ \pm 1.2 \\ \pm 50 \end{gathered}$	$\begin{gathered} +5 \\ \pm 10 \\ \pm 5 \\ \pm 2.5 \\ \pm 200 \end{gathered}$	$\mu \mathrm{A}$ mA mA mA mA	$\begin{aligned} & \mathrm{VIN}=\mathrm{VDD} \text { or } \mathrm{VSS} \\ & \mathrm{VIN}=\mathrm{VDD} \text { or } \mathrm{VSS} \end{aligned}$
high level output voltage	VOH	$\begin{gathered} \text { VDD -0.05 } \\ \text { VDD-1.0 } \end{gathered}$	$\begin{aligned} & \text { VDD-0.5 } \\ & \text { VDD-0.5 } \end{aligned}$		V	$\begin{aligned} & \mathrm{IOH}=-1 \mu \mathrm{~A} \\ & \mathrm{IOH}=-1 \mathrm{~mA} \\ & \mathrm{IOH}=-2 \mathrm{~mA} \\ & \mathrm{IOH}=-3 \mathrm{~mA} \\ & \mathrm{IOH}=-6 \mathrm{~mA} \\ & \mathrm{IOH}=-12 \mathrm{~mA} \end{aligned}$
LOW LEVEL OUTPUT VOLTAGE All Outputs Smallest Drive Cell OP1/OPOD1	VOL		0.2	$\begin{gathered} \text { VSS }+0.05 \\ 0.4 \end{gathered}$	V	$\begin{aligned} & \mathrm{IOL}=1 \mu \mathrm{~A} \\ & \mathrm{IOL}=2 \mathrm{~mA} \end{aligned}$

CLA60000 Series

DC Electrical Characteristics (continued)

All characteristics at Commercial Grade voltage and temperature (Note 1)

CHARACTERISTIC	SYM	VALUE			UNIT	CONDITIONS
Low drive cell OP2/OPOS2		Min	Typ 0.2	Max 0.4		
Standard drive cell OP3/OPOS3			0.2	0.4		$1 \mathrm{OL}=6 \mathrm{~mA}$
Medium drive cell OP6/OPOS6			0.2	0.4		$1 \mathrm{OL}=12 \mathrm{~mA}$
Large drive cell OP12/OPOS12			0.2	0.4		$1 \mathrm{OL}=24 \mathrm{~mA}$
TRISTATE OUTPUT LEAKAGE CURRENT	IOZ				$\mu \mathrm{A}$	
OUTPUT SHORT CIRCUIT CURRENT	IOS				mA	
STANDBY SUPPLY CURRENT (per gate)	IDDSB		10		nA	

Note 1: Commercial grade is $0-70$ deg. $\mathrm{C}, 5 \mathrm{~V} \pm 10 \%$ power supply voltage
Note 2: Resistor value spreads (Min-Max): LOW VALUE (Rtyp 1K) 0.5-2Kohm LOW VALUE (Rtyp 4K) 2K - 8Kohm LOW VALUE (Rtyp 2K) 1.0-4Kohm HIGH VALUE (Rtyp 100K) 25K-250Kohm
Note 3: Standard driver output OP3 etc. Short circuit current for other outputs will scale. Not more than one output may be shorted at a time for a maximum duration of one second.
Note 4: Excluding peripheral buffers.
Note 5: Excludes package leadframe capacitance or bidirectional pins.
Note 6: Excludes package.

Packaging

Production quantities of the CLA60000 family are available in Industry-standard ceramic and plastic packages according to the codes shown below. Prototype samples are normally supplied in ceramic only. Where plastic production packages are requested, Ceramic prototypes will be supplied in the nearest equivalent and tested to the final test specification.

DC	DILMON	Dual in Line, Multilayer ceramic. Brazed leads. Metal sealed lid. Through board. Dual in Line, Ceramic body. Alloy leadframe. Glass sealed. Through board.
DG	CERDIP	Dual in Line, Copper or Alloy leadframe. Plastic moulded. Through board.
DP	PLASDI	Pin Grid Array. Multilayer Ceramic. Metal sealed lid. Through board.
AC	P.G.A.	Dual in Line 'Gullwing' formed leads. Plastic moulded. Surface mount.
MP	SMALL OUTLINE	Leadless Chip Carrier. Multilayer ceramic. Metal sealed lid. Surface mount.
LC	LCC	Quad Multilayer ceramic. Brazed 'J' formed leads. Metal sealed lid. Surface mount.
HC	LEADED CHIP CARRIER	Quad Multilayer ceramic. Brazed 'Gullwing' leads. Metal sealed lid. Surface mount. Quad ceramic body. 'J' formed leads. Glass sealed. Surface mount. Guad ceramic body. 'Gullwing' formed leads. Glass sealed.
HG LEADED CHIP CARRIER	QUAD CERPAC	Surface mount. Quad Leaded plastic Chip Carrier. 'J' formed leads. Plastic moulded. Surface mount.
HP	QUAD CERPAC	Quad plastic Flat Pack. 'Gullwing' formed leads. Glass sealed. Surface mount.
GP	PQFP	

CLA60000 Series

Packaging Options

The package style and pin count information is intended only as a guide. Detailed package specifications are available from Zarlink Semiconductor Design Centres on request. Available packages are being continuously updated, so if a particular package is not listed, please enquire through your Zarlink Semiconductor Sales Representative.

	LEADS	STYLE	CLA61	CLA62	CLA63	CLA64	CLA65	CLA66	CLA67	CLA68
	16	DC	X							
	16	DG	X							
	16	DP	X							
	18	DC	X							
	18	DG								
	18	DP	X							
D	20	DC	X							
U	20	DG	X							
A	20	DP	X							
L	22	DC	X	X	X					
	22	DG		X						
1	22	DP	X	X						
N	24	DC	X	X	X	X				
	24	DG	X	X	X					
L	24	DP	X	X	X					
1	28	DC	X	X	X	X				
N	28	DG	X	X	X	X				
	28	DP	X	X	X					
	40	DC	X	X	X	X	X			
	40	DG		X	X					
	40	DP	X	X	X	X				
	48	DC		X	X	X	X			
	48	DG								
	48	DP		X	X	X				
	16	MP	X							
	18	MP	X	X	X					
	20	MP	X							
	24	MP	X							
	28	MP	X	X						
	28	HP	X	X	X	X				
	28	LC	X	X	X					
	28	HC	X	X	X					
	28	HG	X	X	X					
	44	HP	X	X	X	X	X			
	44	GP	X	X	X					
	44	LC	X	X	X	X				
	44	HC	X	X	X	X				
	44	HG	X	X	X	X				
	48	GP		X	X	X				
U	64	GP		X	X	X				
A	68	HP		X	X	X	X			
D	68	LC		X	X	X	X	X	X	
	68	HC		X	X	X	X			
	68	HG		X	X	X	X			
	80	GP			X	X				
	84	HP			X	X	X			
	84	LC			X	X	X	X		
	84	HC			X	X	X	X		
	84	HG		X	X	X	X	X		
	100	GP			X	X				
	100	GG			X	X				
	120	GP				X	X			X
	132	GC					X	X	X	
	160	GP								X
	172	GC						X	X	X
	196	GC						X		
	68	AC		X	X	X	X			
	84	AC			X	X	X	X	X	
	100	AC			X	X	X			
G	120	AC				X	X			
A	132	AC					X	X		
	144	AC					X	X		
	180	AC					X	X		

CLA60000 Series

Cell Library

A most comprehensive cell library is available in CLA60000. The implementation of a cell has involved the silicon planning, design rule checking, automatic generation of a SPICE file for performance analysis, SPICE simulation and result extraction, generation of data sheets, generation of the PDS2 simulator library code and verification of cell attributes for layout tools.

The two micron CMOS array (CLA5000) cell library can be converted to equivalent cells on the CLA60000 arrays to allow system upgrades. In addition, many new functions have been made available such as RAMs, ROMs, and DSP Macros. Some macro cells are also available for implementing structured test philosophies. Also separate documentation on build-in test for gate arrays will be available in the near future.

CLA60000 Library (Library version V1R2)

Logic Array:

BUF	Non-inverting Signal Buffer	A2O41	Quad 2-Input ANDs to 4-Input NOR Gate
INV2	Inverter Dual Drive	O2A41	Quad 2-Input ORs to 4-Input NAND
INV4	Inverter Quad Drive		Gate
INV8	Inverter x 8 Drive	A4O21	Dual 4-Input ANDs to 2-INPUT NOR Gate
NAND2	2-Input Nand Gate	O4A2I	Dual 4-Input ORs to 2-Input NAND Gate
ND3	3-Input Nand Gate	3A2O3I	Triple 2-input ANDs to 3-Input NOR Gate
NAND3	3-Input Nand Gate + Inverter	302A3I	Triple 2-Input ORs to 3-Input NAND
2NAND	3 Dual 3-Input NAND Gate		Gate
NAND4	4-Input NAND Gate	A202A21	2-Input AND to 2-Input OR to 2-Input
NAND5	5-Input NAND Gate		NAND
NAND6	6-Input NAND Gate	O2A2O21	2-Input OR to 2-Input AND to 2-Input
NAND8	8-Input NAND Gate		NOR
NOR2	2-Input NOR Gate	GND	GND Cell
NR3	3-Input NOR Gate	VDD	VDD Cell
NOR3	3-Input NOR Gate + Inverter	EXOR	Exclusive OR Gate + NAND Gate +
2NOR3	Dual 3-Input NOR Gate		Inverter
NOR4	4-Input NOR Gate	EXNOR	Exclusive NOR Gate + NOR Gate +
NOR5	5-Input NOR Gate		
NOR 6	6-Input NOR Gate	EXOR2	2-Input Exclusive OR Gate
NOR8	8-Input NOR Gate	EXNOR2	2-Input Exclusive NOR Gate
		EXOR 3	3-Input Exclusive OR Gate
A2021	2-Input AND to 2-Input NOR Gate + Inverter	EXNOR3	3-Input Exclusive NOR Gate
O2A21	2-Input OR to 2-input NAND Gate +	HADD	Half Adder + Inverter
	Inverter	SUM	Sum Block
2 A 2 O 2	Dual 2-Input AND to 2-Input NOR Gate	CARRY	Carry Block + NOR Gate
202A21	Dual 2-INput OR to 2-Input NAND Gate	FADD	Full Adder + NOR Gate
2ANOR	2-Input ANDs to 2-Input NOR Gate		
2ONAND	2-Input ORs to 2-Input NAND Gate	MUX2TO1	2 to 1 Multiplexor
A2O31	2-Input AND to 3-Input NOR Gate	MUX4TO1	4 to 1 Multiplexor
O2A31	2-Input OR to 3-Input NAND Gate	MUX8TO1	8 to 1 Multiplexor
A3021	3-Input AND to 2-Input NOR Gate	MUXI2TO1	2 to 1 Inverting Multiplexor
O3A21	3-Input OR to 2-Input NAND Gate	MUXI4TO1	4 to 1 Inverting Multiplexor
		MUXI8TO1	8 to 1 Inverting Multiplexor

CLKA	Basic Clock Driver
2CLKA	Dual Basic Clock Driver
CLKAP	Basic Clock Driver + Inverter
CLKAM	Basic Clock Driver + Inverter
CLKB	Large Clock Driver + Inverter
DRV3	Triple Output Internal Driver
DRV6	Hex Output Internal Driver
TM	Buffered Transmission Gate
2TM	Transmission Gate for 2 to 1 Multiplexing
BDR	Bus Driver
DL	Data Latch
DL2	Data Latch
DLRS	Data Latch with Set and Reset
DLARS	Data Latch with Set and Reset
DF	Master-Slave D-Type Flip-Flop
DFRS	Master-Slave D-Type Flip-Flop with Set and Reset
MDF	Multiplexed Master-Slave D-Type FlipFlop
MDFRS	Multiplexed Master-Slave D-Type FlipFlop with Set and Reset
M3DF	3 to 1 Multiplexed Master-Slave D-Type Flip-Flop
M3DFRS	3 to 1 Multiplexed Master-Slave D-Type Flip-Flop with Set and Reset
JK	J K Flip-Flop
JKRS	J K Flip-FLop with Set and Reset
JBARK	J K Flip-Flop
JBARKRS	J K Flip-Flop with Set and Reset
BDL	Buffered Data Latch
BDLRS	Buffered Data Latch with Set and Reset
BDLARS	Buffered Data Latch with Set and Reset
BDF	Buffered Master-Slave D-Type Flip-Flop
BDFRS	Buffered Master-Slave D-Type Flip-Flop with Set and Reset
BMDF	Buffered Multiplexed Master-Slave DType Flip-Flop
BMDFRS	Buffered Multiplexed Master-Slave DType Flip-Flop with Set and Reset
TRID	Tri-State Driver

Intermediate Buffers:

IBST1 Input Buffer with CMOS switching level
IBST2 Input Buffer with 2V switching level
IBSK1 Driver with Lightly Skewed Outputs
IBSK2 Driver with Medium Skewed Outputs
IBSK3 Driver with Heavily Skewed Outputs
IBTRID Tri-State Driver

IBTRID1 Tri-State Driver with Lightly Skewed Outputs + 2 Inverters
IBTRID2 Tri-State Driver with Medium Skewed Outputs + 2 Inverters
IBTRID3 Tri-State Driver with Heavily Skewed Outputs + 2 Inverters
IBGATE Large 2-Input NAND Gate + Large 2Input NOR Gate
IB2D Dual High Power Inverters
IBCLKB Large Clock Driver
IBDF Master-Slave D-Type Flip-Flop
IBDFA Master-Slave D-Type Flip-Flop
IBCMOS1 CMOS Input Buffer and Large 2-Input NAND Gate
IBCMOS2 CMOS Input Buffer and Data Latch
IBTTL1 TTL Input Buffer and Large 2-Input NAND Gate
IBTTL2 TTL Input Buffer and Data Latch

Input Buffer:

IPNR	Input Cell (with no Pullup or Pulldown resistors)
IPR1P	Input Cell with 1K-Ohm Pull-up Resistor
IPR1M	Input Cell with 1K-Ohm Pull-down Resistor
IPR2P	Input Cell with 2K-Ohm Pull-up Resistor IPR2M
Input Cell with 2K-Ohm Pull-down Resistor	
IPR3P	Input Cell with 4K-Ohm Pull-up Resistor IPR3M
Input Cell with 4K-Ohm Pull-down Resistor	
IPR4P	Input Cell with 100K-Ohm Pull-up Resistor
IPR4M	Input Cell with 100K-Ohm Pull-down Resistor

Output Buffers:

OP1 Smallest Drive Output Buffer
OP2 Small Drive Output Buffer
OP3 Standard Drive Output Buffer
OP6 Medium Drive Output Buffer
OP12 Large Drive Output Buffer
OP5B Standard Drive Non-Inverting Output Buffer
OP11B Large Drive Non-Inverting Output Buffer
OPT1 Smallest Drive Tri-State Output Buffer
OPT2 Small Drive Tri-State Output Buffer
OPT3 Standard Drive Tri-State Output Buffer
OPT6 Medium Drive Tri-State Output Buffer

CLA60000 Series

OPT12	Large Drive Tri-State Output Buffer	LAVP2	Power Pad for Logic Array
OPT4B	Standard Drive Non-Inverting Tri-State	LAVP3	Power Pad for Logic Array
	Output Buffer	LAVP4	Power Pad for Logic Array
OPT10B	Large Drive Non-Inverting Tri-State	LAVP5	Power Pad for Logic Array
	Output Buffer	LAVM1	Power Pad for Logic Array
OPOD1	Smallest Drive Open-Drain Output	LAVM2	Power Pad for Logic Array
		LAVM3	Power Pad for Logic Array
OPOD3	Small Drive Open-Drain Output Buffer	LAVM4	Power Pad for Logic Array
	Standard Drive Open-Drain Output Buffer	LAVM5	Power Pad for Logic Array
OPOD6	Medium Drive Open-Drain Output Buffer	LAGND	
OPOD12	Large Drive Open-Drain Output Buffer	LAGND	Power Pad for Logic Array
OPOD5B	Standard Drive Non-Inverting Open Drain Output Buffer	LAVDD	Power Pad for Logic Array
OPOD11B	Large Drive Non-Inverting Open Drain Output Buffer	Analogue Cells:	
		OSC1	Crystal Oscillator Peripheral Cell
OPOS1	Smallest Drive Open-Source Output		
	Buffer	ANIPCMP	Comparator - Standard
OPOS2	Small Drive Open-Source Output Buffer	ANIPCMP	Comparator - Low Power
OPOS3	Standard Drive Open-Source Output	ANADC4	Four Bit Analogue To Digital Converter
	Buffer	ANDAC4	Four Bit Digital To Analogue Converter
OPOS6	Medium Drive Open-Source Output Buffer	ANVREFGN Reference Generator/Power On Reset	
OPOS12	Large Drive Open-Source Output Buffer	ANVREFSHShunt Regulator/Power On Reset	
OPOS5B		a) Memory Cells	
	Standard Drive Non-Inverting Open- Source Output Buffer		
OPOS11B		RAM2	2 bit memory
	Large Drive Non-Inverting Open-Source Output Buffer	RAM4	4 bit memory
		RAM8	8 bit memory
Supply Pads:		RAM16	16 bit memory
		RAM32	32 bit memory
OPVP	VDD Power Pad (Outputs)	RAM64	64 bit memory
OPVM	GND Power Pad (Outputs)	b) Single port decoder cells	
OPVPB	VDD Power Pad (Outputs):Break in VDD		
OPVMB	GND Power Pad (Outputs):Break in GND	RAD2S	2 words (1-16 bits RAM)
OPVPBB	VDD Power Pad (Outputs):Break in VDD	RAD2SL	2 words (17-64 bits RAM)
	and GND	RAD4S	4 words (1-16 bits RAM)
OPVMBB	GND Power Pad (Outputs):Break in GND and VDD	RAD4SL	4 words (17-64 bits RAM)
		RAD8S	8 words (1-16 bits RAM)
		RAD8SL	8 words (17-64 bits RAM)
IBVP	VDD Power Pad (Buffers)	RAD16S	16 words (1-16 bits RAM)
IBVM	GND Power Pad (Buffers)	RAD16SL	16 words (17-64 bits RAM)
IBVPB	VDD Power Pad (Buffers):Break in VDD	RAD32S	32 words (1-16 bits RAM)
IBVMB	GND Power Pad (Buffers):Break in GND	RAD32SL	32 words (17-64 bits RAM)
IBVPBB	VDD Power Pad (Buffers):Break in VDD and GND	RAD64S	64 words (1-16 bits RAM)
		RAD64SL	64 words (17-64 bits RAM)
IBVMBB	GND Power Pad (Buffers):Break in GND and VDD		
LAVP1	Power Pad for Logic Array		

CLA60000 Series

c) Dual port decoder cells

RAD2D	2 words (1-16 bits RAM)
RAD2DL	2 words (17-64 bits RAM)
RAD4D	4 words (1-16 bits RAM)
RAD4DL	4 words (17-64 bits RAM)
RAD8D	8 words (1-16 bits RAM)
RAD8DL	8 words (17-64 bits RAM)
RAD16D	16 words (1-16 bits RAM)
RAD16DL	16 words (17-64 bits RAM)
RAD32D	32 words (1-16 bits RAM)
RAD32DL	32 words (17-64 bits RAM)
RAD64D	64 words (1-16 bits RAM)
RAD64DL	64 words (17-64 bits RAM)

Macro Cells:

a) Adders

ADA4 $\quad 4$ bit binary full adders with fast carry

ADG4 Look ahead carry generator

b) Counters

CNA4	BCD counter/4 bit latch BCD decoder/ driver
CNB4	4 bit counter latch 4 bit synchronous counter CNC4
CND4	4 bit synchronous binary up/down counter
CND4A	4 bit synchronous binary up/down counter with reset
CNE4	4 bit decade counter 4 bit synchronous binary counter
CNF4	4 bit synchronous binary counter with enable
CNG4	

c) Decoders

DRA3T8 3 line to 8 line decoder/demultiplexer
DRA4T16 4 line to 16 line decoder/demultiplexer
DRA4T16A 4 line to 16 line decoder/demultiplexer with no enable
DRB3T8 3 line to 8 line decoder/demultiplexer with address registers
DRC3T8 3 line to 8 line decoder/demultiplexer with address latches
DRD2T4 2 line to 4 line decoder/demultiplexer
DRF4T101 4 line to 10 line BCD decoder
DRG4T10 4 line to 10 line Excess 3 to decimal decoder

DRH4T10 4 line to 10 line Excess Gray to decimal decoder
DRI10 BCD to decimnal decoder/driver
DRJ7 BCD to 7-Segment decoder/driver
DRK7 BCD to 7-Segment decoder/driver

d) Encoders

ENA8T3 8 line to 3 line priority encoder
ENB10T4 10 line to 4 line priority encoder
e) Flip-Flops

FFA8 8 bit bistable latches
FFB6 6 bit D-type flip-flops with clear
FFC4 4 bit D-type flip-flops with clear and complementary outputs
FFD8 Octal D-type flip-flops with clear
f) ALU/Function generator

FGA4 Arithmetic logic unit/function generator
g) Magnitude comparator

MCA4 4 bit magnitude comparators

h) Multipliers

MLA10	Decade rate multiplier
MLB4X4	4 bit binary multiplier with tristate outputs
MLW7	7 bit slice Wallace tree with tristate outputs

i) Multiplexors

MXA8T1 8 line to 1 line data selector/multiplexer
MXB4T1 4 line to 1 line data selector/multiplexer with tristate outputs
MXB4T1A 4 line to 1 line data selector/multiplexer with inverted tristate outputs
MXC2T1 Quad 2 line to 1 line data selector/ multiplexer
MXC2T1A Quad 2 line to 1 line data selector/ multiplexer with inverted outputs
MXD4T1 4 line to 1 line data selector/multiplexer
MXE4T1 Dual 4 line to 1 line data selector/ multiplexer
MXF2T1 Quad 2 line to 1 line multiplexer with storage

CLA60000 Series

j) Parity generators	
PGA	9 bit odd/even generator/check
k) Shift registers	
SRA2	2 bit parallel out serial shift registers with clear
SRA4	4 bit parallel out serial shift registers with clear
SRA8	8 bit parallel out serial shift registers with clear
SRA8A	8 bit parallel out serial shift registers with no clear
SRB2	2 bit parallel in serial shift registers with clear
SRB4	4 bit parallel in serial shift registers with clear
SRB8	8 bit parallel in serial out shift registers with clear
SRB8A	8 bit parallel in serial out shift registers with no clear
SRC8	8 bit parallel in serial out shift registers

SRD4 4 bit parallel in serial out shift registers
SRE4 4 bit parallel in serial out shift registers
SRE4 4 bit parallel in serial out shift registers with J.KBAR input
SRF8 8 bit shift and store register with tristate outputs
SRG4 4 bit bidirectional universal shift registers
4 bit parallel access shift registers
SRJ4
SRK5 5 bit shift register
i) Monitor

PERF Performance monitor for CLA60000
m) Built in Test

RGBIT User Bit for use in BIST circuit
RGCTL Control unit for use in BIST circuits
RGDIAG Diagnostic unit for use in BIST circuits
RGHOLD Hold Bit for use in BIST circuit
RGTBIT Test Bit for use in BIST circuit

http://www.zarlink.com

World Headquarters - Canada

Tel: +1 (613) 5920200
Fax: +1 (613) 5921010

North America - West Coast

Tel: (858) 675-3400
Fax: (858) 675-3450

Asia/Pacific

Tel: +65 3336193
Fax: +65 3336192

North America - East Coast

Tel: (978) 322-4800
Fax: (978) 322-4888

Europe, Middle East, and Africa (EMEA)

Tel: +44 (0) 1793518528
Fax: +44 (0) 1793518581

Information relating to products and services furnished herein by Zarlink Semiconductor Inc. trading as Zarlink Semiconductor or its subsidiaries (collectively "Zarlink") is believed to be reliable. However, Zarlink assumes no liability for errors that may appear in this publication, or for liability otherwise arising from the application or use of any such information, product or service or for any infringement of patents or other intellectual property rights owned by third parties which may result from such application or use. Neither the supply of such information or purchase of product or service conveys any license, either express or implied, under patents or other intellectual property rights owned by Zarlink or licensed from third parties by Zarlink, whatsoever. Purchasers of products are also hereby notified that the use of product in certain ways or in combination with Zarlink, or non-Zarlink furnished goods or services may infringe patents or other intellectual property rights owned by Zarlink.

This publication is issued to provide information only and (unless agreed by Zarlink in writing) may not be used, applied or reproduced for any purpose nor form part of any order or contract nor to be regarded as a representation relating to the products or services concerned. The products, their specifications, services and other information appearing in this publication are subject to change by Zarlink without notice. No warranty or guarantee express or implied is made regarding the capability, performance or suitability of any product or service. Information concerning possible methods of use is provided as a guide only and does not constitute any guarantee that such methods of use will be satisfactory in a specific piece of equipment. It is the user's responsibility to fully determine the performance and suitability of any equipment using such information and to ensure that any publication or data used is up to date and has not been superseded. Manufacturing does not necessarily include testing of all functions or parameters. These products are not suitable for use in any medical products whose failure to perform may result in significant injury or death to the user. All products and materials are sold and services provided subject to Zarlink Semiconductor's conditions of sale which are available on request.

Purchase of Zarlink's $I^{2} \mathrm{C}$ components conveys a licence under the Philips $\mathrm{I}^{2} \mathrm{C}$ Patent rights to use these components in an $\mathrm{I}^{2} \mathrm{C}$ System, provided that the system conforms to the $I^{2} \mathrm{C}$ Standard Specification as defined by Philips

Zarlink and the Zarlink Semiconductor logo are trademarks of Zarlink Semiconductor Inc.
Copyright 2001, Zarlink Semiconductor Inc. All rights reserved.

