

Features

- · Low temperature coefficient
- · Guaranteed temperature stability
- 0.6Ω dynamic impedance
- ±1.0% initial tolerance available
- Easily trimmed for minimum temperature drift
- . Adjustable 4V to 6V
- Wide operating range current of 400mA to 10mA
- Fast turn on

Description

The WS336-5.0 integrated Circuits are precision 5.0V shunt regulators. The monolithic IC voltage references operates as a low temperature coeffcient 5.0V zener with 0.6ohm dynamic impedance. A third terminal on the WS336-5.0 allow the reference voltage and temperature coefficient to be trimmed easily. WS336-5.0 are useful as a precision 5.0V low voltage reference for digital voltmeters, power supplies or op amp circuitry. The 5.0V make it convenient to obtain a stable reference from low voltage supplies. Further, since the WS336-5.0 operate as shunt regulators, they can be used as either a positive or negative voltage reference.

Product Number	Package	Operating Temperature			
WS336Z-5.0	TO-92	0°C ~ 70°C			

Internal Block Diagram

WS336-5.0

Absolute Maximum Ratings

Parameter	Symbol	Value	Unit	
Reverse Current	IR	15	mA	
Forward Current	lF	10	mA	
Operating Temperature Range KA336-2.5/B	TOPR	0 ~ + 70	°C	
Storage Temperature Range	TSTG	- 60 ~ + 150	°C	

Electrical Characteristics

 $(0^{\circ}C < T_A < +70^{\circ}C$, unless otherwise specified)

Parameter Sym	Cumbal	ol Conditions	WS336-5.0						
	Symbol		Min.	Тур.	Max.	Min.	Тур.	Max.	Unit
Reverse Breakdown Voltage	VR	$T_A = +25^{\circ}C$ $I_R = 1mA$	4.85	5.0	5.15				V
Reverse Breakdown Change with Current	ΔV _R /ΔI _R	T _A = +25°C 600uA ≤I _R ≤ 10mA	-	6	20				m V
Reverse Dynamic Impedance	Z _D	$T_A = +25^{\circ}C$ $I_R = 1mA$	-	0.6	2				Ω
Temperature Stability	STT	I _R = 1mA	-	4	12				mV
Reverse Breakdown Change with Current	$\Delta V_R/\Delta I_R$	400uA ≤ I _R ≤10mA	-	6	24				mV
Reverse Dynamic Impedance	Z _D	I _R = 1mA	-	0.8	2.5				Ω
Long Term Stability In reference voltage	ST	I _R = 1mA	-	20	-				ppm/Khr

Typical Perfomance Characteristics

Figure 1. Reverse Voltage Change

Figure 3. Temperature Drift

Figure 2. Reverse Characteristics

Figure 4. Forward Characteristics