16-bit Proprietary Microcontroller

CMOS

F²MC-16LX MB90595 Series

MB90598/F598/V595

DESCRIPTION

The MB90595-series with FULL-CAN and FLASH ROM is specially designed for automotive and industrial applications. Its main feature is the on board CAN Interface, that is conform to V2.0 Part A and Part B, supporting very flexible message buffering. Thus, offering more functions than a normal full CAN approach. In the new $0.5 \mu \mathrm{~m}$ Technology Fujitsu now also offer FLASH-ROM. An internal voltage booster substitutes the necessity of a second programming voltage.
An on board voltage regulator provides 3 V to the internal MCU core. This constitutes a major advantage in terms of EMI and power consumption.
The internal PLL clock frequency multiplier, provides an internal 62.5 nsec instruction cycle time with an external 4 MHz clock.
The unit features 4 Stepping Motor Controllers with high current outputs.
Further more it features 4 channels Output Capture Units and 4 channels Input Capture Units with a 16-bit free running timer. Two UARTs constitute additional functionality for communication purposes.

■ FEATURES

- 16-bit core CPU; 4MHz external clock (16 MHz internal, 62.5 nsec instr. cycle time)
- New $0.5 \mu \mathrm{~m}$ CMOS Process Technology
- Internal voltage regulator supports 3V MCU core, offering low EMI and low power consumption figures
- FULL-CAN interface; conform to Version 2.0 Part A and Part B, flexible message buffering (mailbox and FIFO buffering can be mixed)
- $\mathrm{El}^{2} \mathrm{OS}$ - Automatic transfer function indep.of CPU; 10 ch . of intelligent I/O Services
- 18-bit Time-base counter
(Continued)
PACKAGE

MB90595 Series

- Powerful interrupt functions (8 progr. priority levels; 8 external interrupts)
- Watchdog Timer
- 2 full duplex UARTs; UART0 supports 10.4 KBaud (USA standard), UART 1 also for serial transfer with clock (SCI) programmable
- Serial I/O: 1ch for synchronous data transfer
- A/D Converter: 8 ch. analog inputs (Resolution 10 bits or 8 bits)
- 16-bit reload timer * 2ch
- ICU (Input capture) 16bit * 4 ch
- OCU (Output compare) 16bit * 4ch
- 16-bit Programmable Pulse Generator 6ch
- Stepping Motor Controller 4ch
- Optimized instruction set for controller applications (bit, byte, word and long-word data types; 23 different addressing modes; barrel shift; variety of pointers)
- 4-byte instruction execution queue
- signed multiply (16bit*16bit) and divide (32bit/16bit) instructions available
- Program Patch Function
- Fast Interrupt processing
- Low Power Consumption - 7 different power saving modes: (Sleep, Stop, CPU intermittent mode, Hardware standby pin,...)
- Package: 100-pin plastic QFP

Controller Area Network (CAN) - License of Robert Bosch GmbH

MB90595 Series

PRODUCT LINEUP

The following table provides a quick outlook of the MB90595 Series

Features	MB90V595	MB90F598	MB90598
CPU	F²MC-16LX CPU		
System clock	On-chip PLL clock multiplier ($\mathrm{x} 1, \mathrm{x} 2, \mathrm{x} 3, \mathrm{x} 4,1 / 2$ when PLL stop) Minimum instruction execution time: 62.5 ns (4 MHz osc. PLL x4)		
ROM	External	Boot-block Flash memory 128 Kbytes Hard-wired reset vector	Mask ROM 128 Kbytes
RAM	6 Kbytes	4 Kbytes	4 Kbytes
Technology	$0.5 \mu \mathrm{~m}$ CMOS with on-chip voltage regulator for internal power supply	$0.5 \mu \mathrm{~m}$ CMOS with on-chip voltage regulator for internal power supply + Flash memory On-chip charge pump for programming voltage	$0.5 \mu \mathrm{~m}$ CMOS with on-chip voltage regulator for internal power supply
Operating voltage range	$5 \mathrm{~V} \pm 10 \%$		
Temperature range	- 40 to $85{ }^{\circ} \mathrm{C}$		
Package	PGA-256	QFP100	
UARTO	Full duplex double buffer Supports asynchronous/synchronous (with start/stop bit) transfer Baud rate: 4808/5208/9615/10417/19230/38460/62500/500000bps (asynchronous) $500 \mathrm{~K} / 1 \mathrm{M} / 2 \mathrm{Mbps}$ (synchronous) at System clock $=16 \mathrm{MHz}$		
UART1 (SCI)	Full duplex double buffer Asynchronous (start-stop synchronized) and CLK-synchronous communication Baud rate: 1202/2404/4808/9615/31250bps (asynchronous) $62.5 \mathrm{~K} / 125 \mathrm{~K} / 250 \mathrm{~K} / 500 \mathrm{~K} / 1 \mathrm{Mbps}$ (synchronous) at $6,8,10,12,16 \mathrm{MHz}$		
Serial IO	Transfer can be started from MSB or LSB Supports internal clock synchronized transfer and external clock synchronized transfer Supports positive-edge and negative-edge clock synchronization Baud rate : $31.25 \mathrm{~K} / 62.5 \mathrm{~K} / 125 \mathrm{~K} / 500 \mathrm{~K} / 1 \mathrm{Mbps}$ at System clock $=16 \mathrm{MHz}$		
A/D Converter	10-bit or 8-bit resolution 8 input channels Conversion time: $26.3 \mu \mathrm{~s}$ (per one channel)		
16-bit Reload Timer (2 channels)	Operation clock frequency: fsys $/ 2^{1}$, fsys $/ 2^{3}$, fsys $/ 2^{5}$ (fsys = System clock frequency) Supports External Event Count function		
Stepper Motor Controller (4 channels)	Four high current outputs for each channel Synchronized two 8-bit PWM's for each channel Succeeds to MB89940 design resource		
$\begin{aligned} & \text { 16-bit } \\ & \text { IO Timer } \end{aligned}$	Signals an interrupt when overflow Supports Timer Clear when a match with Output Compare(Channel 0) Operation clock freq.: fsys $/ 2^{2}$, fsys $/ 2^{4}$, fsys $/ 2^{6}$, fsys $/ 2^{8}$ (fsys $=$ System clock freq.)		

(Continued)

MB90595 Series

(Continued)

Features	MB90V595	MB90F598	MB90598
16-bit Output Compare (4 channels)	Signals an interrupt when a match with 16-bit IO Timer Four 16-bit compare registers A pair of compare registers can be used to generate an output signal		
16-bit Input Capture (4 channels)	Rising edge, falling edge or rising \& falling edge sensitive Four 16-bit Capture registers Signals an interrupt upon external event		
8/16-bit Programmable Pulse Generator (6channels)	Supports 8-bit and 16-bit operation modes Twelve 8-bit reload counters Twelve 8-bit reload registers for L pulse width Twelve 8-bit reload registers for H pulse width A pair of 8 -bit reload counters can be configured as one 16-bit reload counter or as 8 -bit prescaler plus 8 -bit reload counter 6 output pins Operation clock freq.: fsys, fsys $/ 2^{1}$, fsys $/ 2^{2}$, fsys $/ 2^{3}$, fsys $/ 2^{4}$ or $128 \mu \mathrm{~s} @ f o s c=4 \mathrm{MHz}$ (fsys = System clock frequency, fosc = Oscillation clock frequency)		
CAN Interface	Conforms to CAN Specification Version 2.0 Part A and B Automatic re-transmission in case of error Automatic transmission responding to Remote Frame Prioritized 16 message buffers for data and ID's Supports multiple messages Flexible configuration of acceptance filtering: Full bit compare / Full bit mask / Two partial bit masks Supports up to 1 Mbps		
External Interrupt (8 channels)	Can be programmed edge sensitive or level sensitive		
IO Ports	Virtually all external pins can be used as general purpose IO All push-pull outputs and schmitt trigger inputs Bit-wise programmable as input/output or peripheral signal		
Flash Memory	-	Supports automatic programming, Embedded Algorithm ${ }^{\text {TM*1 }}$ Write/Erase/Erase-Suspend/ Resume commands A flag indicating completion of the algorithm Number of erase cycles: 10,000 times Data retention time: 10 years Hard-wired reset vector available in order to point to a fixed boot sector in Flash Memory Flash Writer from Minato Electronics Inc. Boot block configuration Erase can be performed on each block Block protection with external programming voltage	-

[^0]
MB90595 Series

PIN ASSIGNMENT

(FPT-100P-M06)

MB90595 Series

PIN DESCRIPTION

No.	Pin name	Circuit type	Function
82	X0	A	Oscillation input
83	X1		Oscillation output
77	$\overline{\text { RST }}$	B	Reset input
52	HST	C	Hardware standby input
85 to 88	P00 to P03	G	General purpose IO
	IN0 to IN3		Inputs for the Input Captures
89 to 92	P04 to P07	G	General purpose IO
	OUT0 to OUT3		Outputs for the Output Compares.
93 to 98	P10 to P15	D	General purpose IO
	PPG0 to PPG5		Outputs for the Programmable Pulse Generators
99	P16	D	General purpose IO
	TIN1		TIN input for the 16-bit Reload Timer 1
100	P17	D	General purpose IO
	TOT1		TOT output for the 16-bit Reload Timer 1
1 to 8	P20 to P27	G	General purpose IO
9 to 10	P30 to P31	G	General purpose IO
12 to 16	P32 to P36	G	General purpose IO
17	P37	D	General purpose IO
18	P40	G	General purpose IO
	SOTO		SOT output for UART 0
19	P41	G	General purpose IO
	SCK0		SCK input/output for UART 0
20	P42	G	General purpose IO
	SIN0		SIN input for UART 0
21	P43	G	General purpose IO
	SIN1		SIN input for UART 1
22	P44	G	General purpose IO
	SCK1		SCK input/output for UART 1
24	P45	G	General purpose IO
	SOT1		SOT output for UART 1
25	P46	G	General purpose IO
	SOT2		SOT output for the Serial IO
26	P47	G	General purpose IO
	SCK2		SCK input/output for the Serial IO

(Continued)

MB90595 Series

No.	Pin name	Circuit type	Function
28	P50	D	General purpose IO
	SIN2		SIN Input for the Serial IO
29 to 32	P51 to P54	D	General purpose IO
	INT4 to INT7		External interrupt input for INT4 to INT7
33	P55	D	General purpose IO
	ADTG		Input for the external trigger of the A/D Converter
38 to 41	P60 to P63	E	General purpose IO
	AN0 to AN3		Inputs for the A/D Converter
43 to 46	P64 to P67	E	General purpose IO
	AN4 to AN7		Inputs for the A/D Converter
47	P56	D	General purpose IO
	TIN0		TIN input for the 16-bit Reload Timer 0
48	P57	D	General purpose IO
	TOT0		TOT output for the 16-bit Reload Timer 0
54 to 57	P70 to P73	F	General purpose IO
	PWM1P0 PWM1M0 PWM2P0 PWM2M0		Output for Stepper Motor Controller channel 0
59 to 62	P74 to P77	F	General purpose IO
	PWM1P1 PWM1M1 PWM2P1 PWM2M1		Output for Stepper Motor Controller channel 1
64 to 67	P80 to P83	F	General purpose IO
	PWM1P2 PWM1M2 PWM2P2 PWM2M2		Output for Stepper Motor Controller channel 2
69 to 72	P84 to P87	F	General purpose IO
	PWM1P3 PWM1M3 PWM2P3 PWM2M3		Output for Stepper Motor Controller channel 3
74	P90	D	General purpose IO
	TX		TX output for CAN Interface
75	P91	D	General purpose IO
	RX		RX input for CAN Interface

(Continued)

MB90595 Series

(Continued)

No.	Pin name	Circuit type	Function
76	P92	D	General purpose IO
	INTO		External interrupt input for INTO
78 to 80	P93 to P95	D	General purpose IO
	INT1 to INT3		External interrupt input for INT1 to INT3
58,68	DVcc		Dedicated power supply pins for the high current outputbuffers (Pin No. 54 to 72)
53, 63, 73	DVss		Dedicated ground pins for the high current output buffers (Pin No. 54 to 72)
34	AV ${ }_{\text {cc }}$		Dedicated power supply pin for the A/D Converter
37	AVss		Dedicated ground pin for the A/D Converter
35	AVR+		Upper reference voltage input for the A/D Converter
36	AVR-		Lower reference voltage input for the A/D Converter
49,50	MDO MD1	C	Test mode inputs. These pins should be connected to VCC
51	MD2	H	Test mode input. This pin should be connected to VSS
27	C		External capacitor pin. A capacitor of $0.1 \mu \mathrm{~F}$ should be connected to this pin and VSS.
23, 84	Vcc		Power supply pins
11, 42, 81	Vss		Ground pins

MB90595 Series

I/O CIRCUIT TYPE

Circuit Type	Circuit	Remarks
A		- Oscillation feedback resistor: $1 \mathrm{M} \Omega$ approx.
B		- Hysteresis input with pull-up Resistor: $50 \mathrm{k} \Omega$ approx.
c	$\square \sim \sim_{0}^{\mathrm{R}} \mathrm{~N}_{0}^{\mathrm{HYS}}$	- Hysteresis input
D		- CMOS output - Hysteresis input

(Continued)

MB90595 Series

Circuit Type	Circuit	Remarks
E		- CMOS output - Hysteresis input - Analog input
F		- CMOS high current output - Hysteresis input
G		- CMOS output - Hysteresis input - TTL input (MB90F598, only in Flash mode)

(Continued)

MB90595 Series

(Continued)

Circuit Type	Circuit	Remarks
		Hysteresis input Pull-down Resistor: 50Ω approx. (except MB90F598)

MB90595 Series

HANDLING DEVICES

(1)Preventing latch-up

CMOS IC chips may suffer latch-up under the following conditions:

- A voltage higher than Vcc or lower than Vss is applied to an input or output pin.
- A voltage higher than the rated voltage is applied between Vcc and Vss.
- The AVcc power supply is applied before the Vcc voltage.

Latch-up may increase the power supply current drastically, causing thermal damage to the device.

(2)Handling unused input pins

Do not leave unused input pins open, as doing so may cause misoperation of the device. Use a pull-up or pulldown resistor.
(3)Using external clock

To use external clock, drive the X0 and X1 pins in reverse phase. See diagram below.

Using external clock

(4)Power supply pins (Vcc/Vss)

Ensure that all Vcc-level power supply pins are at the same potential. In addition, ensure the same for all Vsslevel power supply pins. (See the figure below.) If there are more than one Vcc or Vss system, the device may operate incorrectly even within the guaranteed operating range.

(5) Pull-up/down resistors

The MB90595 Series does not support internal pull-up/down resistors. Use external components where needed.

MB90595 Series

(6) Crystal Oscillator Circuit

Noises around X0 or X1 pins may be possible causes of abnormal operations. Make sure to provide bypass capacitors via shortest distance from X0, X1 pins, crystal oscillator (or ceramic resonator) and ground lines, and make sure, to the utmost effort, that lines of oscillation circuit not cross the lines of other circuits.
It is highly recommended to provide a printed circuit board art work surrounding X0 and X1 pins with an grand area for stabilizing the operation.

(7) Turning-on Sequence of Power Supply to A/D Converter and Analog Inputs

Make sure to turn on the A/D converter power supply(AVcc, AVR + , AVR -) and analog inputs (AN0 to AN7) after turning-on the digital power supply (Vcc).
Turn-off the digital power after turning off the A/D converter supply and analog inputs. In this case, make sure that the voltage not exceed AVR + or AVcc (turning on/off the analog and digital power supplies simultaneously is acceptable).
(8) Connection of Unused Pins of A/D Converter

Connect unused pins of A / D converter to $\mathrm{AVcc}=\mathrm{Vcc}, \mathrm{AV} s \mathrm{ss}=\mathrm{AVR}+=\mathrm{V} s \mathrm{~s}$.
(9) N.C. Pin

The N.C. (internally connected) pin must be opened for use.
(10) Notes on Energization

To prevent the internal regulator circuit from malfunctioning, set the voltage rise time during energization at 50 or more ms (0.2 V to 2.7 V).
(11) Initialization

In the device, there are internal registers which is initialized only by a power-on reset. To initialize these registers turning on the power again.
(12) Directions of "DIV A, Ri" and "DIVW A, RWi" instructions

In the Signed multiplication and division instructions ("DIV A, Ri" and "DIVW A, RWi"), the value of the corresponding bank register (DTB, ADB, USB, SSB) is set in " 00 h ".
If the values of the corresponding bank register (DTB,ADB,USB,SSB) are setting other than "00h", the remainder by the execution result of the instruction is not stored in the register of the instruction operand.

MB90595 Series

BLOCK DIAGRAM

MB90595 Series

MEMORY SPACE

The memory space of the MB90595 Series is shown below

Memory space map

The high-order portion of bank 00 gives the image of the FF bank ROM to make the small model of the Compiler effective. Since the low-order 16 bits are the same, the table in ROM can be referenced without using the far specification in the pointer declaration.
For example, an attempt to access 00C000н асcesses the value at FFCOOOн in ROM.
The ROM area in bank FF exceeds 48 Kbytes, and its entire image cannot be shown in bank 00.
The image between FF4000н and FFFFFFн is visible in bank 00, while the image between FF0000н аnd FF3FFFн is visible only in bank FF.

MB90595 Series

I/O MAP

Address	Register	Abbreviation	Access	Pripheral	Initial value
00 н	Port 0 data register	PDR0	R/W	Port 0	XXXXXXXX в
01 н	Port 1 data register	PDR1	R/W	Port 1	XXXXXXXX
02 н	Port 2 data register	PDR2	R/W	Port 2	XXXXXXXX в
03 н	Port 3 data register	PDR3	R/W	Port 3	XXXXXXXX в
04 н	Port 4 data register	PDR4	R/W	Port 4	XXXXXXXX в
05 н	Port 5 data register	PDR5	R/W	Port 5	XXXXXXXX в
06 н	Port 6 data register	PDR6	R/W	Port 6	XXXXXXXX в
07 н	Port 7 data register	PDR7	R/W	Port 7	XXXXXXXX в
08 н	Port 8 data register	PDR8	R/W	Port 8	XXXXXXXX в
09 н	Port 9 data register	PDR9	R/W	Port 9	__ XXXXXX в
0A to 0 F н	Reserved				
10 н	Port 0 direction register	DDR0	R/W	Port 0	00000000 B
11 н	Port 1 direction register	DDR1	R/W	Port 1	00000000 в
12 н	Port 2 direction register	DDR2	R/W	Port 2	00000000 B
13 н	Port 3 direction register	DDR3	R/W	Port 3	00000000 в
14 н	Port 4 direction register	DDR4	R/W	Port 4	00000000 B
15 н	Port 5 direction register	DDR5	R/W	Port 5	00000000 в
16 н	Port 6 direction register	DDR6	R/W	Port 6	00000000 в
17 н	Port 7 direction register	DDR7	R/W	Port 7	00000000 в
18 н	Port 8 direction register	DDR8	R/W	Port 8	00000000 в
19 н	Port 9 direction register	DDR9	R/W	Port 9	000000 в
1A н	Reserved				
1 B н	Analog Input Enable	ADER	R/W	Port 6, A/D	11111111 B
1 C to 1F ${ }^{\text {H }}$	Reserved				
20 н	Serial Mode Control Register 0	UMC0	R/W	UART0	00000100 в
21 н	Status Register 0	USR0	R/W		00010000 в
22 н	Input/Output Data Register 0	UIDR0/ UODRO	R/W		XXXXXXXX в
23 н	Rate and Data Register 0	URD0	R/W		$0000000 \mathrm{XB}_{\text {B }}$
24 н	Serial Mode Register 1	SMR1	R/W	UART1	00000000 в
25 н	Serial Control Register 1	SCR1	R/W		00000100 B
26 н	Input/Output Data Register 1	$\begin{aligned} & \hline \text { SIDR1/ } \\ & \text { SODR1 } \end{aligned}$	R/W		XXXXXXXX в
27 н	Serial Status Register 1	SSR1	R/W		00001 _00 в
28 н	UART1 Prescaler Control Register	U1CDCR	R/W		$0_{---11118}$

(Continued)

MB90595 Series

Address	Register	Abbreviation	Access	Pripheral	Initial value
29 to 2A ${ }_{\text {н }}$	Reserved				
2 B н	Serial IO Prescaler	SCDCR	R/W	Serial IO	0 ___ 1111 в
2 C н	Serial Mode Control	SMCS	R/W		0000 в
2D н	Serial Mode Control	SMCS	R/W		00000010 в
2 E н	Serial Data	SDR	R/W		XXXXXXXX в
2 F н	Edge Selector	SES	R/W		0 в
30 н	External Interrupt Enable	ENIR	R/W	External Interrupt	00000000 в
31 н	External Interrupt Request	EIRR	R/W		XXXXXXXX
32 н	External Interrupt Level	ELVR	R/W		00000000 в
33 н	External Interrupt Level	ELVR	R/W		0000000 в
34 н	A/D Control Status 0	ADCS0	R/W	A/D Converter	00000000 в
35 н	A/D Control Status 1	ADCS1	R/W		00000000 в
36 н	A/D Data 0	ADCR0	R		XXXXXXXX в
37 н	A/D Data 1	ADCR1	R/W		00001 _ XX $^{\text {¢ }}$
38 н	PPG0 operation mode control register	PPGC0	R/W	16-bit Programable Pulse Generator 0/1	0_000_-1в
39 н	PPG1 operation mode control register	PPGC1	R/W		$0 _000001$ в
3А н	PPG0 and PPG1 clock select register	PPG01	R/W		000000 _- ${ }^{\text {b }}$
3B н	Reserved				
3С н	PPG2 operation mode control register	PPGC2	R/W	16-bit Programable Pulse Generator 2/3	0_000_-1в
3D н	PPG3 operation mode control register	PPGC3	R/W		0_000001в
3E н	PPG2 and PPG3 clock select register	PPG23	R/W		000000 _- ${ }^{\text {B }}$
3 F н	Reserved				
40 н	PPG4 operation mode control register	PPGC4	R/W	16-bit Programable Pulse Generator 4/5	0_000_-1в
41 н	PPG5 operation mode control register	PPGC5	R/W		$0 _000001$ в
42 н	PPG4 and PPG5 clock select register	PPG45	R/W		000000 _- ${ }^{\text {b }}$
43 н	Reserved				
44 н	PPG6 operation mode control register	PPGC6	R/W	16-bit Programable Pulse Generator 6/7	0_000_-1в
45 н	PPG7 operation mode control register	PPGC7	R/W		$0 _000001$ в
46 н	PPG6 and PPG7 clock select register	PPG67	R/W		000000 _- ${ }^{\text {b }}$
47 н	Reserved				
48 н	PPG8 operation mode control register	PPGC8	R/W	16-bit Programable Pulse Generator 8/9	0_000_-1в
49 н	PPG9 operation mode control register	PPGC9	R/W		$0 _000001$ в
4A н	PPG8 and PPG9 clock select register	PPG89	R/W		000000 _- ${ }^{\text {b }}$
4 B н	Reserved				

(Continued)

MB90595 Series

Address	Register	Abbreviation	Access	Pripheral	Initial value
4C н	PPGA operation mode control register	PPGCA	R/W	```16-bit Programable Pulse Generator A/B```	$0 _000 _1_{\text {в }}$
4D н	PPGB operation mode control register	PPGCB	R/W		$0 _000001_{\text {в }}$
4 E н	PPGA and PPGB clock select register	PPGAB	R/W		00000 _- $^{\text {B }}$
4 F н	Reserved				
50 н	Timer Control Status 0	TMCSR0	R/W	$\begin{gathered} 16 \text {-bit } \\ \text { Reload Timer } 0 \end{gathered}$	00000000 в
51 н	Timer Control Status 0	TMCSR0	R/W		_-_0000
52 н	Timer 0/Reload 0	TMR0/ TMRLRO	R/W		XXXXXXXX ${ }_{\text {в }}$
53 н	Timer 0/Reload 0	$\begin{aligned} & \text { TMRO/ } \\ & \text { TMRLRO } \end{aligned}$	R/W		XXXXXXXX ${ }_{\text {в }}$
54 н	Timer Control Status 1	TMCSR1	R/W	16-bit Reload Timer 1	0000000 в
55 н	Timer Control Status 1	TMCSR1	R/W		_-_0000в
56 н	Timer 1/Reload 1	TMR1/ TMRLR1	R/W		XXXXXXXX ${ }_{\text {в }}$
57 н	Timer 1/Reload 1	TMR1/ TMRLR1	R/W		XXXXXXXX ${ }_{\text {в }}$
58 н	Output Compare Control Status 0	OCSO	R/W	Output Compare 0/1	$0000 \ldots 00_{\text {B }}$
59 н	Output Compare Control Status 1	OCS1	R/W		_-00000 в
5 A н	Output Compare Control Status 2	OCS2	R/W	Output Compare 2/3	$0000 \ldots 00$ в
5 B н	Output Compare Control Status 3	OCS3	R/W		-_00000
5 C н	Input Capture Control Status 0/1	ICS01	R/W	Input Capture 0/1	0000000 в
5 D н	Input Capture Control Status 2/3	ICS23	R/W	Input Capture 2/3	0000000 в
5E н	PWM Control 0	PWC0	R/W	Stepping Motor Controller 0	00000 _ 0 в
5F н	Reserved				
60 н	PWM Control 1	PWC1	R/W	Stepping Motor Controller 1	00000 _ 0 в
61 н	Reserved				
62 н	PWM Control 2	PWC2	R/W	Stepping Motor Controller 2	00000 _ 0 в
63 н	Reserved				
64 н	PWM Control 3	PWC3	R/W	Stepping Motor Controller 3	00000 _ 0 в
65 н	Reserved				
66 н	Timer Data	TCDT	R/W	10 Timer	00000000 в
67 н	Timer Data	TCDT	R/W		0000000 в
68 н	Timer Control	TCCS	R/W		0000000 в
69 to 6E н	Reserved				

(Continued)

MB90595 Series

Address	Register	Abbreviation	Access	Pripheral	Initial value
6F н	ROM Mirror	ROMM	R/W	ROM Mirror	${ }^{1 \text { в }}$
70 н	PWM1 Compare 0	PWC10	R/W	Stepping Motor Controller 0	XXXXXXXX ${ }_{\text {в }}$
71 н	PWM2 Compare 0	PWC20	R/W		XXXXXXXX ${ }_{\text {в }}$
72 н	PWM1 Select 0	PWS10	R/W		000000 в
73 н	PWM2 Select 0	PWS20	R/W		- 0000000 в
74 н	PWM1 Compare 1	PWC11	R/W	Stepping Motor Controller 1	XXXXXXXX ${ }_{\text {в }}$
75 н	PWM2 Compare 1	PWC21	R/W		XXXXXXXX ${ }_{\text {в }}$
76 н	PWM1 Select 1	PWS11	R/W		_000000
77 н	PWM2 Select 1	PWS21	R/W		-0000000 в
78 н	PWM1 Compare 2	PWC12	R/W	Stepping Motor Controller 2	
79 н	PWM2 Compare 2	PWC22	R/W		XXXXXXXX ${ }_{\text {в }}$
7А	PWM1 Select 2	PWS12	R/W		_000000в
7 B н	PWM2 Select 2	PWS22	R/W		0000000 в
7С ${ }_{\text {H }}$	PWM1 Compare 3	PWC13	R/W	Stepping Motor Controller 3	ХХХХХХХХ ${ }_{\text {в }}$
7D н	PWM2 Compare 3	PWC23	R/W		XXXXXXXX ${ }_{\text {в }}$
7E н	PWM1 Select 3	PWS13	R/W		-_000000 в
7F н	PWM2 Select 3	PWS23	R/W		-0000000
80 to 8 F н	CAN Controller. Refer to section about CAN Controller				
90 to 9D н	Reserved				
9E н	ROM Correction Control Status	PACSR	R/W	ROM Correction	0000000 в
9F ${ }_{\text {H }}$	Delayed Interrupt/release	DIRR	R/W	Delayed Interrupt	_-_ ${ }_{\text {в }}$
А0 н	Low-power Mode	LPMCR	R/W	Low Power Controller	00011000 в
A1 н	Clock Selector	CKSCR	R/W	Low Power Controller	11111100 в
A2 to A7 н	Reserved				
А8 н	Watchdog Control	WDTC	R/W	Watchdog Timer	XXXXX 111 в
A9 н	Time Base Timer Control	TBTC	R/W	Time Base Timer	1 __ 00100 в
AA to $A D$ н	Reserved				
AE н	Flash Control Status (MB90F598 only. Otherwise reserved)	FMCS	R/W	Flash Memory	O00×0000в
AF ${ }^{\text {H }}$	Reserved				
В0 н	Interrupt control register 00	ICR00	R/W	Interrupt controller	$00000111_{\text {B }}$
В1 н	Interrupt control register 01	ICR01	R/W		$00000111_{\text {в }}$
В2 н	Interrupt control register 02	ICR02	R/W		$00000111_{\text {в }}$
В3 н	Interrupt control register 03	ICR03	R/W		$00000111_{\text {B }}$

MB90595 Series

Address	Register	Abbreviation	Access	Pripheral	Initial value
B4 н	Interrupt control register 04	ICR04	R/W	Interrupt controller	$00000111_{\text {в }}$
B5 н	Interrupt control register 05	ICR05	R/W		$00000111_{\text {в }}$
В6 н	Interrupt control register 06	ICR06	R/W		$00000111_{\text {в }}$
B7 н	Interrupt control register 07	ICR07	R/W		$00000111_{\text {в }}$
B8 н	Interrupt control register 08	ICR08	R/W		$0000011{ }^{\text {в }}$
B9 н	Interrupt control register 09	ICR09	R/W		00000111 в
ВА н	Interrupt control register 10	ICR10	R/W		$00000111_{\text {в }}$
BB н	Interrupt control register 11	ICR11	R/W		$00000111_{\text {в }}$
BC н	Interrupt control register 12	ICR12	R/W		$0000011{ }^{\text {в }}$
BD н	Interrupt control register 13	ICR13	R/W		$0000011{ }^{\text {в }}$
BE н	Interrupt control register 14	ICR14	R/W		00000111 в
BF ${ }^{\text {+ }}$	Interrupt control register 15	ICR15	R/W		00000111 в
CO to FF H	Reserved				
1900 н	Reload L	PRLLO	R/W	16-bit Programable Pulse Generator 0/1	XXXXXXXX ${ }_{\text {в }}$
1901 н	Reload H	PRLH0	R/W		XXXXXXXX ${ }^{\text {в }}$
1902 н	Reload L	PRLL1	R/W		XXXXXXXX ${ }^{\text {в }}$
1903 н	Reload H	PRLH1	R/W		XXXXXXXX ${ }_{\text {в }}$
1904 н	Reload L	PRLL2	R/W	16-bit Programable Pulse Generator 2/3	XXXXXXXX ${ }_{\text {в }}$
1905 н	Reload H	PRLH2	R/W		XXXXXXXX ${ }_{\text {в }}$
1906 н	Reload L	PRLL3	R/W		XXXXXXXX ${ }_{\text {в }}$
1907 н	Reload H	PRLH3	R/W		XXXXXXXX ${ }_{\text {в }}$
1908 н	Reload L	PRLL4	R/W	16-bit Programable Pulse Generator 4/5	XXXXXXXX ${ }^{\text {в }}$
1909 н	Reload H	PRLH4	R/W		XXXXXXXX ${ }_{\text {в }}$
190A н	Reload L	PRLL5	R/W		XXXXXXXX ${ }^{\text {в }}$
190B н	Reload H	PRLH5	R/W		XXXXXXXX ${ }_{\text {в }}$
190C н	Reload L	PRLL6	R/W	16-bit Programable Pulse Generator 6/7	XXXXXXXX ${ }^{\text {в }}$
190D н	Reload H	PRLH6	R/W		XXXXXXXX ${ }^{\text {в }}$
190E н	Reload L	PRLL7	R/W		XXXXXXXX
190F н	Reload H	PRLH7	R/W		XXXXXXXX ${ }^{\text {в }}$
1910 н	Reload L	PRLL8	R/W	16-bit Programable Pulse Generator 8/9	XXXXXXXX ${ }_{\text {в }}$
1911 н	Reload H	PRLH8	R/W		XXXXXXXX ${ }_{\text {в }}$
1912 н	Reload L	PRLL9	R/W		XXXXXXXX ${ }^{\text {в }}$
1913 н	Reload H	PRLH9	R/W		XXXXXXXX ${ }^{\text {в }}$
1914 н	Reload L	PRLLA	R/W	16-bit Programable Pulse Generator A/B	XXXXXXXX ${ }^{\text {в }}$
1915 н	Reload H	PRLHA	R/W		XXXXXXXX ${ }_{\text {в }}$

(Continued)

MB90595 Series

Address	Register	Abbreviation	Access	Pripheral	Initial value
1916 н	Reload L	PRLLB	R/W	16-bit Programable Pulse Generator A/B	XXXXXXXX ${ }_{\text {в }}$
1917 н	Reload H	PRLHB	R/W		XXXXXXXX ${ }_{\text {в }}$
1918 to 191F н	Reserved				
1920 н	Input Capture 0	IPCP0	R	Input Captue 0/1	XXXXXXXX ${ }_{\text {в }}$
1921 н	Input Capture 0	IPCP0	R		XXXXXXXX ${ }_{\text {в }}$
1922 н	Input Capture 1	IPCP1	R		XXXXXXXX ${ }_{\text {в }}$
1923 н	Input Capture 1	IPCP1	R		XXXXXXXX ${ }_{\text {в }}$
1924 н	Input Capture 2	IPCP2	R	Input Captue 2/3	XXXXXXXX ${ }_{\text {в }}$
1925 н	Input Capture 2	IPCP2	R		XXXXXXXX ${ }_{\text {в }}$
1926 н	Input Capture 3	IPCP3	R		XXXXXXXX ${ }_{\text {в }}$
1927 н	Input Capture 3	IPCP3	R		XXXXXXXX ${ }_{\text {в }}$
1928 н	Output Compare 0	OCCP0	R/W	Output Compare 0/1	XXXXXXXX ${ }_{\text {в }}$
1929 н	Output Compare 0	OCCP0	R/W		XXXXXXXX ${ }_{\text {в }}$
192 A н	Output Compare 1	OCCP1	R/W		XXXXXXXX ${ }_{\text {в }}$
192B н	Output Compare 1	OCCP1	R/W		XXXXXXXX ${ }_{\text {в }}$
192C н	Output Compare 2	OCCP2	R/W	Output Compare 2/3	XXXXXXXX ${ }_{\text {в }}$
192D н	Output Compare 2	OCCP2	R/W		ХХХХХХХХХ в
192E н	Output Compare 3	OCCP3	R/W		XXXXXXXX ${ }_{\text {в }}$
192F н	Output Compare 3	OCCP3	R/W		XXXXXXXX ${ }_{\text {в }}$
1930 to 19FF н	Reserved				
1A00 to 1AFF H	CAN Controller. Refer to section about CAN Controller				
1B00 to 1BFF ${ }^{\text {H }}$	CAN Controller. Refer to section about CAN Controller				
1-00 to 1EFF H	Reserved				
1FF0 н	ROM Correction Address 0	PADR0	R/W	ROM Correction	XXXXXXXX ${ }_{\text {в }}$
1FF1 н	ROM Correction Address 1	PADR0	R/W		XXXXXXXX ${ }_{\text {в }}$
1FF2 н	ROM Correction Address 2	PADR0	R/W		XXXXXXXX ${ }_{\text {в }}$
1FF3 н	ROM Correction Address 3	PADR1	R/W		XXXXXXXX ${ }_{\text {в }}$
1FF4 н	ROM Correction Address 4	PADR1	R/W		XXXXXXXX ${ }_{\text {в }}$
1FF5 н	ROM Correction Address 5	PADR1	R/W		XXXXXXXX ${ }_{\text {в }}$
1FF6 to 1FFF ${ }^{\text {H }}$	Reserved				

Note Initial value of "_" represents unused bit, "X" represents unknown value.
Addresses in the range 0000 н to $00 \mathrm{FF}_{\mathrm{H}}$, which are not listed in the table, are reserved for the primary functions of the MCU. A read access to these reserved addresses results reading " X " and any write access should not be performed.

MB90595 Series

CAN CONTROLLER

The CAN controller has the following features:

- Conforms to CAN Specification Version 2.0 Part A and B
- Supports transmission/reception in standard frame and extended frame formats
- Supports transmitting of data frames by receiving remote frames
- 16 transmitting/receiving message buffers
- 29-bit ID and 8-byte data
- Multi-level message buffer configuration
- Provides full-bit comparison, full-bit mask, acceptance register 0/acceptance register 1 for each message buffer as 1D acceptance mask
- Two acceptance mask registers in either standard frame format or extended frame formats
- Bit rate programmable from $10 \mathrm{Kbits} / \mathrm{s}$ to $2 \mathrm{Mbits} / \mathrm{s}$ (when input clock is at 16 MHz)

List of Control Registers

Address	Register	Abbreviation	Access	Initial Value
000080н	Message buffer valid register	BVALR	R/W	0000000000000000 в
000081н				
000082н	Transmit request register	TREQR	R/W	0000000000000000 в
000083н				
000084н	Transmit cancel register	TCANR	W	0000000000000000 в
000085н				
000086н	Transmit complete register	TCR	R/W	0000000000000000 в
000087н				
000088н	Receive complete register	RCR	R/W	0000000000000000 в
000089н				
00008Ан	Remote request receiving register	RRTRR	R/W	0000000000000000 в
00008Вн				
00008Сн	Receive overrun register	ROVRR	R/W	0000000000000000 в
00008Dн				
00008Ен	Receive interrupt enable register	RIER	R/W	0000000000000000 в
00008Fн				
001B00н	Control status register	CSR	R/W, R	00---000 0----0-1в
001B01н				
001B02н	Last event indicator register	LEIR	R/W	-------- 000-0000в
001B03н				
001B04н	Receive/transmit error counter	RTEC	R	0000000000000000 в
001B05				
001B06н	Bit timing register	BTR	R/W	-1111111 1111111в
001B07H				

(Continued)

MB90595 Series

(Continued)

Address	Register	Abbreviation	Access	Initial Value
001B08н	IDE register	IDER	R/W	XXXXXXXX XXXXXXXX ${ }_{\text {в }}$
001B09н				
001B0Ан	Transmit RTR register	TRTRR	R/W	0000000000000000 в
001B0Вн				
001B0Сн	Remote frame receive waiting register	RFWTR	R/W	XXXXXXXX XXXXXXXX ${ }_{\text {в }}$
001B0D				
001B0Ен	Transmit interrupt enable register	TIER	R/W	0000000000000000 в
001B0F\%				
001B10н	Acceptance mask select register	AMSR	R/W	XXXXXXXX XXXXXXXX
001B11н				
001B12н				ХХХХХХХХХ XXXXXXXXв $^{\text {¢ }}$
001B13н				XXXXXXXX XXXXXXXX ${ }^{\text {B }}$
001B14н	Acceptance mask register 0	AMR0	R/W	XXXXXXXX XXXXXXXX
001B15H				
001B16н				XXXXX--- XXXXXXXX
001B17				
001B18н	Acceptance mask register 1	AMR1	R/W	XXXXXXXX XXXXXXXX
001B19н				
$001 \mathrm{B1A}$ н				XXXXX--- XXXXXXXXB
001B1Bн				XXXXX ${ }^{\text {- }}$ XXXXXXXX

MB90595 Series

List of Message Buffers (ID Registers)

Address	Register	Abbreviation	Access	Initial Value
$\begin{aligned} & \text { 001A00н } \\ & \text { to } \\ & 001 \mathrm{~A} 1 \mathrm{FH} \end{aligned}$	General-purpose RAM	--	R/W	$\begin{gathered} \hline \text { XXXXXXXXB }_{\text {to }} \\ \text { to } \\ \text { XXXXXX } \end{gathered}$
001A20H	ID register 0	IDR0	R/W	XXXXXXXX XXXXXXXXв
001A21н				
001A22н				XXXXX--- XXXXXXXXв
001A23н				
001A24H	ID register 1	IDR1	R/W	XXXXXXXX XXXXXXXX $^{\text {¢ }}$
001A25 ${ }^{\text {H }}$				
001A26н				XXXXX--- XXXXXXXXв
001A27H				
001A28н	ID register 2	IDR2	R/W	XXXXXXXX XXXXXXXX $^{\text {¢ }}$
001A29н				
001A2Aн				XXXXX--- ХХХХХХХХв
001A2Bн				
001A2CH	ID register 3	IDR3	R/W	
001A2D				
001A2Eн				ХХХХХ--- XXXXXXXXв
001A2F ${ }_{\text {H }}$				
001A30н	ID register 4	IDR4	R/W	XXXXXXXX XXXXXXXXв $^{\text {¢ }}$
001A31н				
001A32н				XXXXX--- XXXXXXXX
001A33н				
001A34	ID register 5	IDR5	R/W	XXXXXXXX XXXXXXXX
001A35				
001A36н				XXXXX--- XXXXXXXXB
001A37H				XXXXX--- XXXXXXXX $^{\text {d }}$
001A38н	ID register 6	IDR6	R/W	XXXXXXXX XXXXXXXX $^{\text {¢ }}$
001A39н				
001АЗАн				XXXXX--- XXXXXXXXB $^{\text {d }}$
001A3Вн				
001A3CH	ID register 7	IDR7	R/W	XXXXXXXX XXXXXXXXв
001A3D				
001A3Ен				ХХХХХХ--- XXXXXXXXв
001A3F				

(Continued)

MB90595 Series

(Continued)

Address	Register	Abbreviation	Access	Initial Value
001A40H	ID register 8	IDR8	R/W	
001A41н				
001A42H				ХХХХХ--- ХХХХХХХХв
001A43н				
001A44H	ID register 9	IDR9	R/W	XXXXXXXX XXXXXXXX
001A45 ${ }^{\text {H }}$				
001A46 ${ }^{\text {H }}$				XXXXX--- ХXXXXXXXв $^{\text {¢ }}$
001A47H				
001A48 ${ }^{\text {H }}$	ID register 10	IDR10	R/W	XXXXXXXX XXXXXXXX $^{\text {¢ }}$
001A49н				
001A4Aн				XXXXX--- XXXXXXXXв
001A4Bн				
001A4CH	ID register 11	IDR11	R/W	
001A4Dн				
001A4EH				XXXXX--- XXXXXXXXв
001A4FH				
001A50н	ID register 12	IDR12	R/W	
001A51н				
001A52н				
001A53н				
001A54H	ID register 13	IDR13	R/W	XXXXXXXX XXXXXXXX $^{\text {в }}$
001A55				
001A56 ${ }^{\text {H }}$				XXXXX-- XXXXXXXX
001A57H				XXXXX-- ХХХХХХХХв
001A58H	ID register 14	IDR14	R/W	XXXXXXXX XXXXXXXX $^{\text {¢ }}$
001A59н				
001A5AH				XXXXX XXXXXXXX
001A5Bн				XXXXX--- XXXXXXXXв
001A5CH	ID register 15	IDR15	R/W	XXXXXXXX XXXXXXXXв
001A5D ${ }^{\text {d }}$				
001A5Eн				XXXX XXXXXXXX
001A5FH				XXXXX--- XXXXXXXX $^{\text {b }}$

MB90595 Series

List of Message Buffers (DLC Registers and Data Registers)

Address	Register	Abbreviation	Access	Initial Value
001A60н	DLC register 0	DLCR0	R/W	----XXXX
001A61H				
001A62H	DLC register 1	DLCR1	R/W	----XXXX
001A63н				
001A64н	DLC register 2	DLCR2	R/W	----XXXX
001A65				
001A66H	DLC register 3	DLCR3	R/W	----ХХХХв
001A67H				
001A68 ${ }^{\text {H }}$	DLC register 4	DLCR4	R/W	----XXXXв
001A69н				
001A6AH	DLC register 5	DLCR5	R/W	----XXXXв
001A6Bн				
001A6CH	DLC register 6	DLCR6	R/W	----XXXХв
001A6D				
001A6EH	DLC register 7	DLCR7	R/W	----XXXX
001A6FH				
001A70H	DLC register 8	DLCR8	R/W	----XXXX
001A71 H				
001A72H	DLC register 9	DLCR9	R/W	----XXXX
001A73н				
001A74H	DLC register 10	DLCR10	R/W	----XXXX
001A75H				
001A76 ${ }^{\text {H }}$	DLC register 11	DLCR11	R/W	----XXXX
001A77 ${ }^{\text {H }}$				
001A78H	DLC register 12	DLCR12	R/W	----XXXX
001A79н				
001A7Ан	DLC register 13	DLCR13	R/W	----XXXX
001A7Bн				
001A7CH	DLC register 14	DLCR14	R/W	----XXXX
001A7D				
001A7Eн	DLC register 15	DLCR15	R/W	----XXXX
001A7F ${ }^{\text {d }}$				
$\begin{aligned} & \text { 001А80н } \\ & \text { to } \\ & 001 \mathrm{~A} 87 \mathrm{H} \end{aligned}$	Data register 0 (8 bytes)	DTR0	R/W	$\begin{gathered} \text { XXXXXXXXB }^{\text {to }} \\ \text { XXXXXX } \\ \hline \end{gathered}$

(Continued)

MB90595 Series

(Continued)

Address	Register	Abbreviation	Access	Initial Value
$\begin{gathered} \hline 001 \mathrm{~A} 88 \mathrm{H} \\ \text { to } \\ 001 \mathrm{~A} 8 \mathrm{FH}_{\mathrm{H}} \end{gathered}$	Data register 1 (8 bytes)	DTR1	R/W	$\begin{gathered} \text { XXXXXXXXB } \\ \text { to } \\ \text { XXXXXXXX }^{\text {B }} \end{gathered}$
$\begin{gathered} \text { 001A90н } \\ \text { to } \\ 001 \mathrm{~A} 97 \mathrm{H} \end{gathered}$	Data register 2 (8 bytes)	DTR2	R/W	$\begin{gathered} \text { XXXXXXXXв } \\ \text { to } \\ \text { XXXXXXX } \end{gathered}$
$\begin{gathered} \hline 001 \mathrm{A98H} \\ \text { to } \\ 001 \text { A9Fн } \end{gathered}$	Data register 3 (8 bytes)	DTR3	R/W	$\begin{gathered} \hline \text { XXXXXXXXB } \\ \text { to } \\ \text { XXXXXXX } \end{gathered}$
$001 \mathrm{AAOH}$ to 001AA7H	Data register 4 (8 bytes)	DTR4	R/W	$\begin{gathered} \text { XXXXXXXXB } \\ \text { to } \\ \text { XXXXXXXX } \end{gathered}$
001AA8н to 001AAFH	Data register 5 (8 bytes)	DTR5	R/W	$\begin{gathered} \text { XXXXXXXXв } \\ \text { to } \\ \text { XXXXXXX } \end{gathered}$
001AB0н to 001AB7	Data register 6 (8 bytes)	DTR6	R/W	$\begin{gathered} \text { XXXXXXXXв } \\ \text { to } \\ \text { XXXXXXX } \end{gathered}$
$\begin{gathered} 001 \mathrm{AB8} \text { н } \\ \text { to } \\ 001 \mathrm{ABF}_{\mathrm{H}} \end{gathered}$	Data register 7 (8 bytes)	DTR7	R/W	$\begin{gathered} \text { XXXXXXXXв } \\ \text { to } \\ \text { XXXXXXX } \end{gathered}$
001ACOH to 001AC7H	Data register 8 (8 bytes)	DTR8	R/W	$\begin{gathered} \text { XXXXXXXXв } \\ \text { to } \\ \text { XXXXXXX } \end{gathered}$
$\begin{gathered} 001 \mathrm{ACPH}_{\mathrm{H}} \\ \text { to } \\ 001 \mathrm{ACFH}_{\mathrm{H}} \end{gathered}$	Data register 9 (8 bytes)	DTR9	R/W	$\begin{gathered} \text { XXXXXXXXв } \\ \text { to } \\ \text { XXXXXXX } \end{gathered}$
$\begin{gathered} 001 \mathrm{ADOH}_{\mathrm{H}} \\ \text { to } \\ 001 \mathrm{AD7H} \end{gathered}$	Data register 10 (8 bytes)	DTR10	R/W	$\begin{gathered} \text { XXXXXXXXв } \\ \text { to } \\ \text { XXXXXXX } \end{gathered}$
001AD8H to 001ADFH	Data register 11 (8 bytes)	DTR11	R/W	$\begin{gathered} \text { XXXXXXXXB } \\ \text { to } \\ \text { XXXXXXX } \end{gathered}$
001AEOH to 001AE7H	Data register 12 (8 bytes)	DTR12	R/W	$\begin{gathered} \hline \text { XXXXXXXXB } \\ \text { to } \\ \text { XXXXXXX } \end{gathered}$
001AE8н to 001AEFH	Data register 13 (8 bytes)	DTR13	R/W	$\begin{gathered} \text { XXXXXXXXB } \\ \text { to } \\ \text { XXXXXXX } \end{gathered}$
001AFOн to 001AF7H	Data register 14 (8 bytes)	DTR14	R/W	$\begin{gathered} \hline \text { XXXXXXXXB } \\ \text { to } \\ \text { XXXXXXX } \end{gathered}$
001AF8н to 001AFFH	Data register 15 (8 bytes)	DTR15	R/W	$\begin{gathered} \text { XXXXXXXXB } \\ \text { to } \\ \text { XXXXXXXX }^{\prime} \end{gathered}$

MB90595 Series

INTERRUPT MAP

Interrupt cause	${ }^{2}{ }^{2} \mathrm{OS}$ clear	Interrupt vector		Interrupt control register	
		Number	Address	Number	Address
Reset	N/A	\# 08	FFFFDCH	-	-
INT9 instruction	N/A	\# 09	FFFFD8н	-	-
Exception	N/A	\# 10	FFFFD4н	-	-
CAN RX	N/A	\# 11	FFFFD0н	ICR00	0000B0н
CAN TX/NS	N/A	\# 12	FFFFCCH		
External Interrupt (INT0/INT1)	*1	\# 13	FFFFC8H	ICR01	0000B1н
Time Base Timer	N/A	\# 14	FFFFC4H		
16-bit Reload Timer 0	*1	\# 15	FFFFCOH	ICR02	0000В2н
A/D Converter	*1	\# 16	FFFFBCH		
I/O Timer	N/A	\# 17	FFFFB8	ICR03	0000B3н
External Interrupt (INT2/INT3)	*1	\# 18	FFFFB4 ${ }_{\text {H }}$		
Serial I/O	*1	\# 19	FFFFB0н	ICR04	0000B4 ${ }^{\text {H }}$
External Interrupt (INT4/INT5)	*1	\# 20	FFFFACH		
Input Capture 0	*1	\# 21	FFFFA8	ICR05	0000B5
PPG 0/1	N/A	\# 22	FFFFA4 ${ }_{\text {н }}$		
Output Compare 0	*1	\# 23	FFFFA0н	ICR06	0000B6н
PPG 2/3	N/A	\# 24	FFFF9C ${ }_{\text {H }}$		
External Interrupt (INT6/INT7)	*1	\# 25	FFFF98	ICR07	0000B7H
Input Capture 1	*1	\# 26	FFFF94н		
PPG 4/5	N/A	\# 27	FFFF90н	ICR08	0000B8н
Output Compare 1	*1	\# 28	FFFF8C ${ }_{\text {H }}$		
PPG 6/7	N/A	\# 29	FFFF88	ICR09	0000B9н
Input Capture 2	*1	\# 30	FFFF84 ${ }_{\text {н }}$		
PPG 8/9	N/A	\# 31	FFFF80н	ICR10	0000ВАн
Output Compare 2	*1	\# 32	FFFF7C ${ }_{\text {н }}$		
Input Capture 3	*1	\# 33	FFFF78	ICR11	0000ВВн
PPG A/B	N/A	\# 34	FFFF74 ${ }_{\text {¢ }}$		
Output Compare 3	*1	\# 35	FFFF70н	ICR12	0000BCH
16-bit Reload Timer 1	*1	\# 36	FFFF6C ${ }_{\text {H }}$		
UART 0 RX	*2	\# 37	FFFF68н	ICR13	0000BD
UART 0 TX	*1	\# 38	FFFF64н		
UART 1 RX	*2	\# 39	FFFF60н	ICR14	0000ВЕн
UART 1 TX	*1	\# 40	FFFF5C ${ }_{\text {н }}$		
Flash Memory	N/A	\# 41	FFFF58	ICR15	0000BF\%
Delayed interrupt	N/A	\# 42	FFFF54		

MB90595 Series

*1: The interrupt request flag is cleared by the $I^{2} O S$ interrupt clear signal.
*2: The interrupt request flag is cleared by the $\mathrm{I}^{2} \mathrm{OS}$ interrupt clear signal. A stop request is available.
N / A :The interrupt request flag is not cleared by the $\mathrm{I}^{2} \mathrm{OS}$ interrupt clear signal.
Note: For a peripheral module with two interrupt causes for a single interrupt number, both interrupt request flags are cleared by the $\mathrm{I}^{2} \mathrm{OS}$ interrupt clear signal.

Note: At the end of $I^{2} O S$, the $I^{2} O S$ clear signal will be asserted for all the interrupt flags assigned to the same interrupt number. If one interrupt flag starts the $\mathrm{I}^{2} \mathrm{OS}$ and in the meantime another interrupt flag is set by hardware event, the later event is lost because the flag is cleared by the $\mathrm{I}^{2} \mathrm{OS}$ clear signal caused by the first event. So it is recommended not to use the $\mathrm{I}^{2} \mathrm{OS}$ for this interrupt number.

Note: If $I^{2} O S$ is enabled, $I^{2} O S$ is initiated when one of the two interrupt signals in the same interrupt control register (ICR) is asserted. This means that different interrupt sources share the same ${ }^{2}$ OS Descriptor which should be unique for each interrupt source.. For this reason, when one interrupt source uses the $\mathrm{I}^{2} \mathrm{OS}$, the other interrupt should be disabled.

MB90595 Series

- ELECTRICAL CHARACTERISTICS

1. Absolute Maximum Ratings

Parameter	Symbol	Rated Value		Units	Remarks
		Min.	Max.		
Power supply voltage	Vcc	Vss - 0.3	Vss +6.0	V	
	AV ${ }_{\text {cc }}$	Vss-0.3	Vss +6.0	V	
	AVR \pm	Vss - 0.3	Vss +6.0	V	AVcc \geq AVR \pm, AVR $+\geq$ AVR-
	DVcc	Vss - 0.3	Vss +6.0	V	V $\mathrm{cc} \geq$ DV cc
Input voltage	V	Vss - 0.3	Vss + 6.0	V	*2
Output voltage	Vo	Vss-0.3	Vss +6.0	V	*2
Clamp Current	Iclamp	-2.0	2.0	mA	
"L" level max. output current	loc1	-	15	mA	Normal outputs
"L" level avg. output current	lolav1	-	4	mA	Normal outputs, average value
"L" level max. output current	loL2	-	40	mA	High current outputs
"L" level avg. output current	lolav2	-	30	mA	High current outputs, average value
"L" level max. overall output current	Elob1	-	100	mA	Sum of all normal outputs
"L" level max. overall output current	EloL2		330	mA	Sum of all high current outputs
"L" level avg. overall output current	Elolav1	-	50	mA	Sum of all normal outputs, average value
"L" level avg. overall output current	Elolav2		250	mA	Sum of all high current outputs, average value
"H" level max. output current	Іон1	-	-15	mA	Normal outputs
"H" level avg. output current	lohav1	-	-4	mA	Normal outputs, average value
"H" level max. output current	Іон2	-	-40	mA	High current outputs
"H" level avg. output current	Іоhav2	-	-30	mA	High current outputs, average value
"H" level max. overall output current	£ ${ }_{\text {loh1 }}$	-	-100	mA	Sum of all normal outputs
"H" level max. overall output current	\10н2	-	-330	mA	Sum of all high current outputs
"H" level avg. overall output current	Гlohav1	-	-50	mA	Sum of all normal outputs, average value
"H" level avg. overall output current	Гlohav2	-	-250	mA	Sum of all high current outputs, average value
Power consumption	PD	-	500	mW	MB90F598
			400	mW	MB90598
Operating temperature	TA	-40	+85	${ }^{\circ} \mathrm{C}$	
Storage temperature	Tsta	-55	+150	${ }^{\circ} \mathrm{C}$	

[^1]
MB90595 Series

2. Recommended Conditions

Parameter	Symbol	Rated Value			Units	Remarks
		Min.	Typ.	Max.		
Power supply voltage	Vcc AVcc	4.5	5.0	5.5	V	Under normal operation
		3 V		5.5	V	Maintains RAM data in stop mode
Input H voltage	$\mathrm{V}_{\text {Hs }}$	0.8 Vcc		Vcc +0.3	V	CMOS hysteresis input pin
	Vінм	Vcc-0.3		V cc +0.3	V	MD input pin
Input L voltage	Vıs	Vss - 0.3		0.2 Vcc	V	CMOS hysteresis input pin
	Vim	Vss - 0.3		Vss +0.3	V	MD input pin
Smooth capacitor	Cs	0.022	0.1	1.0	$\mu \mathrm{F}$	Use a ceramic capacitor or capacitor of better AC characteristics. Capacitor at the VCC should be greater than this capacitor.
Operating temperature	TA	-40		+85	${ }^{\circ} \mathrm{C}$	

- C Pin Connection Diagram

MB90595 Series

3. DC Characteristics

Parameter	Symbol	Pin	Condition	Value			Units	Remarks
				Min.	Typ.	Max.		
Output H voltage	Vон1	Normal outputs	$\begin{aligned} & \begin{array}{r} \mathrm{Vcc} \end{array}=4.5 \mathrm{~V}, \\ & \mathrm{I} \mathrm{OH} 1=-4.0 \mathrm{~mA} \end{aligned}$	Vcc-0.5	-	-	V	
Output H voltage	Vон2	High current outputs	$\begin{gathered} \mathrm{V} \mathrm{cc}=4.5 \mathrm{~V}, \\ \mathrm{I} \mathrm{OH} 2=-30.0 \mathrm{~mA} \end{gathered}$	$\mathrm{Vcc}-0.5$	-	-	V	
Output L voltage	Volı	Normal outputs	$\begin{aligned} & \hline \mathrm{Vcc}=4.5 \mathrm{~V}, \\ & \text { loL1 }=4.0 \mathrm{~mA} \end{aligned}$	-	-	0.4	V	
Output L voltage	Vol2	High current outputs	$\begin{gathered} \mathrm{V} \mathrm{cc}=4.5 \mathrm{~V}, \\ \mathrm{loL2}=30.0 \mathrm{~mA} \end{gathered}$	-	-	0.5	V	
Input leak current	ILL		$\begin{gathered} \mathrm{V}_{\mathrm{cc}}=5.5 \mathrm{~V}, \\ \mathrm{~V}_{\mathrm{ss}}<\mathrm{V}_{\mathrm{l}}<\mathrm{V}_{\mathrm{cc}} \end{gathered}$	-5	-	5	$\mu \mathrm{A}$	
Power supply current		Vcc	$\mathrm{V}_{\mathrm{cc}}=5.0 \mathrm{~V} \pm 10 \%$, Internal frequency: 16 MHz , At normal operating	-	TBD	TBD	mA	MB90598
	Icc			-	60	90	mA	MB90F598
			V cc $=5.0 \mathrm{~V} \pm 10 \%$, Internal frequency: 16 MHz , At sleep	-	TBD	TBD	mA	MB90598
	Icos			-	15	23	mA	MB90F598
			$\mathrm{V}_{\mathrm{cc}}=5.0 \mathrm{~V} \pm 1 \%$, Internal frequency: 2 MHz , At timer mode	-	TBD	TBD	mA	MB90598
	Icts			-	-	0.6	mA	MB90F598
	Icch		$\begin{aligned} & \mathrm{Vcc}=5.0 \mathrm{~V} \pm 10 \%, \\ & \text { At stop, } \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \end{aligned}$	-	TBD	TBD	$\mu \mathrm{A}$	MB90598
				-	-	20	$\mu \mathrm{A}$	MB90F598
Input capacity	Cin	Other than C, $\mathrm{A} \mathrm{V}_{\mathrm{cc}}, \mathrm{AV}$ ss, AVR+, AVR-, Vcc, Vss, DVcc, DVss	-	-	10	80	pF	

*: Current values are tentative. They are subject to change without notice according to improvements in the characteristics. The power supply current testing conditions are when using the external clock.

MB90595 Series

4. AC Characteristics

(1) Clock Timing

$$
\left(\mathrm{V}_{\mathrm{cc}}=5.0 \mathrm{~V} \pm 10 \%, \mathrm{~V}_{\mathrm{ss}}=\mathrm{AV} \text { ss }=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C}\right)
$$

Parameter	Symbol	Pin	Value			Units	Remarks
			Min.	Typ.	Max.		
Oscillation frequency	fc	$\mathrm{X} 0, \mathrm{X} 1$	3	-	16	MHz	
Oscillation cycle time	tcyL	$\mathrm{X} 0, \mathrm{X} 1$	62.5	-	333	ns	
Frequency deviation with PLL *	$\Delta \mathrm{f}$	-	-	-	5	$\%$	
Input clock pulse width	$\mathrm{PwH}, \mathrm{PwL}$	X 0	10	-	-	ns	Duty ratio is about 30 to 70%.
Input clock rise and fall time	tcR, tcF	$\mathrm{X0}$	-	-	5	ns	When using external clock
Machine clock frequency	fcp	-	1.5	-	16	MHz	
Machine clock cycle time	tcp	-	62.5	-	666	ns	

*: Frequency deviation indicates the maximum frequency difference from the target frequency when using a multiplied clock.

$$
\Delta f=\frac{|\alpha|}{f 0} \times 100 \%
$$

Central frequency

$$
\begin{aligned}
& +\alpha \\
& \text { + } \mathrm{fo}
\end{aligned}
$$

- Clock Timing

Example of Oscillation circuit

Make	Oscillator	Frequency $(\mathbf{M H z})$	$\mathbf{C 1}(\mathbf{p F})$	$\mathbf{C 2}(\mathbf{p F})$	$\mathbf{R}(\Omega)$
TBD	TBD	4 MHz	TBD	TBD	TBD

MB90595 Series

- Ocsillation clock frequency and Machine clock frequency

AC characteristics are set to the measured reference voltage values below.

- Input signal waveform Hysteresis Input Pin

- Output signal waveform

Output Pin

MB90595 Series

(2) Reset and Hardware Standby Input

$\left(\mathrm{V}_{\mathrm{cc}}=5.0 \mathrm{~V} \pm 10 \%, \mathrm{~V}_{\mathrm{ss}}=\mathrm{AV} \mathrm{Vs}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}\right.$ to $\left.+85^{\circ} \mathrm{C}\right)$

Parameter	Symbol	Pin	Value		Units	Remarks
			Min.	Max.		
Reset input time						
HastL		$\overline{R S T}$	16 tcP	-	ns	

"tcp" represents one cycle time of the machine clock.
Any reset can not fully initialize the Flash Memory if it is performing the automatic algorithm.

(3)Power On Reset

$\left(\mathrm{V}\right.$ cc $=5.0 \mathrm{~V} \pm 10 \%, \mathrm{~V}_{\text {ss }}=\mathrm{AV} \mathrm{Sss}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $\left.+85^{\circ} \mathrm{C}\right)$							
Parameter	Symbol	Pin	Test Condition	Value		Units	Remarks
				Min.	Max.		
Power on rise time	tr	Vcc	-	0.05	30	ms	
Power off time	toff	Vcc		50	-	ms	Due to repetitive operation

If you change the power supply voltage too rapidly, a power on reset may occur. We recommend that you startup smoothly by restraining voltages when changing the power supply voltage during operation, as shown in the figure below. Perform while not using the PLL clock. However, if voltage drops are within $1 \mathrm{mV} / \mathrm{sec}$, you can operate while using the PLL clock.

MB90595 Series

(4) UARTO/1, Serial I/O Timing

Parameter	Symbol	Pin Symbol	Test Condition	Value		Units	Remarks
				Min.	Max.		
Serial clock cycle time	tscyc	SCK0 to SCK2	Internal clock operation output pins are $C L=80 \mathrm{pF}+1 \mathrm{TTL}$.	8 tcp	-	ns	
SCK $\downarrow \Rightarrow$ SOT delay time	tsıov	SCK0 to SCK2, SOTO to SOT2		-80	80	ns	
Valid SIN \Rightarrow SCK \uparrow	tivsh	SCK0 to SCK2, SIN0 to SIN2		100	-	ns	
SCK $\uparrow \Rightarrow$ Valid SIN hold time	tshix	SCK0 to SCK2, SIN0 to SIN2		60	-	ns	
Serial clock "H" pulse width	tshsL	SCK0 to SCK2	External clock operation output pins are $\mathrm{C}=80 \mathrm{pF}+1 \mathrm{TTL}$.	4 tcp	-	ns	
Serial clock "L" pulse width	tsısH	SCK0 to SCK2		4 tcp	-	ns	
SCK $\downarrow \Rightarrow$ SOT delay time	tstov	SCK0 to SCK2, SOT0 to SOT2		-	150	ns	
Valid SIN \Rightarrow SCK \uparrow	tivsh	$\begin{array}{\|l} \hline \text { SCK0 to SCK2, } \\ \text { SIN0 to SIN2 } \end{array}$		60	-	ns	
SCK $\uparrow \Rightarrow$ Valid SIN hold time	tshix	SCK0 to SCK2, SIN0 to SIN2		60	-	ns	

Note:

1. AC characteristic in CLK synchronized mode.
2. CL is load capacity value of pins when testing.
3. tcp is the machine cycle (Unit: ns).

- Internal Shift Clock Mode

MB90595 Series

- External Shift Clock Mode

(5) Timer Related Resource Input Timing

Parameter	Symbol	Pin	Condition	Value		Units	Remarks
				Min.	Max.		
Input pulse width	tтіw	TIN0, TIN1	-	4 tcp	-	ns	
	tTwL	IN0 to IN3					

- Timer Input Timing

MB90595 Series

(6) Trigger Input Timing

$\left(\mathrm{V}\right.$ cc $=5.0 \mathrm{~V} \pm 10 \%, \mathrm{~V}_{\text {ss }}=\mathrm{AV}_{\text {ss }}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $\left.+85^{\circ} \mathrm{C}\right)$							
Parameter	Symbol	Pin	Condition	Value		Units	Remarks
				Min.	Max.		
Input pulse width	ttrgh ttrgl	INT0 to INT7, ADTG	-	5 top	-	ns	

- Trigger Input Timing

MB90595 Series

5. A/D Converter

$\left(\mathrm{V}_{\mathrm{cc}}=\mathrm{AV}\right.$ cc $=5.0 \mathrm{~V} \pm 10 \%, \mathrm{~V}_{\mathrm{ss}}=\mathrm{AV} \mathrm{Vs}=0 \mathrm{~V}, 3.0 \mathrm{~V} \leq \mathrm{AVR}_{+}-\mathrm{AVR}-, \mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $\left.+85^{\circ} \mathrm{C}\right)$

Parameter	Symbol	Pin	Value			Units	Remarks
			Min.	Typ.	Max.		
Resolution	-	-	-		10	bit	
Conversion error	-	-	-	-	± 5.0	LSB	
Nonlinearity error	-	-	-	-	± 2.5	LSB	
Differential nonlinearity error	-	-	-	-	± 1.9	LSB	
Zero reading voltage	Vot	AN0 to AN7	AVR- 3.5	AVR- +0.5	AVR-+4.5	mV	
Full scale reading voltage	Vfst	AN0 to AN7	$\mathrm{AVR}_{+}-6.5$	$\mathrm{AVR}_{+}-1.5$	$\mathrm{AVR}_{+}+1.5$	mV	
Conversion time	-	-	-	352tcp	-	ns	
Sampling time	-	-	-	64 tcp	-	ns	
Analog port input current	Iain	AN0 to AN7	-10	-	10	$\mu \mathrm{A}$	
Analog input voltage range	Vain	AN0 to AN7	AVR-	-	AVR+	V	
Reference voltage range	-	AVR+	AVR-+ 2.7	-	AV ${ }_{\text {cc }}$	V	
	-	AVR-	0	-	$\mathrm{AVR}_{+}-2.7$	V	
Power supply current	I_{A}	AVcc	-	5	-	mA	
	ІА	AVcc	-	-	5	$\mu \mathrm{A}$	*
Reference voltage current	IR	AVR_{+}	200	400	600	$\mu \mathrm{A}$	
	ІRH	AVR+	-	-	5	$\mu \mathrm{A}$	*
Offset between input channels	-	AN0 to AN7	-	-	4	LSB	

* : When not operating A / D converter, this is the current $\left(V_{c c}=A V c c=A V R_{+}=5.0 \mathrm{~V}\right)$ when the CPU is stopped.

MB90595 Series

6. A/D Converter Glossary

Resolution: Analog changes that are identifiable with the A/D converter
Linearity error: The deviation of the straight line connecting the zero transition point ("00 00000000 " \leftrightarrow "00 00000001 ") with the full-scale transition point ("11 1111 1110" \leftrightarrow " 1111111111 ") from actual conversion characteristics
Differential linearity error: The deviation of input voltage needed to change the output code by 1 LSB from the theoretical value

Total error: The total error is defined as a difference between the actual value and the theoretical value, which includes zero-transition error/full-scale transition error and linearity error.

(Continued)

MB90595 Series

(Continued)

7. Notes on Using A/D Converter

Select the output impedance value for the external circuit of analog input according to the following conditions. Output impedance values of the external circuit of $15 \mathrm{k} \Omega$ or lower are recommended.

When capacitors are connected to external pins, the capacitance of several thousand times the internal capacitor value is recommended to minimized the effect of voltage distribution between the external capacitor and internal capacitor.
When the output impedance of the external circuit is too high, the sampling period for analog voltages may not be sufficient (sampling period $=4.00 \mu \mathrm{~s}$ @machine clock of 16 MHz).

- Equipment of analog input circuit model

Note: Listed values must be considered as standards.

- Error

The smaller the | AVR ${ }_{+}$- AVR ${ }_{-} \mid$, the greater the error would become relatively.

MB90595 Series

■ INSTRUCTIONS (340 INSTRUCTIONS)

Table 1 Explanation of Items in Tables of Instructions

Item	Meaning
Mnemonic	Upper-case letters and symbols: Represented as they appear in assembler. Lower-case letters: Replaced when described in assembler. Numbers after lower-case letters: Indicate the bit width within the instruction code.
\#	Indicates the number of bytes.
	Indicates the number of cycles. m : When branching n : When not branching See Table 4 for details about meanings of other letters in items.
RG	Indicates the number of accesses to the register during execution of the instruction. It is used calculate a correction value for intermittent operation of CPU.
B	Indicates the correction value for calculating the number of actual cycles during execution of the instruction. (Table 5) The number of actual cycles during execution of the instruction is the correction value summed with the value in the " \sim " column.
Operation	Indicates the operation of instruction.
LH	Indicates special operations involving the upper 8 bits of the lower 16 bits of the accumulator. Z : Transfers " 0 ". X : Extends with a sign before transferring. - : Transfers nothing.
AH	Indicates special operations involving the upper 16 bits in the accumulator. * : Transfers from AL to AH. - : No transfer. Z : Transfers 00 H to AH . X : Transfers 00 н or FFH to AH by signing and extending AL.
1	Indicates the status of each of the following flags: I (interrupt enable), S (stack), T (sticky bit), N (negative), Z (zero), V (overflow), and C (carry). * : Changes due to execution of instruction. - : No change. S: Set by execution of instruction. R : Reset by execution of instruction.
S	
T	
N	
Z	
V	
C	
RMW	Indicates whether the instruction is a read-modify-write instruction. (a single instruction that reads data from memory, etc., processes the data, and then writes the result to memory.) * : Instruction is a read-modify-write instruction. - : Instruction is not a read-modify-write instruction. Note: A read-modify-write instruction cannot be used on addresses that have different meanings depending on whether they are read or written.

- Number of execution cycles

The number of cycles required for instruction execution is acquired by adding the number of cycles for each instruction, a corrective value depending on the condition, and the number of cycles required for program fetch. Whenever the instruction being executed exceeds the two-byte (word) boundary, a program on an internal ROM connected to a 16 -bit bus is fetched. If data access is interfered with, therefore, the number of execution cycles is increased.
For each byte of the instruction being executed, a program on a memory connected to an 8 -bit external data bus is fetched. If data access in interfered with, therefore, the number of execution cycles is increased. When a general-purpose register, an internal ROM, an internal RAM, an internal I/O device, or an external bus is accessed during intermittent CPU operation, the CPU clock is suspended by the number of cycles specified by the CG1/0 bit of the low-power consumption mode control register. When determining the number of cycles required for instruction execution during intermittent CPU operation, therefore, add the value of the number of times access is done \times the number of cycles suspended as the corrective value to the number of ordinary execution cycles.

Table 2 Explanation of Symbols in Tables of Instructions

Symbol	Meaning
A	32-bit accumulator The bit length varies according to the instruction. Byte : Lower 8 bits of AL Word : 16 bits of AL Long : 32 bits of AL and AH
AH	Upper 16 bits of A Lower 16 bits of A
SP	Stack pointer (USP or SSP)
PC	Program counter
PCB	Program bank register
DTB	Data bank register
ADB	Additional data bank register
SSB	System stack bank register
USB	User stack bank register
SPB	Current stack bank register (SSB or USB)
DPR	Direct page register
brg1	DTB, ADB, SSB, USB, DPR, PCB, SPB
brg2	DTB, ADB, SSB, USB, DPR, SPB
Ri	R0, R1, R2, R3, R4, R5, R6, R7
RWi	RW0, RW1, RW2, RW3, RW4, RW5, RW6, RW7
RWj	RW0, RW1, RW2, RW3
RLi	RL0, RL1, RL2, RL3
dir	Compact direct addressing
addr16 addr24 ad24 0 to 15 ad24 16 to 23	Direct addressing Physical direct addressing Bit 0 to bit 15 of addr24 Bit 16 to bit 23 of addr24
io	I/O area (000000 to 0000FFh)
imm4 imm8 imm16 imm32 ext (imm8)	4-bit immediate data 8-bit immediate data 16-bit immediate data 32-bit immediate data 16-bit data signed and extended from 8-bit immediate data
$\begin{gathered} \hline \text { disp8 } \\ \text { disp16 } \end{gathered}$	8-bit displacement 16-bit displacement
bp	Bit offset
$\begin{aligned} & \text { vct4 } \\ & \text { vct8 } \end{aligned}$	Vector number (0 to 15) Vector number (0 to 255)
()b	Bit address
rel	PC relative addressing
$\begin{aligned} & \text { ear } \\ & \text { eam } \end{aligned}$	Effective addressing (codes 00 to 07) Effective addressing (codes 08 to 1F)
rlst	Register list

MB90595 Series

Table 3 Effective Address Fields

Code	Notation			Address format	Number of bytes in address extension *
00	R0	RW0	RLO	Register direct	
01	R1	RW1	(RLO)		
02	R2	RW2	RL1	"ea" corresponds to byte, word, and	
03	R3	RW3	(RL1)	long-word types, starting from the left	
04	R4	RW4	RL2		-
05	R5	RW5	(RL2)		
06	R6	RW6	RL3		
07	R7	RW7	(RL3)		
08	$\begin{aligned} & \text { @RW0 } \\ & \text { @RW1 } \\ & \text { @RW2 } \\ & \text { @RW3 } \end{aligned}$			Register indirect	
09					0
0A					0
0B					
OC	@RW0 + @RW1 + @RW2 + @RW3 +			Register indirect with post-increment	
0D					
OE					0
0F					
10	@RW0 + disp8 @RW1 + disp8 @RW2 + disp8 @RW3 + disp8 @RW4 + disp8 @RW5 + disp8 @RW6 + disp8 @RW7 + disp8			Register indirect with 8-bit	
11				displacement	
12					
13					1
14					1
15					
16					
17					
18	@RW0 + disp16			Register indirect with 16-bit	
19	$@ R W 1+$ disp16$@ R W 2+$ disp16			displacement	2
1A					2
1B					
1 C	@RW0 + RW7			Register indirect with index	0
1D	@RW1 + RW7			Register indirect with index	0
1E	@PC + disp16addr16			PC indirect with 16-bit displacement	2
1F				Direct address	2

Note : The number of bytes in the address extension is indicated by the " + " symbol in the "\#" (number of bytes) column in the tables of instructions.

MB90595 Series

Table 4 Number of Execution Cycles for Each Type of Addressing

Code	Operand	(a)	Number of register accesses for each type of addressing
		Number of execution cycles for each type of addressing	
00 to 07	Ri RWi RLi	Listed in tables of instructions	Listed in tables of instructions
08 to 0B	@RWj	2	1
OC to OF	@RWj +	4	2
10 to 17	@RWi + disp8	2	1
18 to 1B	@RWj + disp16	2	1
$\begin{aligned} & 1 \mathrm{C} \\ & 1 \mathrm{D} \\ & 1 \mathrm{E} \\ & 1 \mathrm{~F} \end{aligned}$	@RW0 + RW7 @RW1 + RW7 @PC + disp16 addr16	$\begin{aligned} & \hline 4 \\ & 4 \\ & 2 \\ & 1 \end{aligned}$	$\begin{aligned} & \hline 2 \\ & 2 \\ & 0 \\ & 0 \end{aligned}$

Note : "(a)" is used in the " \sim " (number of states) column and column B (correction value) in the tables of instructions.
Table 5 Compensation Values for Number of Cycles Used to Calculate Number of Actual Cycles

Operand		(b) byte		(c) word		(d) long	
		Access	Cycles	Access	Cycles	Access	
Internal register	+0	1	+0	1	+0	2	
Internal memory even address	+0	1	+0	1	+0	2	
Internal memory odd address	+0	1	+2	2	+4	4	
Even address on external data bus (16 bits)	+1	1	+1	1	+2	2	
Odd address on external data bus (16 bits)	+1	1	+4	2	+8	4	
External data bus (8 bits)	+1	1	+4	2	+8	4	

Notes: • "(b)", "(c)", and "(d)" are used in the " \sim " (number of states) column and column B (correction value) in the tables of instructions.

- When the external data bus is used, it is necessary to add in the number of wait cycles used for ready input and automatic ready.

Table 6 Correction Values for Number of Cycles Used to Calculate Number of Program Fetch Cycles

Instruction	Byte boundary	Word boundary
Internal memory	-	+2
External data bus (16 bits)	-	+3
External data bus (8 bits)	+3	-

Notes: • When the external data bus is used, it is necessary to add in the number of wait cycles used for ready input and automatic ready.

- Because instruction execution is not slowed down by all program fetches in actuality, these correction values should be used for "worst case" calculations.

MB90595 Series

Table 7 Transfer Instructions (Byte) [41 Instructions]

	Mnemonic	\#	\sim	RG	B	Operation	LH	H	AH	1	s		T	N	z		v c	RMw
MOV	A, dir	2	3	0	(b)	byte $($ A $) \leftarrow$ (dir)	Z	Z										
MOV	A, addr16	3	4	0	(b)	byte (A) \leftarrow (addr16)	Z	Z		-	-		-					
MOV	A, Ri	1	2	1	0	byte $(\mathrm{A}) \leftarrow(\mathrm{Ri})$	Z	Z		-	-		-	*			-	-
MOV	A, ear	2	2	1	0	byte $($ A $) \leftarrow$ (ear)	z	Z		-	-		-	*			-	-
MOV	A, eam	2+	3+ (a)	0	(b)	byte $(A) \leftarrow($ eam $)$	z	Z		-	-		-	*			-	-
MOV	A, io	2	3	0	(b)	byte $(\mathrm{A}) \leftarrow$ (io)	Z			-	-		-	*			-	-
MOV	A, \#imm8	2	2	0	0	byte $(A) \leftarrow$ imm8	z			-	-		-	*			-	-
MOV	A, @A	2	3	0	(b)	byte $(\mathrm{A}) \leftarrow((\mathrm{A})$)				-	-		-					-
MOV	A, @RLi+disp8	3	10	2	(b)	byte $(\mathrm{A}) \leftarrow((\mathrm{RLL})+$ disp8)	Z			-			-				-	-
MOVN	A, \#imm4	1	1	0	0	byte $(\mathrm{A}) \leftarrow$ imm4	Z			-			-	R			- -	-
MOVX	A, dir	2	3	0	(b)	byte $($ A $) \leftarrow$ (dir)				-			-					-
MOVX	A, addr16	3	4	0	(b)	byte (A) \leftarrow (addr16)	X			-	-		-	*				-
MOVX	A, Ri	2	2	1)	byte $(\mathrm{A}) \leftarrow(\mathrm{Ri})$	X			-	-		-	*			-	-
MOVX	A, ear	2	2	1	(byte (A) \leftarrow (ear)	X			-	-		-					-
MOVX	A, eam	2+	$3+$ (a)	0	(b)	byte $(A) \leftarrow($ eam $)$	X			-	-		-	*				-
MOVX	A, io	2	3	0	(b)	byte (A) \leftarrow (io)	X			-	-		-					
MOVX	A, \#imm8	2	2	0)	byte (A) \leftarrow imm8	X			-	-		-				-	-
MOVX	A, @A	2	3	0	(b)	byte $(\mathrm{A}) \leftarrow((\mathrm{A})$)	x			-	-		-				-	-
MOVX	A,@RWi+disp8	2		1	(b)	byte $(\mathrm{A}) \leftarrow(($ RWi) $)$ disp8)	x			-	-		-					-
MOVX	A, @RLi+disp8	3	10	2	(b)	byte $(\mathrm{A}) \leftarrow((\mathrm{RLi})+$ disp8)	X			-			-			-	- -	-
MOV	dir, A	2	3	0	(b)	byte (dir) $\leftarrow($ A $)$				-			-					-
MOV	addr16, A	3	4	0	(b)	byte (addr16) \leftarrow (A)				-	-		-					-
MOV	Ri, A	1	2	1	0	byte (Ri) $\leftarrow(\mathrm{A})$			-	-	-		-					-
MOV	ear, A	2	(a)		(b)	byte (ear) $\leftarrow(\mathrm{A})$				-	-		-					-
MOV	eam, A	$2+$	$3+$ (a)	0	(b)	byte (eam) $\leftarrow(A)$				-			-					
MOV	io, A	2	10	0	(b)	byte (io) $\leftarrow(\mathrm{A})$				-	-		-					
MOV	@RLi+disp8, A	3	10	2	(b)	byte ((RLi) + disp8) $\leftarrow(\mathrm{A})$				-	-		-				-	
MOV	Ri, ear	2	3	2	0	byte (Ri) \leftarrow (ear)				-	-		-				-	
MOV	Ri, eam	2+	4+ (a)		(b)	byte $($ Ri) \leftarrow (eam)				-	-		-				-	
MOV	ear, Ri	2	4	2	0	byte (ear) \leftarrow (Ri)				-	-		-				-	
MOV	eam, Ri	$2+$	$5+$ (a)	1	(b)	byte (eam) \leftarrow (Ri)				-	-		-			-	-	
MOV MOV	Ri, \#mm8 io, \#imm8	$\begin{aligned} & 2 \\ & 3 \end{aligned}$	2	1	(b)	byte (Ri) \leftarrow imm8 byte (io) \leftarrow imm8	-		-	-	-		$-$	-	-	-	-	-
MOV	dir, \#imm8	3	5	0	(b)	byte (dir) \leftarrow imm8				-	-		-	-	-		-	-
MOV	ear, \#imm8	3	2	1	0	byte (ear) \leftarrow imm8				-	-		-	*			-	-
MOV	eam, \#imm8	3+	4+ (a)	0	(b)	byte $($ eam $) \leftarrow$ imm8			-	-	-		-	-	-	-	- -	-
MOV /MOV	@AL, AH @A, T	2	3	0	(b)	byte $($ (A)) $\leftarrow($ (AH)	-			-	-			*		-	-	-
XCH	A, ear	2	4	2	0	byte $(\mathrm{A}) \leftrightarrow($ ear $)$	z		-	-	-		-	-	-		-	
XCH	A, eam	$2+$	$5+$ (a)	0	$2 \times$ (b)	byte (A) \leftrightarrow (eam)	Z	Z	-	-	-		-	-	-		- -	-
XCH	Ri, ear	2	7	4	0	byte (Ri) \leftrightarrow (ear)	-		-	-	-		-	-	-		- -	-
XCH	Ri, eam	2+	9+ (a)	2	$2 \times$ (b)	byte (Ri) \leftrightarrow (eam)	-		-	-	-		-	-	-		- -	-

Note : For an explanation of "(a)" to "(d)", refer to Table 4, "Number of Execution Cycles for Each Type of Addressing," and Table 5, "Correction Values for Number of Cycles Used to Calculate Number of Actual Cycles."

MB90595 Series

Table 8 Transfer Instructions (Word/Long Word) [38 Instructions]

Mnemonic	\#	~	RG	B	Operation	LH	AH	H	1	s	T	N	z	v	c	RMW
MOVW A, dir	2	3	0	(c)	(dir)	-				-						
MOVW A, addr	3	4	0	(c)	word $(A) \leftarrow$ (addr16)	-			-	-	-			-	-	-
MOVW A, SP	1	1	0	0	word $(\mathrm{A}) \leftarrow(\mathrm{SP})$	-			-	-	-			-	-	-
MOVW A, RWi	1	2	1	0	word $(A) \leftarrow($ RWi)	-			-	-	-	*		-	-	
MOVW A, ear	2	2	1	0	word $(\mathrm{A}) \leftarrow(\mathrm{ear})$	-			-	-	-	*		-	-	-
MOVW A, eam	2+	$3+$ (a)	0	(c)	word (A) $\leftarrow($ eam $)$	-			-	-	-	*		-	-	-
MOVW A, io	2	3	0	(c)	word (A) \leftarrow (io)	-			-	-	-	*		-	-	
MOVW A, @A	2	3	0	(c)	word $(A) \leftarrow((A))$	-	-	-	-	-	-	*			-	
MOVW A, \#imm16	3	2	0	0	word $(A) \leftarrow$ imm16	-		*	-	-	-	*			-	-
MOVW A, @RWi+disp8	2			(c)	word $(\mathrm{A}) \leftarrow($ (RWi) + disp8)	-			-	-	-	*			-	-
MOVW A, @RLi+disp8	3	10	2	(c)	word $(\mathrm{A}) \leftarrow(($ RLi $)+$ disp8)	-			-	-	-	*			-	
MOVW dir, A	2	3	0	(c)	word (dir) $\leftarrow(\mathrm{A})$					-	-				-	
MOVW addr16, A	3	4	0	(c)	word (addr16) $\leftarrow(A)$			-	-	-	-	*		-	-	
MOVW SP, A	1	1	0	(word (SP) $\leftarrow(\mathrm{A})$			-	-	-	-	*		-	-	
MOVW RWi, A	1	2	1	0	word (RWi) $\leftarrow(A)$		-	-	-	-	-	*		-	-	
MOVW ear, A	2	2	1	0	word (ear) $\leftarrow(\mathrm{A})$		-	-	-	-	-	*		-	-	
MOVW eam, A	2+	$3+$ (a)	0	(c)	word (eam) $\leftarrow(A)$		-	-	-	-	-	*		-	-	
MOVW io, A	2	,	0	(c)	word (io) \leftarrow (A$)$		-	-		-	-				-	
MOVW @RWi+disp8, A	2		1	(c)	word ((RWi) + disp8) \leftarrow (A)		-	-	-	-	-				-	
MOVW @RLi+disp8, A	3	10	2	(c)	word ((RLi) + disp8) $\leftarrow(\mathrm{A})$		-	-		-	-			-	-	
MOVW RWi, ear	2	(a)	2	(0)	word (RWi) \leftarrow (ear)		-	-	-	-	-			-	-	
MOVW RWi, eam	2+	4+ (a)		(c)	word (RWi) $\leftarrow($ eam $)$		-	-	-	-	-			-	-	
MOVW ear, RWi	2	4	2	0	word (ear) $\leftarrow(\mathrm{RWi})$			-		-	-			-	-	
MOVW eam, RWi	$2+$	5+ (a)	1	(c)	word (eam) $\leftarrow(\mathrm{RWi})$			-		-	-				-	
MOVW RWi, \#imm16	3	2		(c)	word (RWi) \leftarrow imm16			-		-	-			-	-	-
MOVW io, \#imm16	4	5	0 1	(c)	word (io) \leftarrow imm16						-	-	-		-	
MOVW ear, \#imm16	4	2		(c)	word (ear) \leftarrow imm16						-				-	
MOVW eam, \#imm16	4+	4+ (a)	0	(c)	word (eam) \leftarrow imm16						-	-	-			
MOVW @AL, AH /MOVW@A, T	2	3	0	(c)	word $((A)) \leftarrow(\mathrm{AH})$	-					-					
XCHW A, ear	2	4	2	0	word (A) \leftrightarrow (ear)			-	-	-	-	-	-		-	
XCHW A, eam	$2+$	$5+$ (a)	0	$2 \times$ (c)	word (A) \leftrightarrow (eam)	-		-	-	-	-	-	-	-	-	
XCHW RWi, ear	2	7	4	0	word (RWi) \leftrightarrow (ear)	-	-	-	-	-	-	-	-	-	-	
XCHW RWi, eam	2+	9+ (a)	2	$2 \times$ (c)	word (RWi) \leftrightarrow (eam)	-			-	-	-	-		-	-	-
MOVL A, ear	2	4	0	(d)	long (A) \leftarrow (ear)				-	-	-				-	-
MOVL A, eam	$2+$	$5+$ (a)	0	(d)	long $(A) \leftarrow($ eam $)$	-		-		-	-	*		-	-	-
MOVL A, \#imm32	5	3	0	0	long $(A) \leftarrow$ imm32	-	-	- -	-	-	-				-	-
MOVL ear, A	2	4	2	0	long (ear) $\leftarrow(\mathrm{A})$	-	-	-	-	-	-	*	*	-	-	-
MOVL eam, A	2+	5+ (a)	0	(d)	long (eam) $\leftarrow(A)$	-	-	-	-	-	-			-	-	-

Note : For an explanation of "(a)" to "(d)", refer to Table 4, "Number of Execution Cycles for Each Type of Addressing," and Table 5, "Correction Values for Number of Cycles Used to Calculate Number of Actual Cycles."

MB90595 Series

Table 9 Addition and Subtraction Instructions (Byte/Word/Long Word) [42 Instructions]

Mnemonic	\#	\sim	RG	B	Operation	LH	AH	1	S	T	N	Z	V	C	RMV
ADD A,\#imm	2	2	0	0	byte $(\mathrm{A}) \leftarrow(\mathrm{A})+$ +imm8	Z	-	-	-	-			*	*	
ADD A, di	2	5	0	(b)	byte $(A) \leftarrow(A)+$ (dir)	Z	-	-	-	-					-
ADD A, ear	2	3	1	0	byte $(A) \leftarrow(A)+$ (ear)	Z	-	-	-	-			*	*	-
ADD A, eam	2+	$4+(a)$	0	(b)	byte $(A) \leftarrow(A)+($ eam $)$	Z	-	-	-	-			*	*	-
ADD ear, A	2	3	2	0	byte (ear) \leftarrow (ear) + (A)	-	-	-	-	-			*	*	-
ADD eam, A	2+	5+ (a)	0	$2 \times(\mathrm{b})$	byte (eam) $\leftarrow($ eam $)+(\mathrm{A})$	Z	-	-	-	-		*			
ADDC A	1	(0	0	byte $(\mathrm{A}) \leftarrow(\mathrm{AH})+(\mathrm{AL})+(\mathrm{C})$	Z	-	-	-	-		*	*	*	-
ADDC A, ear	2	-	1	0	byte $(A) \leftarrow(A)+($ ear $)+(C)$	Z	-	-	-	-		*	*	*	-
ADDC A, eam	2+	4+ (a)	0	(b)	byte $(\mathrm{A}) \leftarrow(\mathrm{A})+($ eam $)+(\mathrm{C})$	Z	-	-	-	-			*		-
ADDDC A	1	3	0	0	byte (A) $\leftarrow(\mathrm{AH})+(\mathrm{AL})+(\mathrm{C})$ (decimal)	Z	-	-	-	-			*		
SUB A, \#imm	2	2	0	0	byte $(\mathrm{A}) \leftarrow(\mathrm{A})$-imm8	Z	-	-	-	-		*	*		-
SUB A, dir	2	5	0	(b)	byte $(A) \leftarrow(A)-$ (dir)	Z	-	-	-	-			*	*	
SUB A, ear	2	3	1	0	byte $(A) \leftarrow(A)-$ (ear)	Z	-	-	-	-			*		
SUB A, eam	2+	4+ (a)	0	(b)	byte $(A) \leftarrow(A)-$ (eam)	Z	-	-	-	-					
SUB ear, A	2	3	2	0	byte (ear) $\leftarrow($ ear $)-(A)$	-	-	-	-	-		*	*		
SUB eam, A	2+	5+ (a)	0	$2 \times(\mathrm{b})$	byte (eam) $\leftarrow($ eam $)-(A)$	-	-	-	-	-			*		
SUBC A	1	2	0	0	byte $(\mathrm{A}) \leftarrow(\mathrm{AH})-(\mathrm{AL})-(\mathrm{C})$	Z	-	-	-	-					
SUBC A, ear	2	3	1	0	byte $(A) \leftarrow(A)-($ ear $)-(C)$	Z	-	-	-	-			*	*	
SUBC A, eam	2+	4+ (a)	0	(b)	byte $(A) \leftarrow(A)-($ eam $)-(C)$	Z	-	-	-	-		*	*	*	-
SUBDC A	1	3	0	0	byte $(\mathrm{A}) \leftarrow(\mathrm{AH})-(\mathrm{AL})-(\mathrm{C})$ (decimal)	Z	-	-	-	-			*	*	
ADDW A	1	2	0	0	word $(\mathrm{A}) \leftarrow(\mathrm{AH})+(\mathrm{AL})$	-	-	-	-	-			*	*	-
ADDW A, ear	2	3	1	0	word $(A) \leftarrow(A)+($ ear $)$	-	-	-	-	-					
ADDW A, eam	2+	4+ (a)	0	(c)	word $(A) \leftarrow(A)+($ eam $)$	-	-	-	-	-					-
ADDW A, \#imm16	3	2	0	0	word $(A) \leftarrow(A)+$ imm16	-	-	-	-	-			*	*	
ADDW ear, A	2	3	2	0	word (ear) $\leftarrow($ ear $)+(\mathrm{A})$	-	-	-	-	-					-
ADDW eam, A	2+	5+ (a)	0	$2 \times$ (c)	word (eam) $\leftarrow($ eam $)+(\mathrm{A})$	-	-	-	-	-					
ADDCW A, ear	2	3	1	0	word $(A) \leftarrow(A)+($ ear $)+(C)$	-	-	-	-	-			*	*	-
ADDCW A, eam	2+	4+ (a)	0	(c)	word $(A) \leftarrow(A)+($ eam $)+(C)$	-	-	-	-	-			*		
SUBW A	1	2	0	0	word $(A) \leftarrow(A H)-(A L)$	-	-	-	-	-					
SUBW A, ear	2	3	1	0	word $(A) \leftarrow(A)-$ (ear)	-	-	-	-	-					
SUBW A, eam	2+	4+ (a)	0	(c)	word $(A) \leftarrow(A)-($ eam $)$	-	-	-	-	-					-
SUBW A, \#imm16	3	2	0	0	word $(A) \leftarrow(A)$-imm16	-	-	-	-	-					
SUBW ear, A	2	3	2	0	word (ear) \leftarrow (ear) - (A)	-	-	-	-	-		*	*		
SUBW eam, A	2+	5+ (a)	0	$2 \times$ (c)	word (eam) $\leftarrow($ eam $)-(\mathrm{A})$	-	-	-	-	-					
SUBCW A, ear	2	3	1	0	word $(A) \leftarrow(A)-($ ear $)-(C)$	-	-	-	-	-	*		*	*	-
SUBCW A, eam	2+	4+ (a)	0	(c)	word $(A) \leftarrow(A)-($ eam $)-(C)$		-	-			*		*	*	
ADDL A, ear	2	6	2	0	long $(A) \leftarrow(A)+$ (ear)	-	-	-	-	-		*		*	-
ADDL A, eam	2+	$7+(\mathrm{a})$	0	(d)	long $(A) \leftarrow(A)+($ eam $)$	-	-	-	-	-				*	
ADDL A, \#imm32	5	4	0	0	long $(A) \leftarrow(A)+$ imm32	-	-	-	-	-	*		*	*	-
SUBL A, ear	2	6	2	0	long $(A) \leftarrow(A)-$ (ear)	-	-	-	-	-			*	*	-
SUBL A, eam	2+	$7+(a)$	0	(d)	long $(A) \leftarrow(A)-$ eam $)$	-	-	-	-	-	*	*	*	*	-
SUBL A, \#imm32	5	4	0	0	long $(A) \leftarrow(A)$-imm32	-	-	-	-	-	*	*	*	*	-

Note : For an explanation of "(a)" to "(d)", refer to Table 4, "Number of Execution Cycles for Each Type of Addressing," and Table 5, "Correction Values for Number of Cycles Used to Calculate Number of Actual Cycles."

MB90595 Series

Table 10 Increment and Decrement Instructions (Byte/Word/Long Word) [12 Instructions]

Mnemonic		\#	~	RG	B	Operation	LH	AH	1	s	T	N	z	v	c	RMw
INC INC	ear eam	$\begin{gathered} 2 \\ 2+ \end{gathered}$	$\stackrel{2}{5+(a)}$	$\begin{aligned} & 2 \\ & 0 \end{aligned}$	$\begin{gathered} 0 \\ 2 \times(b) \end{gathered}$	$\begin{aligned} & \text { byte }(\text { ear }) \leftarrow(\text { ear })+1 \\ & \text { byte }(\text { eam }) \leftarrow(\text { eam })+1 \end{aligned}$	-	-	-	$-$	-				-	-
$\begin{array}{\|l} \text { DEC } \\ \text { DEC } \end{array}$	ear eam	$\begin{gathered} 2 \\ 2+ \end{gathered}$	$\stackrel{3}{5+(a)}$	$\begin{aligned} & 2 \\ & 0 \end{aligned}$	$\stackrel{0}{2 \times(b)}$	$\begin{aligned} & \text { byte }(\text { ear }) \leftarrow(\text { ear })-1 \\ & \text { byte }(\text { eam }) \leftarrow(\text { eam })-1 \end{aligned}$	-	-	-	-	-	*	*	*	-	-
INCW INCW	ear eam	$\begin{gathered} 2 \\ 2+ \end{gathered}$	$\begin{gathered} 3 \\ 5+(a) \end{gathered}$	$\begin{aligned} & 2 \\ & 0 \end{aligned}$	$\begin{gathered} 0 \\ 2 \times(\mathrm{c}) \end{gathered}$	$\begin{aligned} & \text { word }(\text { ear }) \leftarrow(\text { ear })+1 \\ & \text { word }(\text { eam }) \leftarrow(\text { eam })+1 \end{aligned}$	-	-	-	-	-	*	*		-	-
$\begin{aligned} & \text { DECW } \\ & \text { DECW } \end{aligned}$	ear eam	$\begin{gathered} 2 \\ 2+ \end{gathered}$	$\stackrel{3}{5+(a)}$	$\begin{aligned} & 2 \\ & 0 \end{aligned}$	$\stackrel{0}{2 \times(c)}$	word (ear) \leftarrow (ear) -1 word $($ eam $) \leftarrow($ eam $)-1$	-	-	-	-	-	*	*	*	-	*
INCL INCL	ear eam	$\begin{gathered} 2 \\ 2+ \end{gathered}$	$\begin{gathered} 7 \\ 9+(a) \end{gathered}$	$\begin{aligned} & 4 \\ & 0 \end{aligned}$	$\stackrel{0}{2 \times(d)}$	$\begin{aligned} & \text { long }(\text { ear }) \leftarrow(\text { ear })+1 \\ & \text { long }(\text { eam }) \leftarrow(\text { eam })+1 \end{aligned}$	-	-	-	-	-	*	*	*	-	-
DECL DECL	ear eam	2	7 $9+(a)$	4 0	$\stackrel{0}{2 \times(d)}$	long (ear) $\leftarrow($ ear $)-1$ long $($ eam $) \leftarrow($ eam $)-1$	-	-	-	-	-	*	*	*	-	-

Note : For an explanation of "(a)" to "(d)", refer to Table 4, "Number of Execution Cycles for Each Type of Addressing," and Table 5, "Correction Values for Number of Cycles Used to Calculate Number of Actual Cycles."

Table 11 Compare Instructions (Byte/Word/Long Word) [11 Instructions]

Mnemonic		\#	\sim	RG	B	Operation	LH	AH	1	S	T	N	Z	v	C	RMW
CMP	A	1	1	0	0	byte (AH) - (AL)	-	-	-	-	-	*	*	*		-
CMP	A, ear	2	2	1	0	byte $(A) \leftarrow$ (ear)	-	-	-	-	-	*	*	*	*	-
CMP	A, eam	2+	$3+(a)$	0	(b)	byte $(A) \leftarrow$ (eam)	-	-	-	-	-	*	*	*	*	-
CMP	A, \#imm8	2	2	0	0	byte $(A) \leftarrow$ imm8	-	-	-	-	-	*	*	*	*	-
CMPW	A	1	1	0	0	word (AH) - (AL)	-	-	-	-	-	*	*	*		-
CMPW	A, ear	2	2	1	0	word $(A) \leftarrow$ (ear)	-	-	-	-	-	*	*	*	*	-
CMPW	A, eam	2+	$3+$ (a)	0	(c)	word $(A) \leftarrow($ eam $)$	-	-	-	-	-	*	*	*	*	-
CMPW	A, \#imm16	3	2	0	0	word $(A) \leftarrow$ imm16	-	-	-	-	-	*	*	*	*	-
CMPL	A, ear	2	6	2	0	word $(A) \leftarrow$ (ear)	-	-	-	-	-	*	*	*	*	-
CMPL	A, eam	2+	$7+(\mathrm{a})$	0	(d)	word $(A) \leftarrow($ eam $)$	-	-	-	-	-	*	*	*	*	-
CMPL	A, \#imm32	5	3	0	0	word $(A) \leftarrow$ imm32	-	-	-	-	-	*	*	*	*	-

Note : For an explanation of "(a)" to "(d)", refer to Table 4, "Number of Execution Cycles for Each Type of Addressing," and Table 5, "Correction Values for Number of Cycles Used to Calculate Number of Actual Cycles."

MB90595 Series

Table 12 Multiplication and Division Instructions (Byte/Word/Long Word) [11 Instructions]

Mnemonic	\#	~	RG	B	Operation	LH	at		1	s	T	N	z	v	c	RM
DIVU A	1	*1	0	0	word (AH) /byte (AL) Quotient \rightarrow byte (AL) Remainder \rightarrow byte (AH)	-			-	-	-	-	-			-
DIVU A, ear	2	*2	1	0	word (A)/byte (ear)	-			-	-	-	-	-	*		-
DIVU A, eam	2+	*	0	* 6	word (A)/byte (eam)	-			-	-	-	-	-	*		-
DIVUW A, ear	2	* 4	1	0	long (A)/word (ear) Quotient \rightarrow word (A) Remainder \rightarrow word (ear)	-			-	-	-	-	-	*		-
DIVUW A, eam	2+	*	0	*7	long (A)/word (eam) Quotient \rightarrow word (A) Remainder \rightarrow word (ear)	-			-	-	-	-	-	*		-
MULU A	1	*8	0	0	byte (AH) *byte (AL) \rightarrow word (A)	-			-	-	-	-	-	-	-	-
MULU A, ear	2	*9	1	0	byte (A) *byte (ear) \rightarrow word (A)	-			-	-	-	-	-	-	-	-
MULU A, eam	2+	*10	0	(b)	byte (A) *byte (eam) \rightarrow word (A)	-			-	-	-		-	-	-	-
MULUW A	1	*11	0	0	word (AH) *word (AL) \rightarrow long (A)	-			-	-	-	-	-	-	-	-
MULUW A, ear	2	*12	1	0	word (A) *word (ear) \rightarrow long (A)	-	-		-	-	-	-	-	-	-	-
MULUW A, eam	2+	*13	0	(c)	word (A) *word (eam) \rightarrow long (A)	-	-		-	-	-	-	-	-	-	-

*1: 3 when the result is zero, 7 when an overflow occurs, and 15 normally.
*2: 4 when the result is zero, 8 when an overflow occurs, and 16 normally.
*3: $6+$ (a) when the result is zero, $9+$ (a) when an overflow occurs, and $19+(\mathrm{a})$ normally.
*4: 4 when the result is zero, 7 when an overflow occurs, and 22 normally.
*5: $6+$ (a) when the result is zero, $8+$ (a) when an overflow occurs, and $26+$ (a) normally.
*6: (b) when the result is zero or when an overflow occurs, and $2 \times(\mathrm{b})$ normally.
*7: (c) when the result is zero or when an overflow occurs, and $2 \times$ (c) normally.
*8: 3 when byte (AH) is zero, and 7 when byte (AH) is not zero.
*9: 4 when byte (ear) is zero, and 8 when byte (ear) is not zero.
*10: $5+$ (a) when byte (eam) is zero, and $9+(\mathrm{a})$ when byte (eam) is not 0 .
*11: 3 when word (AH) is zero, and 11 when word (AH) is not zero.
*12: 4 when word (ear) is zero, and 12 when word (ear) is not zero.
*13: $5+$ (a) when word (eam) is zero, and $13+$ (a) when word (eam) is not zero.
Note : For an explanation of "(a)" to "(d)", refer to Table 4, "Number of Execution Cycles for Each Type of Addressing," and Table 5, "Correction Values for Number of Cycles Used to Calculate Number of Actual Cycles."

MB90595 Series

Table 13 Signed Multiplication and Division Instructions (Byte/Word/Long Word) [11 Instructions]

Mnem	monic	\#	\sim	RG	B	Operation	LH	AH	1	s	T	N	z	v	c	RMw
DIV	A	2	${ }^{*} 1$	0	0	word (AH) /byte (AL) Quotient \rightarrow byte (AL) Remainder \rightarrow byte (AH)	Z	-	-	-	-	-	-	*	*	-
DIV	A, ear	2	*2	1	0	word (A)/byte (ear) Quotient \rightarrow byte (A) Remainder \rightarrow byte (ear)	Z	-	-	-	-	-	-	*	*	-
DIV	A, eam	$2+$	*3	0	*6	word (A)/byte (eam) Quotient \rightarrow byte (A) Remainder \rightarrow byte (eam)	Z	-	-	-	-	-	-	*	*	-
DIVW	A, ear	2	*4	1	0	long (A)/word (ear) Quotient \rightarrow word (A) Remainder \rightarrow word (ear)	-	-	-	-	-	-	-	*	*	-
DIVW	A, eam	2+	*5	0	*7	long (A)/word (eam) Quotient \rightarrow word (A) Remainder \rightarrow word (eam)	-	-	-	-	-	-	-	*	*	-
MULU	A	2	*8	0	0	byte (AH) *byte (AL) \rightarrow word (A)	-	-	-	-	-	-	-	-	-	-
MULU	A, ear	2	*9	1	0	byte (A) *byte (ear) \rightarrow word (A)	-	-	-	-	-	-	-	-	-	-
MULU	A, eam	$2+$	*10	0	(b)	byte (A) *byte (eam) \rightarrow word (A)	-	-	-	-	-	-	-	-	-	-
MULUW	A	2	*11	0	(word (AH) **Word (AL) \rightarrow long (A)	-	-	-	-	-	-	-	-	-	-
MULUW	A, ear	2	*12	0	(c)	word (A) *word (ear) \rightarrow long (A)	-	-	-	-	-	-	-	-	-	-

*1: Set to 3 when the division-by-0, 8 or 18 for an overflow, and 18 for normal operation.
*2: Set to 3 when the division-by-0, 10 or 21 for an overflow, and 22 for normal operation.
*3: Set to $4+$ (a) when the division-by-0, $11+$ (a) or $22+$ (a) for an overflow, and $23+$ (a) for normal operation.
*4: Positive dividend: Set to 4 when the division-by- 0,10 or 29 for an overflow, and 30 for normal operation.
Negative dividend: Set to 4 when the division-by-0, 11 or 30 for an overflow and 31 for normal operation.
*5: Positive dividend: Set to $4+$ (a) when the division-by- $0,11+$ (a) or $30+$ (a) for an overflow, and $31+$ (a) for normal operation.
Negative dividend: Set to $4+$ (a) when the division-by- $0,12+$ (a) or $31+$ (a) for an overflow, and $32+$ (a) for normal operation.
*6: When the division-by-0, (b) for an overflow, and $2 \times(\mathrm{b})$ for normal operation.
*7: When the division-by-0, (c) for an overflow, and $2 \times$ (c) for normal operation.
*8: Set to 3 when byte (AH) is zero, 12 when the result is positive, and 13 when the result is negative.
*9: Set to 3 when byte (ear) is zero, 12 when the result is positive, and 13 when the result is negative.
*10: Set to $4+(\mathrm{a})$ when byte (eam) is zero, $13+$ (a) when the result is positive, and $14+$ (a) when the result is negative.
*11: Set to 3 when word (AH) is zero, 12 when the result is positive, and 13 when the result is negative.
*12: Set to 3 when word (ear) is zero, 16 when the result is positive, and 19 when the result is negative.
*13: Set to $4+(a)$ when word (eam) is zero, $17+$ (a) when the result is positive, and $20+(a)$ when the result is negative.
Notes: - When overflow occurs during DIV or DIVW instruction execution, the number of execution cycles takes two values because of detection before and after an operation.

- When overflow occurs during DIV or DIVW instruction execution, the contents of AL are destroyed.
- For (a) to (d), refer to "Table 4 Number of Execution Cycles for Effective Address in Addressing Modes" and "Table 5 Correction Values for Number of Cycles for Calculating Actual Number of Cycles."

MB90595 Series

Table 14 Logical 1 Instructions (Byte/Word) [39 Instructions]

Mnemonic		\#	\sim	RG	B	Operation	LH	AH	1	s	T	N	z	v	c	RMW
AND	A, \#imm8	2	2	0	0	byte $(\mathrm{A}) \leftarrow(\mathrm{A})$ and imm8	-	-	-	-	-		*	R	-	-
AND	A, ear	2	3	1	0	byte $(A) \leftarrow(A)$ and (ear)	-	-	-	-	-	*	*	R	-	-
AND	A, eam	2+	4+ (a)	0	(b)	byte $(\mathrm{A}) \leftarrow(\mathrm{A})$ and (eam)	-	-	-	-	-		*	R	-	-
AND	ear, A	2	3	2	0	byte (ear) \leftarrow (ear) and (A)	-	-	-	-	-		*	R	-	-
AND	eam, A	2+	$5+$ (a)	0	$2 \times(\mathrm{b})$	byte (eam) $\leftarrow($ eam $)$ and (A)	-	-	-	-	-	*	*	R	-	*
OR	A, \#imm8	2	2	0	0	byte $(A) \leftarrow(A)$ or imm8	-	-	-	-	-	*	*	R	-	-
OR	A, ear	2	3	1	0	byte $(A) \leftarrow(A)$ or (ear)	-	-	-	-	-		*	R	-	-
OR	A, eam	2+	4+ (a)	0	(b)	byte $(A) \leftarrow(A)$ or (eam)	-	-	-	-	-		*	R	-	-
OR	ear, A	2	3	2	0	byte (ear) \leftarrow (ear) or (A)	-	-	-	-	-		*	R	-	-
OR	eam, A	2+	$5+$ (a)	0	$2 \times(\mathrm{b})$	byte (eam) $\leftarrow($ eam $)$ or (A)	-	-	-	-	-	*	*	R	-	*
XOR	A, \#imm8	2	2	0	0	byte $(\mathrm{A}) \leftarrow(\mathrm{A})$ xor imm8	-	-	-	-	-		*	R	-	-
XOR	A, ear	2	3	1	0	byte $(A) \leftarrow(A)$ xor (ear)	-	-	-	-	-		*	R	-	-
XOR	A, eam	2+	4+ (a)	0	(b)	byte $(A) \leftarrow(A)$ xor (eam)	-	-	-	-	-		*	R	-	-
XOR	ear, A	2	3	2	0	byte (ear) $\leftarrow($ ear) xor (A)	-	-	-	-	-		*	R	-	-
XOR	eam, A	2+	5+ (a)	0	$2 \times(\mathrm{b})$	byte $($ eam $) \leftarrow($ eam $)$ xor (A)	-	-	-	-	-	*	*	R	-	*
NOT	A	1	2	0	0	byte $(\mathrm{A}) \leftarrow$ not (A)	-	-	-	-	-		*	R	-	-
NOT	ear	2	3	2	0	byte (ear) \leftarrow not (ear)	-	-	-	-	-		*	R	-	-
NOT	eam	2+	5+ (a)	0	$2 \times(\mathrm{b})$	byte (eam) \leftarrow not (eam)	-	-	-	-	-	*	*	R	-	*
ANDW	A		2	0	0	word $(A) \leftarrow(A H)$ and (A)	-	-	-	-	-		*	R	-	-
ANDW	A, \#imm16	3	2	0	0	word $(A) \leftarrow(A)$ and imm16	-	-	-	-	-		*	R	-	-
ANDW	A, ear	2	3	1	0	word $(A) \leftarrow(A)$ and (ear)	-	-	-	-	-		*	R	-	-
ANDW	A, eam	2+	4+ (a)	0	(c)	word $(A) \leftarrow(A)$ and (eam)	-	-	-	-	-		*	R	-	-
ANDW	ear, A	2	3	2	0	word (ear) \leftarrow (ear) and (A)	-	-	-	-	-		*	R	-	-
ANDW	eam, A	2+	5+ (a)	0	$2 \times$ (c)	word $($ eam $) \leftarrow($ eam $)$ and (A)	-	-	-	-	-	*	*	R	-	*
ORW	A	1	2	0	0	word $(A) \leftarrow(A H)$ or (A)	-	-	-	-	-	*	*	R	-	-
ORW	A, \#imm16	3	2	0	0	word $(A) \leftarrow(A)$ or imm16	-	-	-	-	-		*	R	-	-
ORW	A, ear	2	3	1	0	word $(A) \leftarrow(A)$ or (ear)	-	-	-	-	-		*	R	-	-
ORW	A, eam	2+	4+ (a)	0	(c)	word $(A) \leftarrow(A)$ or (eam)	-	-	-	-	-		*	R	-	-
ORW	ear, A	2	3	2	0	word (ear) \leftarrow (ear) or (A)	-	-	-	-	-	*	*	R	-	-
ORW	eam, A	2+	5+ (a)	0	$2 \times$ (c)	word (eam) \leftarrow (eam) or (A)	-	-	-	-	-	*	*	R	-	*
XORW	A	1	2	0	0	word $(\mathrm{A}) \leftarrow(\mathrm{AH})$ xor (A)	-	-	-	-	-	*	*	R	-	-
XORW	A, \#imm16	3	2	0	0	word $(A) \leftarrow(A)$ xor imm16	-	-	-	-	-	*	*	R	-	-
XORW	A, ear	2	3	1	0	word $(A) \leftarrow(A)$ xor (ear)	-	-	-	-	-		*	R	-	-
XORW	A, eam	2+	4+ (a)	0	(c)	word $(A) \leftarrow(A)$ xor (eam)	-	-	-	-	-		*	R	-	-
XORW	ear, A	2	3	2	0	word (ear) \leftarrow (ear) xor (A)	-	-	-	-	-	*	*	R	-	-
XORW	eam, A	2+	5+ (a)	0	$2 \times$ (c)	word (eam) \leftarrow (eam) xor (A)	-	-	-	-	-	*	*	R	-	*
NOTW	A	1	2	0	0	word $(\mathrm{A}) \leftarrow \operatorname{not}(\mathrm{A})$	-	-	-	-	-	*	*	R	-	-
NOTW	ear	2	3	2	0	word (ear) \leftarrow not (ear)	-	-	-	-	-		*	R	-	-
NOTW	eam	2+	5+ (a)	0	$2 \times$ (c)	word (eam) \leftarrow not (eam)	-	-	-	-	-	*	*	R	-	*

Note : For an explanation of "(a)" to "(d)", refer to Table 4, "Number of Execution Cycles for Each Type of Addressing," and Table 5, "Correction Values for Number of Cycles Used to Calculate Number of Actual Cycles."

MB90595 Series

Table 15 Logical 2 Instructions (Long Word) [6 Instructions]

Table 16 Sign Inversion Instructions (Byte/Word) [6 Instructions]

Mnemonic		\#	\sim	RG	B	Operation	LH	AH	1	s	T	N	z	v	c	RMw
NEG	A	1	2	0	0	byte $(\mathrm{A}) \leftarrow 0-(\mathrm{A})$	X	-	-	-	-	*	*	*	*	-
$\begin{array}{\|l\|l} \mathrm{NEG} \\ \mathrm{NEG} \end{array}$	ear eam	$\begin{gathered} 2 \\ 2+ \end{gathered}$	$\begin{gathered} 3 \\ 5+(a) \end{gathered}$	2	$\underset{2 \times(\mathrm{b})}{0}$	byte (ear) $\leftarrow 0$ - (ear) byte (eam) $\leftarrow 0-$ (eam)	-	-	-	-	-	*	*	*	*	-
NEGW		1	2	0	0	word (A) $\leftarrow 0-(\mathrm{A})$	-	-	-	-	-	*		*		-
NEGW		2	$\begin{gathered} 3 \\ 5+(a) \end{gathered}$	2	$\begin{gathered} 0 \\ 0, ~ \end{gathered}$	word (ear) $\leftarrow 0-$ (ear)	-	-	-	-	-	*	*	*	*	-

Table 17 Normalize Instruction (Long Word) [1 Instruction]

Mnemonic	$\#$	\sim	RG	B	Operation	Lt	AH	I	s	T	N	Z	v	c	RMw
NRML A, RO	2	$* 1$	1	0	long $($ A $) \leftarrow$ Shift until first digit is " byte $($ RO $)$ \leftarrow Current shift count	-	-	-	-	-	-	$*$	-	-	-

*1: 4 when the contents of the accumulator are all zeroes, $6+(\mathrm{RO})$ in all other cases (shift count).
Note : For an explanation of "(a)" to "(d)", refer to Table 4, "Number of Execution Cycles for Each Type of Addressing," and Table 5, "Correction Values for Number of Cycles Used to Calculate Number of Actual Cycles."

MB90595 Series

Table 18 Shift Instructions (Byte/Word/Long Word) [18 Instructions]

Mnemonic	\#	\sim	RG	B	Operation	LH	AH	1	S	T	N	z	V	C	RMw
RORC A	2	2	0	0	byte $($ A $) \leftarrow$ Right rotation with car	-	-	-	-	-	*		-	*	-
ROLC A	2	2	0	0	byte $(A) \leftarrow$ Left rotation with carry	-	-	-	-	-	*		-	*	-
RORC ear	2	3	2	0	byte (ear) \leftarrow Right rotation with carry	-	-	-	-	-		*	-	*	-
RORC eam	2+	5+ (a)	0	$2 \times(\mathrm{b})$	byte (eam) \leftarrow Right rotation with carry	-	-	-	-	-	*	*	-	*	*
ROLC ear	2	3	2	0	byte (ear) \leftarrow Left rotation with carry	-	-	-	-	-			-	*	-
ROLC eam	2+	$5+$ (a)	0	$2 \times(\mathrm{b})$	byte (eam) \leftarrow Left rotation with carry	-	-	-	-	-	*		-	*	*
ASR A, R0	2	*1	1	0	byte $(A) \leftarrow$ Arithmetic right barrel shift ($A, R 0$)	-	-	-	-	*	*	*	-	*	-
LSR A, R0	2	*1	1	0	byte (A) \leftarrow Logical right barrel shift (A, RO)	-	-	-	-	*	*	*	-	*	-
LSL A, R0	2	*1	1	0	byte (A) \leftarrow Logical left barrel shift (A, R0)	-	-	-	-	-	*	*	-	*	-
ASRW A	1	2	0	0	word (A) \leftarrow Arithmetic right shift (A, 1 bit)	-	-	-	-	*	*		-	*	-
LSRW A/SHRW A	1	2	0	0	word $(A) \leftarrow$ Logical right shift (A, 1 bit)	-	-	-	-		R		-	*	-
LSLW A/SHLW A	1	2	0	0	word $(A) \leftarrow$ Logical left shift (A, 1 bit)		-	-	-	-			-	*	-
ASRW A, R0	2	*1	1	0	word (A) \leftarrow Arithmetic right barrel shift (A	-	-	-	-	*	*	*	-	*	-
LSRW A, R0	2	*1	1	0		-	-	-	-	*	*	*	-	*	-
LSLW A, RO	2	*1	1	0	word $(A) \leftarrow$ Logical right barrel shift (A, RO) word (A) \leftarrow Logical left barrel shift (A, RO)	-	-	-	-	-	*	*	-	*	-
ASRL A, R0	2	*2	1	0	long (A) \leftarrow Arithmetic right shift (A, R0)	-	-	-	-				-	*	-
LSRL A, R0	2	*2	1	0	long (A) \leftarrow Logical right barrel shift (A, R0)	-	-	-	-	*	*	*	-	*	-
LSLL A, R0	2	*2	1	0	long (A) \leftarrow Logical left barrel shift (A, R0)	-	-	-	-	-	*	*	-	*	-

*1: 6 when R0 is $0,5+(\mathrm{RO})$ in all other cases.
*2: 6 when R0 is $0,6+(R 0)$ in all other cases.
Note : For an explanation of "(a)" to "(d)", refer to Table 4, "Number of Execution Cycles for Each Type of Addressing," and Table 5, "Correction Values for Number of Cycles Used to Calculate Number of Actual Cycles."

MB90595 Series

Table 19 Branch 1 Instructions [31 Instructions]

Mnemonic	\#	\sim	RG	B	Operation	나	A		1	s	S	T	N	z	v	c	Rmw
BZ/BEQ	2	*1	0	0	Branch when (Z) = 1	-			-	-		-	-		-		-
BNZ/BNE rel	2	*1	0	0	Branch when (Z) $=0$	-	-		_	-	-	-	-	-	-	-	-
BC/BLO rel	2	*1	0	0	Branch when (C) = 1	-	-		-	-	-	-	-	-	-	-	-
BNC/BHS rel	2	*1	0	0	Branch when (C) $=0$	-	-		-	-	-	-	-	-	-	-	-
BN rel	2	*1	0	0	Branch when (N) $=1$	-	-		-	-	-	-	-	-	-	-	-
BP rel	2	*1	0	0	Branch when (N) $=0$	-	-		-	-	-	-	-	-	-	-	-
BV rel	2	*1	0	0	Branch when (V) $=1$	-	-		-	-	-	-	-	-	-	-	-
BNV rel	2	*1	0	0	Branch when (V) $=0$	-			-	-	-	-	-	-	-	-	-
BT rel	2	*1	0	0	Branch when (T) $=1$	-	-		-	-	-	-	-	-	-	-	-
BNT rel	2	*1	0	0	Branch when (T) $=0$	-	-		-	-	-	-	-	-	-	-	-
BLT rel	2	*1	0	0	Branch when (V) xor (N) $=1$	-	-		-	-	-	-	-	-	-	-	-
BGE rel	2	*1	0	0	Branch when (V) $\operatorname{xor}(\mathrm{N})=0$	-	-		-	-	-	-	-	-	-	-	-
BLE rel	2	*1	0	0	Branch when ((V) xor (N)) or (Z) $=1$	-	-		-		-	-	-	-	-	-	-
BGT rel	2	${ }^{*} 1$	0	0	Branch when ((V) xor (N)) or (Z) $=0$		-		-	-	-	-	-	-	-	-	-
BLS rel	2	${ }_{* 1}^{*}$	0	0	Branch when (C) or (Z) = 1	-	-		-	-	-	-	-	-	-	-	-
BHI rel	2	${ }_{* 1}^{* 1}$	0	0	Branch when (C) or (Z) = 0	-	-		-	-	-	-	-	-	-	-	-
BRA rel	2	${ }^{*}$	0	0	Branch unconditionally	-			-	-	-	-	-	-		-	-
JMP @A	1	2	0	0	word (PC) \leftarrow (A$)$	-			-			-	-				-
JMP addr16	3	3	0	0	word (PC) \leftarrow addr 16	-	-		-	-	-	-	-	-	-	-	
JMP @ear		(a)	0	(c)	word (PC) \leftarrow (ear)		-		-	-	-	-	-	-	-	-	
JMP @eam	$2+$	4+ (a)	0	(c)	word (PC) $\leftarrow($ eam)		-		-	-		-	-	-	-	-	
JMPP @ear*3	2	(a)		0	word (PC) \leftarrow (ear), (PCB) $\leftarrow($ ear +2)	-	-		-	-		-	-	-	-	-	
JMPP @eam*3	$2+$	6+ (a)	0	(d)	word (PC) $\leftarrow($ eam), (PCB$) \leftarrow($ eam +2$)$	-	-		-	-		-	-	-	-	-	
JMPP addr24	4	4	0)	word $(\mathrm{PC}) \leftarrow$ ad24 0 to 15, $(\mathrm{PCB}) \leftarrow \operatorname{ad} 2416$ to 23				-			-					
CALL @ear*4	2	6	1	(c)	word (PC) \leftarrow (ear)	-	-		-	-	-	-	-	-	-	-	-
CALL @eam *4	$2+$	$7+$ (a)	0	$2 \times$ (c)	word (PC) \leftarrow (eam)	-	-		-			-	-	-	-	-	-
CALL addr16*5	3	6	0	(c)	word $(\mathrm{PC}) \leftarrow$ addr 16	-	-					-	-	-	-	-	-
CALLV \#vct4*5	1	7	0	$2 \times$ (c)	Vector call instruction	-	-		-			-	-	-	-	-	-
CALLP @ear*6	2	10	2	2× (c)	word $(\mathrm{PC}) \leftarrow$ (ear) 0 to 15 , $(\mathrm{PCB}) \leftarrow(\mathrm{ear}) 16$ to 23	-			-			-	-		-	-	
CALLP @eam *6	2+	11+ (a)	0	*2	word $(\mathrm{PC}) \leftarrow($ eam $) 0$ to 15 , $(\mathrm{PCB}) \leftarrow($ eam $) 16$ to 23	-			-			-	-	-	-	-	-
CALLP addr24*7	4	10	0	$2 \times$ (c)	word (PC) \leftarrow addr0 to 15 , $(\mathrm{PCB}) \leftarrow$ addr16 to 23	-			-			-	-	-	-	-	-

*1: 4 when branching, 3 when not branching.
*2: (b) $+3 \times$ (c)
*3: Read (word) branch address.
*4: W: Save (word) to stack; R: read (word) branch address.
*5: Save (word) to stack.
*6: W: Save (long word) to W stack; R: read (long word) R branch address.
*7: Save (long word) to stack.
Note : For an explanation of "(a)" to "(d)", refer to Table 4, "Number of Execution Cycles for Each Type of Addressing," and Table 5, "Correction Values for Number of Cycles Used to Calculate Number of Actual Cycles."

MB90595 Series

Table 20 Branch 2 Instructions [19 Instructions]

*1: 5 when branching, 4 when not branching
*2: 13 when branching, 12 when not branching
*3: $7+$ (a) when branching, $6+$ (a) when not branching
*4: 8 when branching, 7 when not branching
*5: 7 when branching, 6 when not branching
*6: $8+$ (a) when branching, $7+$ (a) when not branching
*7: Set to $3 \times(\mathrm{b})+2 \times$ (c) when an interrupt request occurs, and $6 \times$ (c) for return.
*8: Retrieve (word) from stack
*9: Retrieve (long word) from stack
*10: In the CBNE/CWBNE instruction, do not use the RWj+ addressing mode.
Note : For an explanation of "(a)" to "(d)", refer to Table 4, "Number of Execution Cycles for Each Type of Addressing," and Table 5, "Correction Values for Number of Cycles Used to Calculate Number of Actual Cycles."

MB90595 Series

Table 21 Other Control Instructions (Byte/Word/Long Word) [36 Instructions]

Mnemonic	\#	\sim	RG	B	Operation	LH	AH	1	s	T	N	z	v	c	RMW
PUSHW A	1	4	0	(c)	word (SP) $\leftarrow(\mathrm{SP})-2,((\mathrm{SP})) \leftarrow(\mathrm{A})$	-	-	-	-	-	-	-	-	-	-
PUSHW AH	1	4	0	(c)	word $(\mathrm{SP}) \leftarrow(\mathrm{SP})-2,((S P)) \leftarrow(\mathrm{AH})$	-	-	-	-	-	-	-	-	-	-
PUSHW PS	1	4	0	(c)	word $(\mathrm{SP}) \leftarrow(\mathrm{SP})-2,((\mathrm{SP})) \leftarrow(\mathrm{PS})$	-	-	-	-	-	-	-	-	-	-
PUSHW rlst	2	*3	*5	*4	$(\mathrm{SP}) \leftarrow(\mathrm{SP})-2 \mathrm{n},((\mathrm{SP})) \leftarrow(\mathrm{rlst})$	-	-	-	-	-	-	-	-	-	-
POPW A	1	3	0	(c)	word $(\mathrm{A}) \leftarrow((\mathrm{SP}))$, (SP) $\leftarrow(\mathrm{SP})+2$	-	*	-	-	-	-	-	-	-	-
POPW AH	1	3	0	(c)	word $(\mathrm{AH}) \leftarrow((\mathrm{SP})), \mathrm{SP}) \leftarrow(\mathrm{SP})+2$	-	-	-	-	-	-	-	-	-	-
POPW PS	1	4	0	(c)	word $(\mathrm{PS}) \leftarrow((\mathrm{SP})$), (SP) $\leftarrow(\mathrm{SP})+2$	-	-	*	*	*	*	*	*	*	-
POPW rlst	2	*2	*5	*4	$(\mathrm{rlst}) \leftarrow((\mathrm{SP})),(\mathrm{SP}) \leftarrow(\mathrm{SP})+2 \mathrm{n}$	-	-	-	-	-	-	-	-	-	-
JCTX @A	1	14	0	$6 \times$ (c)	Context switch instruction	-	-	*	*	*	*	*	*	*	-
AND CCR, \#imm8	2	3	0	0	byte $(\mathrm{CCR}) \leftarrow(\mathrm{CCR})$ and imm8	-	-	*	*	*	*	*	*	*	-
OR CCR, \#imm8	2	3	0	0	byte $(\mathrm{CCR}) \leftarrow(\mathrm{CCR})$ or imm8	-	-	*	*	*	*	*		*	-
MOV RP, \#imm8	2	2	0	0	byte (RP) ↔imm8	-	-	-	-	-	-	-	-	-	-
MOV ILM, \#imm8	2	2	0	0	byte (ILM) \leftarrow imm8	-	-	-	-	-	-	-	-	-	-
MOVEA RWi, ear	2	3	1	0	word (RWi) ¢ear	-	-	-	-	-	-	-	-	-	-
MOVEA RWi, eam	2+	$2+(\mathrm{a})$	1	0	word (RWi) ¢eam	-	-	-	-	-	-	-	-	-	-
MOVEA A, ear	2	1	0	0	word $(A) \leftarrow$ ear	-	*	-	-	-	-	-	-	-	-
MOVEA A, eam	2+	$1+(\mathrm{a})$	0	0	word $(A) \leftarrow$ eam	-	*	-	-	-	-	-	-	-	-
ADDSP \#imm8	2	3	0	0	word (SP) $\leftarrow(\mathrm{SP})+$ +ext (imm8)	-	-	-	-	-	-	-	-	-	-
ADDSP \#imm16	3	3	0	0	word $(\mathrm{SP}) \leftarrow(\mathrm{SP})+$ +imm16	-	-	-	-	-	-	-	-	-	-
MOV A, brgl	2	*1	0	0	byte $($ A $) \leftarrow($ brgl)	Z	*	-	-	-	*	*	-	-	-
MOV brg2, A	2	1	0	0	byte $($ brg2 $) \leftarrow(A)$	-	-	-	-	-	*		-	-	-
NOP	1	1	0	0	No operation	-	-	-	-	-	-	-	-	-	-
ADB	1	1	0	0	Prefix code for accessing AD space	-	-	-	-	-	-	-	-	-	-
DTB	1	,	0	0	Prefix code for accessing DT space	-	-	-	-	-	-	-	-	-	-
PCB	1	1	0	0	Prefix code for accessing PC space	-	-	-	-	-	-	-	-	-	-
SPB	1	1	0	0	Prefix code for accessing SP space	-	-	-	-	-	-	-	-	-	-
NCC	1	1	0	0	Prefix code for no flag change	-	-	-	-	-	-	-	-	-	-
CMR	1	1	0	0	Prefix code for common register bank	-	-	-	-	-	-	-	-	-	-

*1: PCB, ADB, SSB, USB, and SPB : 1 state DTB, DPR : 2 states
*2: $7+3 \times$ (pop count) $+2 \times$ (last register number to be popped), 7 when rlst $=0$ (no transfer register)
*3: $29+$ (push count) $-3 \times$ (last register number to be pushed), 8 when rlst $=0$ (no transfer register)
*4: Pop count \times (c), or push count \times (c)
*5: Pop count or push count.
Note : For an explanation of "(a)" to "(d)", refer to Table 4, "Number of Execution Cycles for Each Type of Addressing," and Table 5, "Correction Values for Number of Cycles Used to Calculate Number of Actual Cycles."

MB90595 Series

Table 22 Bit Manipulation Instructions [21 Instructions]

Mnemonic	\#	~	RG	B	Operation	LH	AH		1	s	T	N	z	z	v	c	RMW
MOVB A, dir:bp	3	5	0	(b)	byte $($ A $) \leftarrow$ (dir:bp) b	Z			-	-	-				-	-	
MOVB A, addr16:bp	4	5	0	(b)	byte $($ A $) \leftarrow$ (addr16: bp) b	z			-	-	-			*	-	-	-
MOVB A, io:bp	3	4	0	(b)	byte $(A) \leftarrow$ (io:bp) b	Z			-	-	-				-	-	-
MOVB dir:bp, A	3	7	0	$2 \times$ (b)	bit (dir:bp) $\mathrm{b} \leftarrow(\mathrm{A})$	-			-	-	-				-	-	*
MOVB addr16:bp, A	4	7	0	$2 \times$ (b)	bit (addr16:bp) $\mathrm{b} \leftarrow(\mathrm{A})$	-			-	-	-			*	-	-	
MOVB io:bp, A	3	6	0	$2 \times$ (b)	bit (io:bp) $\mathrm{b} \leftarrow(\mathrm{A})$	-	-		-	-	-				-	-	
SETB dir:bp	3	7	0	$2 \times$ (b)	bit (dir:bp) $\mathrm{b} \leftarrow 1$	-	-		-	-	-	-			-	-	*
SETB addr16:bp	4	7	0	$2 \times$ (b)	bit (addr16:bp) $\mathrm{b} \leftarrow 1$				-	-	-	-	-	-	-	-	
SETB io:bp	3	7	0	$2 \times$ (b)	bit (io:bp) $\mathrm{b} \leftarrow 1$	-			-	-	-			-	-	-	
CLRB dir:bp	3	7	0	$2 \times$ (b)	bit (dir:bp) $\mathrm{b} \leftarrow 0$				-	-	-				-	-	
CLRB addr16:bp	4	7	0	$2 \times$ (b)	bit (addr16:bp) $\mathrm{b} \leftarrow 0$	-	-		-	-	-	-	-	-	-	-	
CLRB io:bp	3	7	0	$2 \times$ (b)	bit (io:bp) $\mathrm{b} \leftarrow 0$	-	-		-	-	-	-	-	-	-	-	*
BBC dir:bp, rel	4	$*_{1}$	0	(b)	Branch when (dir:bp) b $=0$				-	-	-	-			-	-	-
BBC addr16:bp, rel	5	${ }^{*}$	0	(b)	Branch when (addr16:bp) $\mathrm{b}=0$	-	-		-	-	-	-			-	-	-
BBC io:bp, rel	4	*2	0	(b)	Branch when (io:bp) $\mathrm{b}=0$	-	-		-	-	-	-			-	-	-
BBS dir:bp, rel	4	$*_{1}$	0	(b)	Branch when (dir:bp) $\mathrm{b}=1$					-	-	-			-	-	-
BBS addr16:bp, rel	5	*1	0	(b)	Branch when (addr16:bp) $b=1$	-	-		-	-	-	-			-	-	-
BBS io:bp, rel	4	*2	0	(b)	Branch when (io:bp) $b=1$	-	-		-	-	-	-			-	-	-
SBBS addr16:bp, rel	5	*3	0	$2 \times$ (b)	Branch when (addr16:bp) $b=1$, bit $=1$	-	-		-	-	-	-			-	-	
WBTS io:bp	3	*4	0	*5	Wait until (io:bp) $\mathrm{b}=1$	-	-		-	-	-	-			-	-	-
WBTC io:bp	3	*4	0	*5	Wait until (io:bp) $\mathrm{b}=0$	-	-		-	-	-	-			-	-	-

*1: 8 when branching, 7 when not branching
*2: 7 when branching, 6 when not branching
*3: 10 when condition is satisfied, 9 when not satisfied
*4: Undefined count
*5: Until condition is satisfied
Note : For an explanation of "(a)" to "(d)", refer to Table 4, "Number of Execution Cycles for Each Type of Addressing," and Table 5, "Correction Values for Number of Cycles Used to Calculate Number of Actual Cycles."

Table 23 Accumulator Manipulation Instructions (Byte/Word) [6 Instructions]

Mnemonic	$\#$	\sim	RG	B	Operation	LH	AH	I	s	T	N	Z	V	C	RMw
SWAP	1	3	0	0	byte (A) 0 to $7 \leftrightarrow($ (A) 8 to 15	-	-	-	-	-	-	-	-	-	-
SWAPW	1	2	0	0	word (AH $\leftrightarrow($ AL $)$	-	$*$	-	-	-	-	-	-	-	-
EXT	1	1	0	0	byte sign extension	X	-	-	-	-	$*$	$*$	-	-	-
EXTW	1	2	0	0	word sign extension	-	X	-	-	-	$*$	$*$	-	-	-
ZEXT	1	1	0	0	byte zero extension	Z	-	-	-	-	R	$*$	-	-	-
ZEXTW	1	1	0	0	word zero extension	-	Z	-	-	-	R	$*$	-	-	-

MB90595 Series

Table 24 String Instructions [10 Instructions]

Mnemonic	\#	~	RG	B	Operation	LH	AH	1	S	T	N	z	v	c	RMW
MOVS/MOVSI	2	*2	*5	*3	Byte transfer @AH+ ¢@AL+, counter = RW0	-	-	-	-	-	-	-	-	-	-
MOVSD	2	*2	*5	*3	Byte transfer @AH- ¢ @AL-, counter = RW0	-	-	-	-	-	-	-	-	-	-
SCEQ/SCEQI	2	*1	*5	*4	Byte retrieval (@AH+) - AL, counter = RW0	-	-	-	-	-	*	*	*	*	-
SCEQD	2	*1	*5	*4	Byte retrieval (@AH-) - AL, counter = RW0	-	-	-	-	-	*	*	*	*	-
FISL/FILSI	2	$6 \mathrm{~m}+6$	*5	*3	Byte filling @AH $+\leftarrow A L$, counter $=$ RW0	-	-	-	-	-	*	*	-	-	-
MOVSW/MOVSWI	2	*2	*8	*6	Word transfer @AH+ ¢ @AL+, counter = RW0	-	-	-	-	-	-	-	-	-	-
MOVSWD	2	*2	*8	*6	Word transfer @AH- ¢ @AL-, counter = RW0	-	-	-	-	-	-	-	-	-	-
SCWEQ/SCWEQI	2	*1	*8	*7	Word retrieval (@AH+) - AL, counter = RW0	-	-	-	-	-	*	*	*	*	-
SCWEQD	2	*1	*8	*7	Word retrieval (@AH-) - AL, counter = RW0	-	-	-	-	-	*	*	*	*	-
FILSW/FILSWI	2	$6 \mathrm{~m}+6$	*8	*6	Word filling @AH $+\leftarrow$ AL, counter $=$ RW0	-	-	-	-	-	*	*	-	-	-

m : RW0 value (counter value)
n: Loop count
*1: 5 when RW0 is $0,4+7 \times($ RW0 $)$ for count out, and $7 \times \mathrm{n}+5$ when match occurs
*2: 5 when RW0 is $0,4+8 \times($ RWO) in any other case
*3: (b) $\times($ RW0 $)+(b) \times($ RW0 $)$ when accessing different areas for the source and destination, calculate (b) separately for each.
*4: (b) $\times \mathrm{n}$
*5: $2 \times$ (RW0)
*6: (c) $\times($ RW0 $)+(\mathrm{c}) \times($ RW0) when accessing different areas for the source and destination, calculate (c) separately for each.
*7: (c) $\times \mathrm{n}$
*8: $2 \times(\mathrm{RW} 0)$
Note : For an explanation of "(a)" to "(d)", refer to Table 4, "Number of Execution Cycles for Each Type of Addressing," and Table 5, "Correction Values for Number of Cycles Used to Calculate Number of Actual Cycles."

MB90595 Series

- ORDERING INFORMATION

Part number	Package	Remarks
MB90548PF		
MB90F598PF	100-pin Plastic QFP (FPT-100P-M06)	
MB90V595CR	256-pin Ceramic PGA (PGA-256C-A01)	For evaluation

MB90595 Series

PACKAGE DIMENSION

100-pin plastic QFP
(FPT-100P-M06)

© 1994 FUJTSU LIMTED F100008-3C-2

MB90595 Series

250-pin ceramic PGA (PGA-256-A01)

© 1994 FUJITSU LIMTED R256001SC-5-3
Dimensions in mm (inches)

MB90595 Series

FUJITSU LIMITED

For further information please contact:

Japan

FUJITSU LIMITED
Corporate Global Business Support Division
Electronic Devices
KAWASAKI PLANT, 4-1-1, Kamikodanaka
Nakahara-ku, Kawasaki-shi
Kanagawa 211-8588, Japan
Tel: 81(44) 754-3763
Fax: 81(44) 754-3329
http://www.fujitsu.co.jp/
North and South America
FUJITSU MICROELECTRONICS, INC.
Semiconductor Division
3545 North First Street
San Jose, CA 95134-1804, USA
Tel: (408) 922-9000
Fax: (408) 922-9179
Customer Response Center
Mon. - Fri.: 7 am - 5 pm (PST)
Tel: (800) 866-8608
Fax: (408) 922-9179
http://www.fujitsumicro.com/

Europe

FUJITSU MICROELECTRONICS EUROPE GmbH
Am Siebenstein 6-10
D-63303 Dreieich-Buchschlag
Germany
Tel: (06103) 690-0
Fax: (06103) 690-122
http://www.fujitsu-ede.com/
Asia Pacific
FUJITSU MICROELECTRONICS ASIA PTE LTD
\#05-08, 151 Lorong Chuan
New Tech Park
Singapore 556741
Tel: (65) 281-0770
Fax: (65) 281-0220
http://www.fmap.com.sg/

All Rights Reserved.

The contents of this document are subject to change without notice. Customers are advised to consult with FUJITSU sales representatives before ordering.

The information and circuit diagrams in this document are presented as examples of semiconductor device applications, and are not intended to be incorporated in devices for actual use. Also, FUJITSU is unable to assume responsibility for infringement of any patent rights or other rights of third parties arising from the use of this information or circuit diagrams.

FUJITSU semiconductor devices are intended for use in standard applications (computers, office automation and other office equipment, industrial, communications, and measurement equipment, personal or household devices, etc.).

CAUTION:

Customers considering the use of our products in special applications where failure or abnormal operation may directly affect human lives or cause physical injury or property damage, or where extremely high levels of reliability are demanded (such as aerospace systems, atomic energy controls, sea floor repeaters, vehicle operating controls, medical devices for life support, etc.) are requested to consult with FUJITSU sales representatives before such use. The company will not be responsible for damages arising from such use without prior approval.

Any semiconductor devices have an inherent chance of failure. You must protect against injury, damage or loss from such failures by incorporating safety design measures into your facility and equipment such as redundancy, fire protection, and prevention of over-current levels and other abnormal operating conditions.

If any products described in this document represent goods or technologies subject to certain restrictions on export under the Foreign Exchange and Foreign Trade Law of Japan, the prior authorization by Japanese government will be required for export of those products from Japan.

F9909

© FUJITSU LIMITED Printed in Japan

[^0]: *1: Embedded Algorithm is a trade mark of Advanced Micro Devices Inc

[^1]: *1: Set AVcc and Vcc to the same voltage. Make sure that AV cc does not exceed V_{cc} and that the voltage at the analog inputs does not exceed $A V$ cc when the power is switched on.
 ${ }^{*} 2$: V_{I} and V_{0} should not exceed $\mathrm{V} c \mathrm{c}+0.3 \mathrm{~V}$. V_{1} should not exceed the specified ratings. However if the maximun current to/from a input is limited by some means with external components, the l_{1} rating supercedes the V_{1} rating.

