16-bit Proprietary Microcontroller

CMOS

F²MC-16LX MB90550A Series

MB90552A/553A/T552A/T553A/F553A/P553A

■ DESCRIPTION

The MB90550A series is a line of general-purpose, high-performance, 16-bit microcontrollers designed for applications which require high-speed real-time processing, such as industrial machines, OA equipment, and process control systems.

While inheriting the AT architecture of the $\mathrm{F}^{2} \mathrm{MC}^{*}-8$ family, the instruction set for the MB90550A series incorporates additional instructions for high-level languages, supports extended addressing modes, and contains enhanced multiplication and division instructions as well as a substantial collection of improved bit manipulation instructions. In addition, the MB90550A has an on-chip 32-bit accumulator which enables processing of long-word data.
*: F²MC stands for FUJITSU Flexible Microcontroller.

FEATURES

- Minimum instruction execution time : 62.5 ns (at oscillation of $4 \mathrm{MHz}, \times f o u r$ times the PLL clock)
- Maximum memory space 16 Mbytes
- Instruction set optimized for controller applications

Supported data types : Bit, byte, word, and long word
Typical addressing mode : 23 types
Enhanced precision calculation realized by the 32-bit accumulator
Enhanced signed multiplication/division instruction and RETI instruction functions
(Continued)

PACKAGES

100-pin plastic QFP
(FPT-100P-M06)
(FPT-100P-M05)

MB90550A Series

(Continued)

- Instruction set designed for high level language (C) and multi-task operations Adoption of system stack pointer
Symmetrical instruction set and barrel shift instructions
- Address match detection function integrated (for two address pointers)
- Faster execution speed : 4-byte queue
- Powerful interrupt functions (Eight priority levels programmable)

External interrupt inputs : 8 channels

- Data transfer functions (Intelligent I/O service) : Up to 16 channels

DTP request inputs : 8 channels

- Embedded ROM size (EPROM, Flash : 128 Kbytes)

Mask ROM : 64 Kbytes/128 Kbytes

- Embedded RAM size (EPROM, Flash : 4 Kbytes)

Mask ROM : 2 Kbytes/4 Kbytes

- General-purpose ports :Up to 83 channels
(Input pull-up resistor settable for: 16 channels
Open drain settable for : 8 channels
I/O open drains : 6 channels)
- A/D converter (RC successive approximation type): 8 channels (Resolution: 8 or 10 bits selectable; Conversion time of $26.3 \mu \mathrm{~s}$ minimum)
- UART : 1 channel
- Extended I/O serial interface : 2 channels
- ${ }^{2} \mathrm{C}$ interface : 2 channels (Two channels, including one switchable between terminal input and output)
- 16-bit reload timer : 2 channels
- 8/16-bit PPG timer : 3 channels (8 bits $\times 2$ channels; 16 bits $\times 1$ channel: Mode switching function provided)
- 16 -bit I/O timer
(Input capture $\times 4$ channels, output compare $\times 4$ channels, free run timer $\times 1$ channel
- Clock monitor function integrated (Delivering the oscillation clock divided by 21 to 28)
- Timebase timer/watchdog timer : 18 bit
- Low power consumption modes (sleep, stop, hardware standby, and CPU intermittent operation modes)
- Package : QFP-100, LQFP-100
- CMOS technology

MB90550A Series

- PRODUCT LINEUP

Part number Item		MB90552A	MB90553A	MB90F553A	MB90P553A	MB90V550A
Classification		Mask ROM products		Flash ROM products	OTP	Evaluation product
		Mass Product				
ROM size		64 Kbytes	128 Kbytes			None
RAM size		2 Kbytes	4 Kbytes			6 Kbytes
CPU functions		The number of instructions: 340Instruction bit length: 8 bits, 16 bitsInstruction length: 1 byte to 7 bytesData bit length: 1 bit, 8 bits, 16 bitsMinimum execution time: 62.5 ns (at machine clock of 16 MHz)Interrupt processing time: 1.5 ms (at machine clock of 16 MHz , minimum value)				
Ports		General-purpose I/O ports (CMOS output): 53 General-purpose I/O ports (with pull-up resistor): 16 General-purpose I/O ports (N-channel open-drain output): 6 General-purpose I/O ports (N-channel open-drain function selectable): 8 Total: 83				
UART0 (SCI)		Clock synchronized transmission (62.5 kbps to 2 Mbps) Clock asynchronized transmission (62500 bps to 9615 bps) Transmission can be performed by bi-directional serial transmission or by master/slave connection.				
8/10-bit A/D converter		Resolution: 8/10-bit Number of inputs: 8 One-shot conversion mode (converts selected channel only once) Scan conversion mode (converts two or more successive channels and can program up to 8 channels.) Continuous conversion mode (converts selected channel continuously) Stop conversion mode (converts selected channel and stop operation repeatedly)				
8/16-bit PPG timer		Number of channels: 1 (or 8-bit $\times 2$ channels)PPG operation of 8-bit or 16 -bitA pulse wave of given intervals and given duty ratios can be output.Pulse interval: 62.5 ns to 1 ms (at oscillation of 4 MHz , machine clock of 16 MHz)				
16-bit I/O timer	16-bit free run timer	Number of channel: 1 Overflow interrupts				
	Output compare (OCU)	Number of channels: 4 Pin input factor: A match signal of compare register				
	Input cap- ture (ICU)	Number of channels: 4 Rewriting a register value upon a pin input (rising, falling, or both edges)				

(Continued)

MB90550A Series

Part number Item	MB90552A	MB90553A	MB90F553A	MB90P553A	MB90V550A
DTP/external interrupt circuit	Number of inputs: 8 Started by a rising edge, a falling edge, an " H " level input, or an " L " level input. External interrupt circuit or extended intelligent I/O service (EI²OS) can be used				
Extended I/O serial interface	Clock synchronized transmission (3125 bps to 1 Mbps) LSB first/MSB first				
${ }^{12} \mathrm{C}$ interface	Serial I/O port for supporting Inter IC BUS				
Timebase timer					
Watchdog timer	Reset generation interval: $3.58 \mathrm{~ms}, 14.33 \mathrm{~ms}, 57.23 \mathrm{~ms}, 458.75 \mathrm{~ms}$ (at oscillation of 4 MHz , minimum value)				
Process	CMOS				
Power supply voltage for operation*	4.5 V to 5.5 V				

*:Varies with conditions such as the operating frequency. (See section "■ ELECTRICAL CHARACTERISTICS") Assurance for the MB90V550A is given only for operation with a tool at a power voltage of 4.5 V to 5.5 V , an operating temperature of 0 to $+25^{\circ} \mathrm{C}$, and an operating frequency of 1 MHz to 16 MHz .

■ PACKAGE AND CORRESPONDING PRODUCTS

Package	MB90552A	MB90553A	MB90F553A	MB90P553A
FPT-100P-M05	\bigcirc	\bigcirc	\bigcirc	\times
FPT-100P-M06	\bigcirc	\bigcirc	\bigcirc	\bigcirc

\bigcirc : Available \times : Not available
Note:For more information about each package, see section "■ PACKAGE DIMENSIONS"

- DIFFERENCES AMONG PRODUCTS

Memory Size

In evaluation with an evaluation product, note the difference between the evaluation product and the product actually used. The following items must be taken into consideration.

- The MB90V550A does not have an internal ROM, however, operations equivalent to chips with an internal ROM can be evaluated by using a dedicated development tool, enabling selection of ROM size by settings of the development tool.
- In the MB90V550, images from FF4000н to FFFFFFн are mapped to bank 00, and FE0000н to FF3FFFr to mapped to bank FE and FF only. (This setting can be changed by configuring the deveolpment tool.)
- In the MB90F553A/553A/552A, images from FF4000н to FFFFFF н are mapped to bank 00, and FF0000н to FF3FFF to bank FF only.

MB90550A Series

PIN ASSIGNMENT

- FPT-100P-M06
(Top view)

(FPT-100P-M06)

MB90550A Series

- FPT-100P-M05
(Top view)

(FPT-100P-M05)

MB90550A Series

■ PIN DESCRIPTION

Pin no.		Pin name	Circuit type	Function
QFP	LQFP			
82	80	X0	A	Oscillation pin
83	81	X1	A	Oscillation pin
77	75	$\overline{R S T}$	B	Reset input pin
52	50	FST	C	Hardware standby input pin

(Continued)

MB90550A Series

Pin no.		Pin name	Circuit type	Function
QFP	LQFP			
14	12	P34	$\begin{gathered} \text { E } \\ \text { (CMOS) } \end{gathered}$	General-purpose I/O port. This function is enabled in single-chip mode
		HRQ		Hold request input pin. This function is enabled in an external-bus enabled mode.
15	13	P35	$\begin{gathered} \text { E } \\ \text { (CMOS) } \end{gathered}$	General-purpose I/O port. This function is enabled in single-chip mode.
		HAK		Hold acknowledge output pin. This function is enabled in an external-bus enabled mode.
16	14	P36	$\begin{gathered} \text { E } \\ \text { (CMOS) } \end{gathered}$	General-purpose I/O port. This function is enabled in single-chip mode.
		RDY		Ready signal input pin. This function is enabled in an external-bus enabled mode.
17	15	P37	$\begin{gathered} \text { E } \\ \text { (CMOS) } \end{gathered}$	General-purpose I/O port. This function is enabled in single-chip mode.
		CLK		CLK output pin. This function is enabled in an external-bus enabled mode.
18	16	P40	$\begin{gathered} \text { F } \\ (\mathrm{CMOS} / \mathrm{H}) \end{gathered}$	General-purpose I/O port. Serves as an open-drain output port ($O D 40=1$) depending on the setting of the open-drain control setting register (ODR4). ($\mathrm{D} 40=0$: Disabled when the port is set for input.)
		SCK		UART serial clock I/O pin. This function is enabled with the UART clock output enabled.
19	17	P41	$\begin{gathered} \text { F } \\ \text { (CMOS/H) } \end{gathered}$	General-purpose I/O port. Serves as an open-drain output port (OD41 = 1) depending on the setting of the open-drain control setting register (ODR4). (D41 = 0: Disabled when the port is set for input.)
		SOT		UART serial data output pin. This function is enabled with the UART serial data output enabled.
20	18	P42	$\begin{gathered} \mathrm{F} \\ (\mathrm{CMOS} / \mathrm{H}) \end{gathered}$	General-purpose I/O port. Serves as an open-drain output port (OD42 = 1) depending on the setting of the open-drain control setting register (ODR4). ($\mathrm{D} 42=0$: Disabled when the port is set for input.)
		SIN		UART serial data input pin. Since this input is used as required while the UART is operating for input, the output by any other function must be off unless used intentionally.
21	19	P43	$\begin{gathered} \text { F } \\ (\mathrm{CMOS} / \mathrm{H}) \end{gathered}$	General-purpose I/O port. Serves as an open-drain output port (OD43 = 1) depending on the setting of the open-drain control setting register (ODR4). (D43 = 0: Disabled when the port is set for input.)
		SCK1		Extended I/O serial clock I/O pin. This function is enabled with the extended I/O serial clock output enabled.

(Continued)

MB90550A Series

Pin no.		Pin name	Circuit type	Function
QFP	LQFP			
22	20	P44	$\begin{gathered} \text { F } \\ (\mathrm{CMOS} / \mathrm{H}) \end{gathered}$	General-purpose I/O port. Serves as an open-drain output port (OD44 = 1) depending on the setting of the open-drain control setting register (ODR4). (D44 = 0: Disabled when the port is set for input.)
		SOT1		Extended I/O serial data output pin. This function is enabled with the extended I/O serial data output enabled.
24	22	P45	$\begin{gathered} \text { F } \\ (\mathrm{CMOS} / \mathrm{H}) \end{gathered}$	General-purpose I/O port. Serves as an open-drain output port (OD45 = 1) depending on the setting of the open-drain control setting register (ODR4). (D45 = 0: Disabled when the port is set for input.)
		SIN1		Extended I/O serial data input pin. Since this input is used as required while the extended I/O serial interface is operating for input, the output by any other function must be off unless used intentionally.
25	23	P46	$\begin{gathered} \text { F } \\ \text { (CMOS/H) } \end{gathered}$	General-purpose I/O port. Serves as an open-drain output port ($O D 46=1$) depending on the setting of the open-drain control setting register (ODR4). (D46 = 0: Disabled when the port is set for input.)
		ADTG		A/D converter external trigger input pin. Since this input is used as required while the A / D converter is operating for input, the output by any other function must be off unless used intentionally.
26	24	P47	$\begin{gathered} \mathrm{F} \\ (\mathrm{CMOS} / \mathrm{H}) \end{gathered}$	General-purpose I/O port. Serves as an open-drain output port (OD47 = 1) depending on the setting of the open-drain control setting register (ODR4). D47 = 0: Disabled when the port is set for input.
		SCKO		Extended I/O serial clock I/O pin. This function is enabled with the extended I/O serial clock output enabled.
27	25	C	-	Capacitance pin for regulating the power supply. Connect an external ceramic capacitor of about $0.1 \mu \mathrm{~F}$.
28	26	P50	$\begin{gathered} \mathrm{G} \\ (\mathrm{NchOD} / \mathrm{H}) \end{gathered}$	N -channel open-drain I/O port.
		SDAO		${ }^{2} \mathrm{C}$ interface data I / O pin. This function is enabled with the $I^{2} \mathrm{C}$ interface enabled for operation. While the $I^{2} \mathrm{C}$ interface is operating, place the port output in the Hi-Z state (PDR = 1).
		SOTO		Extended I/O serial data output pin. This function is enabled with the extended I/O serial data output enabled.

(Continued)

MB90550A Series

Pin no.		Pin name	Circuit type	Function
QFP	LQFP			
29	27	P51	$\underset{(\mathrm{NchOD} / \mathrm{H})}{\mathrm{G}}$	N-channel open-drain I/O port.
		SCLO		${ }^{2} \mathrm{C}$ interface clock I / O pin. This function is enabled with the ${ }^{1}{ }^{2} \mathrm{C}$ interface enabled for operation. While the $I^{2} \mathrm{C}$ interface is operating, place the port output in the $\mathrm{Hi}-\mathrm{Z}$ state $(\mathrm{PDR}=1)$.
		SIN0		Extended I/O serial data input pin. Since this input is used as required while the extended I/O serial interface is operating for input, the output by any other function must be off unless used intentionally.
30,32	28,30	P52,P54	$\begin{gathered} \mathrm{G} \\ (\mathrm{NchOD} / \mathrm{H}) \end{gathered}$	N -channel open-drain I/O port.
		SDA1,SDA2		${ }^{2}{ }^{2} \mathrm{C}$ interface data I / O pins. This function is enabled with the ${ }^{1} \mathrm{C}$ interface enabled for operation. While the $I^{2} \mathrm{C}$ interface is operating, place the port output in the Hi-Z state (PDR = 1).
31,33	29,31	P53,P55	$\begin{gathered} \mathrm{G} \\ (\mathrm{NchOD} / \mathrm{H}) \end{gathered}$	N-channel open-drain I/O port.
		SCL1,SCL2		${ }^{2}{ }^{2} \mathrm{C}$ interface clock I/O pins. This function is enabled with the ${ }^{1} \mathrm{C}$ interface enabled for operation. While the $I^{2} \mathrm{C}$ interface is operating, place the port output in the Hi-Z state (PDR = 1).
$\begin{array}{r} 38 \text { to } 41 \\ 43 \text { to } 46 \end{array}$	36 to 39 , 41 to 44	P60 to P67	$\begin{gathered} \mathrm{H} \\ (\mathrm{CMOS} / \mathrm{H}) \end{gathered}$	General-purpose I/O port.
		AN0 to AN7		A/D converter analog input pin. This function is enabled with the analog input enabled.
$\begin{gathered} 47,48, \\ 53 \text { to } 58 \end{gathered}$	$\begin{gathered} 45,46 \\ 51 \text { to } 56 \end{gathered}$	P70 to P77	$\begin{gathered} \text { I } \\ \text { (CMOS/H) } \end{gathered}$	General-purpose I/O port.
		IRQ0 to IRQ7		External interrupt request input pins. Since this input is used as required while external interrupts remain enabled, the output by any other function must be off unless used intentionally.
59,60	57,58	P80,P81	$\stackrel{J}{\text { (CMOS/H) }}$	General-purpose I/O port.
		TIN0,TIN1		Reload timer event input pins. Since this input is used as required while the reload timer is operating for input, the output by any other function must be off unless used intentionally.
61,62	59,60	P82,P83	$\begin{gathered} \text { J } \\ \text { (CMOS/H) } \end{gathered}$	General-purpose I/O port.
		TOT0,TOT1		Reload timer output pins.
63 to 66	61 to 64	P84 to P87	$\underset{(\mathrm{CMOS} / \mathrm{H})}{\mathrm{J}}$	General-purpose I/O port.
		IN0 to IN3		Input capture trigger input pin. Since this input is used as required while the input capture unit is operating for input, the output by any other function must be off unless used intentionally.
67,68	65,66	P90,P91	$\begin{gathered} \mathrm{J} \\ (\mathrm{CMOS} / \mathrm{H}) \end{gathered}$	General-purpose I/O port.
		OUT0,OUT1		Output compare event output pins.

(Continued)

MB90550A Series

(Continued)

Pin no.		Pin name	Circuit type	Function
QFP	LQFP			
69 to 74	67 to 72	P92 to P97	$\underset{(\mathrm{CMOS} / \mathrm{H})}{\mathrm{J}}$	General-purpose I/O port.
		$\begin{aligned} & \text { PPG0 to } \\ & \text { PPG5 } \end{aligned}$		PPG output pins. This function is enabled with the PPG output enabled.
75,76	73,74	PA0,PA1	$\underset{(\mathrm{CMOS} / \mathrm{H})}{\mathrm{J}}$	General-purpose I/O port.
		OUT2,OUT3		Output compare event output pins.
78,79	76,77	PA2,PA3	$\underset{(\mathrm{CMOS} / \mathrm{H})}{\mathrm{J}}$	General-purpose I/O port.
80	78	PA4	$\stackrel{J}{(C M O S / H)}$	General-purpose I/O port.
		CKOT		Serves as the CKOT output while the CKOT is operating.
34	32	AVcc	-	A/D converter power-supply pin.
35	33	AVRH	-	This is a general purpose I/O port.
36	34	AVRL	-	A/D converter external reference voltage source pin.
37	35	AVss	-	A/D converter power-supply pin.
49 to 50	47 to 48	MD0,MD1	C	Operation mode setting input pins. Connect these pins directly to Vcc or Vss.
51	49	MD2	K	Operation mode setting input pin. Connect this pin directly to Vcc or Vss. (MB90552A/553A/ V550A)
			C	Operation mode setting input pin. Connect this pin directly to Vcc or Vss. (MB90P553A/F553A)
23,84	21,82	Vcc	-	Power (5 V) input pin.
$\begin{gathered} 11,42, \\ 81 \end{gathered}$	$\begin{gathered} 9,40, \\ 79 \end{gathered}$	Vss	-	Power (0 V) input pin.

MB90550A Series

I/O CIRCUIT TYPE

Type	Circuit	Remarks
A		- 3 MHz to 32 MHz - Oscillator recovery resistor approx. $1 \mathrm{M} \Omega$
B		- CMOS level hysteresis input - Pull-up resistor provided Resistor : About $50 \mathrm{k} \Omega$
C		- CMOS level hysteresis input
D		- CMOS level output - CMOS level input - Standby control provided - Input pull-up resistor control provided Resistor: About $50 \mathrm{k} \Omega$

(Continued)

MB90550A Series

Type	Circuit	Remarks
E		- CMOS level output - CMOS level input - Standby control provided
F		- CMOS level output - CMOS level hysteresis input - Open-drain control provided
G		- N-channel open-drain output - CMOS level hysteresis input - Standby control provided Note: Unlike normal CMOS I/O pins, this pin is not provided with any P-channel transistor. Therefore the pin does not allow a current to flow to the Vcc side even when applied with a voltage from an external device with the IC's power supply left off.
H		- CMOS level output - CMOS level hysteresis input - Standby control provided - Analog input

(Continued)

MB90550A Series

(Continued)

Type	Circuit	Remarks
1		- CMOS level output - CMOS level hysteresis input - Standby control provided
J		- CMOS level output - CMOS level hysteresis input - Standby control provided
K		- CMOS level hysteresis input - Pull-up resistor provided Resistor : About $50 \mathrm{k} \Omega$

MB90550A Series

- HANDLING DEVICES

1. Preventing Latchup

CMOS ICs may cause latchup in the following situations:

- When a voltage higher than Vcc or lower than Vss is applied to input or output pins.
- When a voltage exceeding the rating is applied between Vcc and Vss.
- When AVcc power is supplied prior to the Vcc voltage.

If latchup occurs, the power supply current increases rapidly, sometimes resulting in thermal breakdown of the device. Use meticulous care not to let it occur.
For the same reason, also be careful not to let the analog power-supply voltage exceed the digital power-supply voltage.

2. Connection of Unused Pins

Leaving unused pins open may result in abnormal operations. Clamp the pin level by connecting it to a pull-up or a pull-down $1 \mathrm{k} \Omega$ or more resistor.

3. Notes on Using External Clock

In using the external clock, drive X0 pin only and leave X1 pin unconnected.

- Using external clock

4. Power Supply Pins ($\mathrm{Vcc} / \mathrm{Vss}$)

In products with multiple V_{cc} or $\mathrm{V}_{\text {ss }}$ pins, the pins of a same potential are internally connected in the device to avoid abnormal operations including latch-up. However, connect the pins external power and ground lines to lower the electro-magnetic emission level and abnormal operation of strobe signals caused by the rise in the ground level, and to conform to the total current rating.
Make sure to connect V_{cc} and V_{ss} pins via lowest impedance to power lines.
It is recommended to provide a bypass capacitor of around $0.1 \mu \mathrm{~F}$ between V_{cc} and Vss pin near the device.

- Using power supply pins

MB90550A Series

5. Crystal Oscillator Circuit

Noises around X0 or X1 pins may be possible causes of abnormal operations. Make sure to provide bypass capacitors via shortest distance from X0, X1 pins, crystal oscillator (or ceramic resonator) and ground lines, and make sure, to the utmost effort, that lines of oscillation circuit not cross the lines of other circuits.
It is highly recommended to provide a printed circuit board art work surrounding X0 and X1 pins with an grand area for stabilizing the operation.

6. Turning-on Sequence of Power Supply to A/D Converter and Analog Inputs

Make sure to turn on the A/D converter power supply, D/A converter power supply (AVcc, AVRH, AVRL) and analog inputs (AN0 to AN7) after turning-on the digital power supply (Vcc).
Turn-off the digital power after turning off the A/D converter supply and analog inputs. In this case, make sure that the voltage not exceed AVRH or AVcc (turning on/off the analog and digital power supplies simultaneously is acceptable).

7. Connection of Unused Pins of A/D Converter

Connect unused pin of A / D converter to $\mathrm{AV} \mathrm{cc}=\mathrm{Vcc}, \mathrm{AVss}=\mathrm{AVRH}=\mathrm{AVRL}=\mathrm{V} s \mathrm{~s}$.
8. N.C. Pin

The N.C. (internally connected) pin must be opened for use.

9. Notes on Energization

To prevent the internal regulator circuit rom malfunctioning, set the voltage rise time during energization at 50 or more $\mu \mathrm{s}$.

10. Initialization

In the device, there are internal registers which is initialized only by a power-on reset. To initialize these registers turning on the power again.

11. Return from standby state

If the power-supply voltage goes below the standby RAM holding voltage in the standby state, the device may fail to return from the standby state. In this case, reset the device via the external reset pin to return to the normal state.

12. Precautions for Use of 'DIV A, Ri,' and 'DIVW A, Ri' Instructions

The signed multiplication-division instructions 'DIV A, Ri,' and 'DIVW A, RWi' should be used when the corresponding bank registers (DTB, ADB, USB, SSB) are set to value ' 00 h.' If the corresponding bank registers (DTB, ADB, USB, SSB) are set to a value other than '00h,' then the remainder obtained after the execution of the instruction will not be placed in the instruction operand register.

MB90550A Series

BLOCK DIAGRAM

MB90550A Series

Note: The clock control circuit contains a watchdog timer, time-base timer, and a low power consumption control circuit.
P00 to P07 (8 pins): Input pull-up resistor setting register provided P10 to P17 (8 pins): Input pull-up resistor setting register provided
P40 to P47 (8 pins): Open-drain control setting register provided
P50 to P55 (6 pins): N-channel open drain
Ports $0,1,2,3,4,6,7,8,9$, and A are CMOS level input/output ports.

MB90550A Series

MEMORY MAP

The ROM data of bank FF is reflected in the upper address of bank 00, realizing effective use of the Compiler small model. The lower 16 -bit of bank FF and the lower 16 -bit of bank 00 is assigned to the same address, enabling reference of the table on the ROM without stating "far".

For example, if an attempt has been made to access 00С000н, the contents of the ROM at FFCOOOн are accessed actually. Since the ROM area of the FF bank exceeds 48 Kbytes, the whole area cannot be reflected in the image for the 00 bank. The ROM data at FF4000 to FFFFFFFH looks, therefore, as if it were the image for 004000 H to 00 FFFF н. Thus, it is recommended that the ROM data table be stored in the area of FF4000н to FFFFFFFr.

MB90550A Series

F^{2} MC-16LX CPU PROGRAMMING MODEL

- Dedicated registers

MB90550A Series

- I/O MAP

Address	Register name	Abbreviated register name	Read/write	Resource name	Initial value
00н	Port 0 data register	PDR0	R/W	Port 0	XXXXXXXX
01н	Port 1 data register	PDR1	R/W	Port 1	xxxxxxxx
02н	Port 2 data register	PDR2	R/W	Port 2	XXXXXXXX
03н	Port 3 data register	PDR3	R/W	Port 3	xxxxxxxx
04н	Port 4 data register	PDR4	R/W	Port 4	XXXXXXXX
05н	Port 5 data register	PDR5	R/W	Port 5	-_ 111111
06н	Port 6 data register	PDR6	R/W	Port 6	XXXXXXXX
07	Port 7 data register	PDR7	R/W	Port 7	XXXXXXXX
08н	Port 8 data register	PDR8	R/W	Port 8	XXXXXXXX
09н	Port 9 data register	PDR9	R/W	Port 9	XXXXXXXX
ОАн	Port A data register	PDRA	R/W	Port A	__xxxxx
$\begin{aligned} & \hline \text { OBH to }^{\prime} \\ & \mathrm{OF}_{\mathrm{H}} \end{aligned}$	(Disabled)				
10 н	Port 0 direction register	DDR0	R/W	Port 0	00000000
11н	Port 1 direction register	DDR1	R/W	Port 1	0000000
12н	Port 2 direction register	DDR2	R/W	Port 2	0000000
13н	Port 3 direction register	DDR3	R/W	Port 3	0000000
14 H	Port 4 direction register	DDR4	R/W	Port 4	0000000
15 H	(Disabled)				
16н	Port 6 direction register	DDR6	R/W	Port 6	0000000
17н	Port 7 direction register	DDR7	R/W	Port 7	0000000
18н	Port 8 direction register	DDR8	R/W	Port 8	0000000
19н	Port 9 direction register	DDR9	R/W	Port 9	0000000
1 Ан	Port A direction register	DDRA	R/W	Port A	---00000
1Вн	Port 4 output pin register	ODR4	R/W	Port 4	0000000
1 CH	Port 0 resistor setting register	RDR0	R/W	Port 0	0000000
$1 \mathrm{DH}^{\text {}}$	Port 1 resistor setting register	RDR1	R/W	Port 1	0000000
1Ен	(Disabled)				
$1 \mathrm{~F}_{\mathrm{H}}$	Analog input enable register	ADER	R/W	Port 6, A/D converter	11111111
$2 \mathrm{2O}^{\text {}}$	Serial mode register	SMR	R/W	UART	0000000
21H	Serial control register	SCR	R/W		00000100
22н	Serial input data register / serial output data register	SIDR/SODR	R/W		XXXXXXXX
23н	Serial status register	SSR	R/W		00001 _00

(Continued)

MB90550A Series

Address	Register name	Abbreviated register name	Read/write	Resource name	Initial value
24	Serial mode control status register 0	SMCS0	R/W	Extended I/O serial interface 0	_-_-_0000
25 н	Serial mode control status register 0		R/W!		00000010
26н	Serial data register 0	SDR0	R/W		XXXXXXXX
27н	Clock frequency-divider control register	CDCR	R/W	Communication prescaler	0 _-_ 1111
28н	Serial mode control status register 1	SMCS1	R/W	Extended I/O serial interface 1	_-_-_0000
29н	Serial mode control status register 1		R/W!		00000010
2 AH	Serial data register 1	SDR1	R/W		xxxxxxxx
2 BH	(Disabled)				
2Сн	$1^{2} \mathrm{C}$ bus status register 0	IBSR0	R	${ }^{12} \mathrm{C}$ interface 0	0000000
2D	$1^{2} \mathrm{C}$ bus control register 0	IBCR0	R/W		0000000
2Ен	${ }^{12} \mathrm{C}$ bus clock select register 0	ICCRO	R/W		__0XXXXX
2F\%	$1^{2} \mathrm{C}$ bus address register 0	IADR0	R/W		_XXXXXXX
30н	${ }^{2} \mathrm{C}$ bus data register 0	IDAR0	R/W		xxxxxxxx
31н	(Disabled)				
32н	${ }^{2} \mathrm{C}$ bus status register 1	IBSR1	R	${ }_{12} \mathrm{C}$ interface 1	0000000
33н	$1^{2} \mathrm{C}$ bus control register 1	IBCR1	R/W		0000000
34	${ }^{12} \mathrm{C}$ bus clock select register 1	ICCR1	R/W		-_ 0XXXXX
35н	$1^{2} \mathrm{C}$ bus address register 1	IADR1	R/W		_ XXXXXXX
36н	${ }^{2} \mathrm{C}$ bus data register 1	IDAR1	R/W		XXXXXXXX
37	${ }^{2} \mathrm{C}$ bus port select register	ISEL	R/W		--------0
38н	Interrupt/DTP enable register	ENIR	R/W	DTP/externalint interrupt	0000000
39н	Interrupt/DTP factor register	EIRR	R/W		XXXXXXXX
ЗАн	Request level setting register	ELVR	R/W		00000000
3Вн					0000000
3С ${ }_{\text {H }}$	Control status register	ADCS0	R/W	A/D convertor	0000000
3D ${ }_{\text {H }}$		ADCS1	R/W		00000000
ЗЕн	Data register	ADCR0	R/W!		XXXXXXXX
$3 \mathrm{FH}_{\mathrm{H}}$		ADCR1	R/W		XXXXXXXX

(Continued)

MB90550A Series

Address	Register name	Abbreviated register name	Read/write	Resource name	Initial value
40	Reload register L (ch.0)	PRLLO	R/W	8/16 bit PPG0/1	XXXXXXXX
41н	Reload register H (ch.0)	PRLH0	R/W		xxxxxxxx
42н	Reload register L (ch.1)	PRLL1	R/W		XXXXXXXX
43н	Reload register H (ch.1)	PRLH1	R/W		XXXXXXXX
444	PPG0 operating mode control register	PPGC0	R/W		0_000_-1
45	PPG1 operating mode control register	PPGC1	R/W		0_000001
46н	PPG0 and 1 output control register	PPGE1	R/W		0000000
47 ${ }^{\text {r }}$	(Disabled)				
48н	Reload register L (ch.2)	PRLL2	R/W	8/16 bit PPG2/3	XXXXXXXX
49	Reload register H (ch.2)	PRLH2	R/W		XXXXXXXX
4Ан	Reload register L (ch.3)	PRLL3	R/W		xxxxxxxx
4 BH	Reload register H (ch.3)	PRLH3	R/W		XXXXXXXX
4Сн	PPG2 operating mode control register	PPGC2	R/W		0_000_-1
4D	PPG3 operating mode control register	PPGC3	R/W		0_000001
4Ен	PPG2 and 3 output control register	PPGE2	R/W		0000000
4F	(Disabled)				
50н	Reload register L (ch.4)	PRLL4	R/W	8/16 bit PPG4/5	xxxxxxxx
51н	Reload register H (ch.4)	PRLH4	R/W		xxxxxxxx
52н	Reload register L (ch.5)	PRLL5	R/W		xxxxxxxx
53н	Reload register H (ch.5)	PRLH5	R/W		XXXXXXXX
54	PPG4 operating mode control register	PPGC4	R/W		0_000_-1
55	PPG5 operating mode control register	PPGC5	R/W		0_000001
56н	PPG4 and 5 output control register	PPGE3	R/W		0000000
57	(Disabled)				
58н	Clock output enable register	CLKR	R/W	Clock monitor function	_-_- 0000
59н	(Disabled)				

(Continued)

MB90550A Series

Address	Register name	Abbreviated register name	Read/write	Resource name	Initial value
5Ан	Control status register 0	TMCSR0	R/W	16 bit reload timer 0	00000000
5Вн					---_0000
$5 \mathrm{C}_{\mathrm{H}}$	16 bit timer register 0/ 16 bit reload register 0	TMR0/ TMRLR0	R/W		XXXXXXXX
5Dн					XXXXXXXX
5Ен	Control status register 1	TMCSR1	R/W	$\begin{aligned} & 16 \text { bit } \\ & \text { reload timer } 1 \end{aligned}$	00000000
5FH					----0000
60 ${ }^{\text {}}$	16 bit timer register 1/ 16 bit reload register 1	TMR1/ TMRLR1	R/W		XXXXXXXX
61н					XXXXXXXX
62н	Input capture register, channel-0 lower bits	IPCP0	R	16 bit I/O timer Input capture (ch. 0 to ch.3)	XXXXXXXX
63H	Input capture register, channel-0 upper bits				XXXXXXXX
64н	Input capture register, channel-1 lower bits	IPCP1	R		XXXXXXXX
65	Input capture register, channel-1 upper bits				XXXXXXXX
66н	Input capture register, channel-2 lower bits	IPCP2	R		XXXXXXXX
67\%	Input capture register, channel-2 upper bits				XXXXXXXX
68H	Input capture register, channel-3 lower bits	IPCP3	R		XXXXXXXX
69н	Input capture register, channel-3 upper bits				XXXXXXXX
6Ан	Input capture control status register	ICS01	R/W		00000000
6Вн	Input capture control status register	ICS23	R/W		00000000
6CH	Timer data register, lower bits	TCDT	R/W	16 bit I/O timer free run timer	00000000
6Dн	Timer data register, upper bits		R/W		00000000
6Ен	Timer control status register	TCCS	R/W		00000000
6FH	ROM mirroring function selection register	ROMM	W	ROM mirroring function	------- 1

(Continued)

MB90550A Series

Address	Register name	Abbreviated register name	Read/write	Resource name	Initial value
70н	Compare register, channel-0 lower bits			16 bit I/O timer output compare (ch. 0 to ch.3)	XXXXXXXX
71	Compare register, channel-0 upper bits				XXXXXXXX
72н	Compare register, channel-1 lower bits	OCCP1	R/W		XXXXXXXX
73н	Compare register, channel-1 upper bits				XXXXXXXX
74	Compare register, channel-2 lower bits	OCCP2	R/W		XXXXXXXX
75	Compare register, channel-2 upper bits				XXXXXXXX
76	Compare register, channel-3 lower bits	OCCP3	R/W		XXXXXXXX
77	Compare register, channel-3 upper bits				XXXXXXXX
78	Compare control status register, channel-0	OCSO	R/W		0000 _ 00
79	Compare control status register, channel-1	OCS1	R/W		-_-00000
7Ан	Compare control status register, channel-2	OCS2	R/W		0000 _ 00
7Вн	Compare control status register, channel-3	OCS3	R/W		_-_00000
$\begin{aligned} & \text { 7CH to } \\ & 9 \mathrm{D}_{\mathrm{H}} \end{aligned}$	(Disabled)				
9Ен	Program address detection control register	PACSR	R/W	Address match detection function	0000000
9F\%	Delayed interrupt factor generation/cancellation register	DIRR	R/W	Delayed interrupt	-_-_-_-_0
$\mathrm{AOH}^{\text {r }}$	Low-power consumption mode control register	LPMCR	R/W!	Low power consumption control	00011000
A1н	Clock select register	CKSCR	R/W!	circuit	11111100
$\begin{aligned} & \text { A2H to } \\ & \mathrm{A} 4 \mathrm{H} \end{aligned}$	(Disabled)				
A5	Automatic ready function select register	ARSR	W	External bus pin control circuit	0011__00
A6	External address output control register	HACR	W		0000000
A7 ${ }^{\text {r }}$	Bus control signal select register	ECSR	W		0000000

(Continued)

MB90550A Series

Address	Register name	Abbreviated register name	Read/write	Resource name	Initial value
A8H	Watchdog timer control register	WDTC	R/W!	Watchdog timer	XXXXX 111
А9н	Timebase timer control register	TBTC	R/W!	Timebase timer	1__00100
$\begin{aligned} & \text { AAн to } \\ & \mathrm{AD}_{\mathrm{H}} \end{aligned}$	(Disabled)				
АЕн	Flash control status register	FMCS	R/W	Flash interface circuit	00000 _ 0
AFH	(Disabled)				
B0н	Interrupt control register 00	ICROO	R/W!	Interrupt controller	00000111
B1н	Interrupt control register 01	ICR01	R/W!		00000111
В2н	Interrupt control register 02	ICR02	R/W!		00000111
В3н	Interrupt control register 03	ICR03	R/W!		00000111
B4н	Interrupt control register 04	ICR04	R/W!		00000111
B5	Interrupt control register 05	ICR05	R/W!		00000111
B6	Interrupt control register 06	ICR06	R/W!		00000111
B7 ${ }^{\text {}}$	Interrupt control register 07	ICR07	R/W!		00000111
В8н	Interrupt control register 08	ICR08	R/W!		00000111
В9н	Interrupt control register 09	ICR09	R/W!		00000111
ВАн	Interrupt control register 10	ICR10	R/W!		00000111
ВВн	Interrupt control register 11	ICR11	R/W!		00000111
$\mathrm{BCH}^{\text {}}$	Interrupt control register 12	ICR12	R/W!		00000111
BD	Interrupt control register 13	ICR13	R/W!		00000111
ВЕн	Interrupt control register 14	ICR14	R/W!		00000111
BF\%	Interrupt control register 15	ICR15	R/W!		00000111
$\begin{aligned} & \text { COH to } \\ & \mathrm{FF}_{\mathrm{H}} \end{aligned}$	(External area)				
$\begin{gathered} 100 \text { to } \\ \# н \end{gathered}$	(RAM area)				
$\begin{gathered} \text { \#н to } \\ \text { 1FEFH } \end{gathered}$	(Reserved area)				

(Continued)

MB90550A Series

(Continued)

Address	Register name	Abbreviated register name	Read/write	Resource name	Initial value
1FFOH	Program address detection register 0	PADR0	R/W	Address match detection function	XXXXXXXX
1FF1н	Program address detection register 1		R/W		XXXXXXXX
1FF2н	Program address detection register 2		R/W		XXXXXXXX
1FF3н	Program address detection register 3	PADR1	R/W		XXXXXXXX
1FF4	Program address detection register 4		R/W		XXXXXXXX
1FF5 ${ }^{\text {¢ }}$	Program address detection register 5		R/W		XXXXXXXX
$\begin{aligned} & \text { 1FF6н to } \\ & \text { 1FFFH } \end{aligned}$	(Reserved area)				

- Initial value representations

0 : Initial value of 0
1: Initial value of 1
X: Initial value undefined
-: Initial value undefined (none)

- Addresses that follow 00FFH are a reserved area.
- The boundary \#н between the RAM and reserved areas is different depending on each product.

Note : For writable bits, the initial value column contains the initial value to which the bit is initialized at a reset.
Notice that it is not the value read from the bit.
The LPMCR, CKSCR, and WDTC registers may be initialized or not at a reset, depending on the type of the reset. Their initial values in the above list are those to which the registers are initialized, of course.
"R/W!" in the access column indicates that the register contains read-only or write-only bits.
If a read-modify-write instruction (such as a bit setting instruction) is used to access a register marked " R / W!" "R/W*", or "W" in the access column, the bit focused on by the instruction is set to the desired value but a malfunction occurs if the other bits contains a write-only bit. Do not use such instructions to access those registers.

MB90550A Series

■ INTERRUPT FACTORS

INTERRUPT VECTORS, INTERRUPT CONTROL REGISTERS

| Interrupt source | El |
| :--- | :---: | :---: | :---: | :---: | :---: |

$\bigcirc:$ The interrupt request flag is cleared by the El${ }^{2} \mathrm{OS}$ interrupt clear signal.
\times : The interrupt request flag is not cleared by the $\mathrm{EI}^{2} \mathrm{OS}$ interrupt clear signal.
© : The interrupt request flag is cleared by the $\mathrm{EI}^{2} \mathrm{OS}$ interrupt clear signal. The stop request is available.

MB90550A Series

Note: On using the EI²OS Function with Extended I/O Serial Interface 2
If a resource has two interrupt sources for the same interrupt number, both of the interrupt request flags are cleared by the $\mathrm{El}^{2} \mathrm{OS}$ interrupt clear signal. When the $\mathrm{EI}^{2} \mathrm{OS}$ function is used for one of the two interrupt sources, therefore, the other interrupt function cannot be used. Set the interrupt request enable bit for the relevant resource to 0 for software polling processing.

Interrupt source	Interrupt No.	Interrupt control register	Resource interrupt request
Extended I/O serial interface 1	$\# 23$	ICR06	Enabled
16-bit free-run timer (I/O timer) overflow	$\# 24$		Disabled

MB90550A Series

■ ELECTRICAL CHARACTERISTICS

1. Absolute Maximum Ratings

$\left(\mathrm{V}_{\mathrm{ss}}=\mathrm{AV} \mathrm{ss}=0.0 \mathrm{~V}\right)$

Parameter	Symbol	Value		Unit	Remarks
		Min.	Max.		
Power supply voltage	Vcc	Vss -0.3	Vss +6.0	V	
	AVcc	Vss -0.3	Vss +6.0	V	$\mathrm{Vcc} \geq \mathrm{AV} \mathrm{cc} * 1$
	AVRH	Vss -0.3	Vss +6.0	V	AVcc \geq AVRH \geq AVRL
	AVRL	Vss -0.3	Vss +6.0	V	
Input voltage	VI	Vss -0.3	$\mathrm{Vcc}+0.3$	V	
Output voltage	Vo	Vss -0.3	$\mathrm{Vcc}+0.3$	V	
"L" level maximum output current*2	loL1	-	10	mA	Other than P20 to P27
	loL2	-	20	mA	P20 to P27
"L" level average output current	lolav1	-	4	mA	Other than P20 to P27
	lolav2	-	12	mA	P20 to P27
"L" level total maximum output current	Elob	-	150	mA	
"L" level total average output current	\sum lolav	-	80	mA	* 5
"H" level maximum output current	1on*2	-	-15	mA	
"H" level average output current	lohav*3	-	-4	mA	*5
" H " level total maximum output current	\} Іон	-	-100	mA	
"H" level total average output current	\sum lohav*	-	-50	mA	*5
Power consumption	PD	-	500	mW	
Operating temperature	TA	-40	+85	${ }^{\circ} \mathrm{C}$	
Storage temperature	Tsta	-55	+150	${ }^{\circ} \mathrm{C}$	

*1 : Be careful not to let AVcc exceed Vcc, for example, when the power supply is turned on.
*2 : The maximum output current is a peak value for a corresponding pin.
*3 : Average output current is an average current value observed for a 100 ms period for a corresponding pin.
*4 : Total average current is an average current value observed for a 100 ms period for all corresponding pins.
*5 : Average output current $=$ operating current \times operating efficiency
WARNING: Semiconductor devices can be permanently damaged by application of stress (voltage, current, temperature, etc.) in excess of absolute maximum ratings. Do not exceed these ratings.

MB90550A Series

2. Recommended Operating Conditions

$(\mathrm{Vss}=\mathrm{AVss}=0.0 \mathrm{~V})$

Parameter	Symbol	Value		Unit	Remarks
		Min.	Max.		
Power supply voltage	Vcc AVcc	4.5	5.5	V	Normal operation (MB90F553A, MB90P553A, MB90V550A)
		3.5	5.5	V	Normal operation (MB90553A, MB90552A)
		3.5	5.5	V	Retains status at the time of operation stop
"H" level input voltage	V_{1}	0.7 Vcc	Vcc+0.3	V	CMOS input pin*1
	$\mathrm{V}_{\text {HS }}$	0.8 Vcc	Vcc+0.3	V	CMOS hysteresys input pin*2
	Vінм	Vcc - 0.3	$\mathrm{Vcc}+0.3$	V	MD pin input*3
"L" level input voltage	VIL	Vss - 0.3	0.3 Vcc	V	CMOS input pin*1
	Vils	Vss - 0.3	0.2 Vcc	V	CMOS hysteresys input pin*2
	VILm	Vss - 0.3	Vss +0.3	V	MD pin input*3
Smoothing capacitor*4	Cs	0.1	1.0	$\mu \mathrm{F}$	*5
Operating temperature	TA	-40	+85	${ }^{\circ} \mathrm{C}$	

*1 : P00 to P07, P10 to P17, P20 to P27, P30 to P37
*2 : X0, HST, RST, P40 to P47, P50 to P55, P60 to P67, P70 to P77, P80 to P87, P90 to P97, PA0 to PA4
*3 : MD0, MD1, MD2
*4 : For connecting smoothing capacitor Cs, see the diagram below:
*5 : Use a ceramic capacitor or a capacitor with equivqlent frequency characteristics. The smoothing capacitor to be connected to the Vcc pin must have a capacitance value higher than Cs.

- C pin connection circuit

WARNING: The recommended operating conditions are required in order to ensure the normal operation of the semiconductor device. All of the device's electrical characteristics are warranted when the device is operated within these ranges.
Always use semiconductor devices within their recommended operating condition ranges. Operation outside these ranges may adversely affect reliability and could result in device failure.
No warranty is made with respect to uses, operating conditions, or combinations not represented on the data sheet. Users considering application outside the listed conditions are advised to contact their FUJITSU representatives beforehand.

MB90550A Series

3. DC Characteristics

Parameter	Symbol	Pin name	Condition	Value			Unit	Remarks
				Min.	Typ.	Max.		
Open-drain output pin voltage	V	P50 to P55	-	Vss -0.3	-	Vss +6.0	V	
"H" level output voltage	Vor	Other than P50 to P55	$\begin{aligned} & \mathrm{V} \mathrm{cc}=4.5 \mathrm{~V}, \\ & \mathrm{loH}=-4.0 \mathrm{~mA} \end{aligned}$	V cc-0.5	-	-	V	
"L" level output voltage 1	Volı	Other than P20 to P27	$\begin{aligned} & \mathrm{V} \mathrm{cc}=4.5 \mathrm{~V}, \\ & \mathrm{loL}=4.0 \mathrm{~mA} \end{aligned}$	-	-	0.4	V	
"L" level output voltage 2	Vol2	P20 to P27	$\begin{aligned} & \mathrm{V} \mathrm{cc}=4.5 \mathrm{~V}, \\ & \mathrm{loL}=12.0 \mathrm{~mA} \end{aligned}$	-	-	0.4	V	
Input leakage current	11.	All output pins	$\begin{aligned} & \mathrm{V}_{\mathrm{cc}}=5.5 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{ss}}<\mathrm{V}_{1}<\mathrm{V}_{\mathrm{cc}} \end{aligned}$	-5	-	5	$\mu \mathrm{A}$	
Power supply current*	Icc	Voc	Internal operation at 16 MHz $\mathrm{V}_{\mathrm{cc}}=5.5 \mathrm{~V}$ Normal operation	-	30	40	mA	MB90V550A
				-	80	110	mA	MB90P553A
				-	60	90	mA	MB90F553A
				-	30	40	mA	MB90553A
				-	25	35	mA	MB90552A
			When data written in flash mode	-	100	150	mA	MB90F553A
	Icos		Internal operation at 16 MHz $\mathrm{V} \mathrm{cc}=5.5 \mathrm{~V}$ In sleep mode	-	7	10	mA	MB90V550A
				-	25	30	mA	MB90P553A
				-	10	20	mA	MB90F553A
				-	7	10	mA	MB90553A
				-	7	10	mA	MB90552A
	Icch		$\begin{aligned} & \mathrm{V}_{\mathrm{cc}}=5.5 \mathrm{~V}, \\ & \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \\ & \text { In stop mode } \end{aligned}$	-	5	20	$\mu \mathrm{A}$	MB90V550A
				-	0.1	10	$\mu \mathrm{A}$	MB90P553A
				-	5	20	$\mu \mathrm{A}$	MB90F553A
				-	5	20	$\mu \mathrm{A}$	MB90553A
				-	5	20	$\mu \mathrm{A}$	MB90552A
Input capacitance	Cin	Other than AVcc, AVss, C, Vcc and Vss	-	-	10	-	pF	
Open-drain output leakage current	lieak	P50 to P55	-	-	0.1	5	$\mu \mathrm{A}$	
Pull-up resistance	Rup	$\begin{aligned} & \text { P00 to P07 } \\ & \text { and P10 to } \end{aligned}$	-	25	50	100	k Ω	Other than MB90V550A
		$\begin{aligned} & \text { P17 (In pull-up } \\ & \text { setting),RST } \end{aligned}$		20	40	100	k Ω	MB90V550A

[^0]
MB90550A Series

4. AC Characteristics

(1) Clock Timing
$\left(\mathrm{Vcc}=5.0 \mathrm{~V} \pm 10 \%, \mathrm{Vss}=\mathrm{AV} \mathrm{ss}=0.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}\right.$ to $\left.+85^{\circ} \mathrm{C}\right)$

Parameter	Symbol	Pin name	Value			Unit	Unit
			Min.	Typ.	Max.		
Oscillation clock frequency	Fc	X0, X1	3	-	16	MHz	
Oscillation clock cycle time	tc	X0, X1	62.5	-	333	ns	
Frequency fluctuation rate locked*	Δf	-	-	-	5	\%	
Input clock pulse width	$\begin{aligned} & \text { Pwh } \\ & \text { } \end{aligned}$	X0	10	-	-	ns	Recommended duty ratio of 40% to 60%
Input clock rising/falling time	tcr, tcF	X0	-	-	5	ns	External clock operation
Internal operating clock frequency	Fcp	-	8.0	-	16	MHz	PLL operation
			1.5	-	16	MHz	When PLL is not used
Internal operating clock cycle time	tcp	-	62.5	-	125	ns	PLL operation
			62.5	-	666	ns	When PLL is not used

*:The frequency fluctuation rate is the maximum deviation rate of the preset center frequency when the multiplied PLL signal is locked.

$$
\Delta f=\frac{|\alpha|}{f o} \times 100(\%) \quad \text { Center frequency }
$$

- X0, X1 clock timing

MB90550A Series

- PLL operation guarantee range

Relationship between internal operating clock frequency and power supply voltage

Relationship between oscillation clock frequency and internal operating clock frequency

The AC ratings are measured for the following measurement reference voltages

- Input signal waveform

Hystheresis input pin

- Output signal waveform

Output pin

Pins other than hystheresis input/MD input
0.7 Vcc
0.3 Vcc

MB90550A Series

(2) Clock Output Timing

Parameter	Symbol	Pin name	Value		Unit	Remarks
			Min.	Max.		
Cycle time	toyc	CLK	tcp	-	ns	
CLK $\uparrow \rightarrow$ CLK \downarrow time	tchcı		tcp/2-20	tcp/2+20	ns	

(3) Reset, Hardware Standby Input Timing
$\left(\mathrm{Vcc}=5.0 \mathrm{~V} \pm 10 \%, \mathrm{~V}_{\mathrm{ss}}=\mathrm{AV} \mathrm{Vs}=0.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}\right.$ to $\left.+85^{\circ} \mathrm{C}\right)$

Parameter	Symbol	Pin name	Value		Unit	Remarks
			Min.	Max.		
Reset input time	tRSTL	RST	16 tcp	-	ns	
Hardware standby input time	tHSTL	HST	16 tcp	-	ns	

MB90550A Series

(4) Specification for Power-on Reset

Parameter	Symbol	Pin name	Value		Unit	Remarks
			Min.	Max.		
Power supply rising time	tR	Vcc	0.066	30	ms	
Power-supply start voltage	Voff		-	0.2	V	
Power-supply end voltage	Von		3.5	-	V	
Power supply cut-off time	toff		4	-	ms	Due to repeated operations

Vcc

Sudden changes in the power supply voltage may cause a power-on reset.
To change the power supply voltage while the device is in operation, it is recommended to raise the voltage smoothly to suppress fluctuations as shown below.
In this case, change the supply voltage with the PLL clock not used. If the voltage drop is 1 mV or fewer per second, however, you can use the PLL clock.

MB90550A Series

(5) Bus Read Timing
$\left(\mathrm{V}\right.$ cc $=5.0 \mathrm{~V} \pm 10 \%, \mathrm{~V}_{\mathrm{ss}}=\mathrm{AV}$ ss $=0.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $\left.+85^{\circ} \mathrm{C}\right)$

Parameter	Symbol	Pin name	Value		Unit	Remarks
			Min.	Max.		
ALE pulse width	tLHLL	ALE	tcp/2-20		ns	
Effective address \rightarrow ALE \downarrow time	tavil	ALE, A23 to A16, AD15 to AD00	tcp/2-20	-	ns	
ALE $\downarrow \rightarrow$ address effective time	tllax	ALE, AD15 to AD00	tcp/2-15	-	ns	
Effective address $\rightarrow \overline{\mathrm{RD}} \downarrow$ time	tavgl	A23 to A16, AD15 to AD00, RD	tcp - 15	-	ns	
Effective address \rightarrow valid data input	tavdv	$\begin{aligned} & \text { A23 to A16, } \\ & \text { AD15 to AD00 } \end{aligned}$	-	5 tcp/2-60	ns	
$\overline{\mathrm{RD}}$ pulse width	trLRH	$\overline{\mathrm{RD}}$	$3 \mathrm{tcp} / 2-20$	-	ns	
$\overline{\mathrm{RD}} \downarrow \rightarrow$ valid data input	trldv	RD, AD1 to AD00	-	3 tcp/2-60	ns	
$\overline{\mathrm{RD}} \uparrow \rightarrow$ data hold time	trhox	$\overline{\mathrm{RD}}, \mathrm{AD} 15$ to AD00	0	-	ns	
$\overline{\mathrm{RD}} \uparrow \rightarrow \mathrm{ALE} \uparrow$ time	trHLL	$\overline{\mathrm{RD}}, \mathrm{ALE}$	tcp/2-15	-	ns	
$\overline{\mathrm{RD}} \uparrow \rightarrow$ address effective time	trhax	ALE, A23 to A16	tcp/2-10	-	ns	
Effective address \rightarrow CLK \uparrow time	tavch	A23 to A16, AD15 to AD00, CLK	tcp/2-20	-	ns	
$\overline{\overline{R D}} \downarrow \rightarrow$ CLK \uparrow time	trLCH	$\overline{\mathrm{RD}}$, CLK	tcp/2-20	-	ns	
ALE $\downarrow \rightarrow \overline{\mathrm{RD}} \downarrow$ time	tLLRL	ALE, $\overline{\mathrm{RD}}$	tcp/2-15	-	ns	

- Bus read timing

MB90550A Series

(6) Bus Write Timing
$\left(\mathrm{V}_{\mathrm{cc}}=5.0 \mathrm{~V} \pm 10 \%, \mathrm{~V}_{\mathrm{ss}}=\mathrm{AV} \mathrm{Vs}_{\mathrm{ss}}=0.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}\right.$ to $\left.+85^{\circ} \mathrm{C}\right)$

Parameter	Symbol	Pin name	Value		Unit	Remarks
			Min.	Max.		
Effective address $\rightarrow \overline{\mathrm{WR}} \downarrow$ time	tavw	A23 to A16, AD15 to AD00, WRH, WRL	tcp - 15	-	ns	
$\overline{\text { WR }}$ pulse width	twLwh	$\overline{\text { WRH, }} \overline{\text { WRL }}$	$3 \mathrm{tcp} / 2-20$	-	ns	
valid data output $\rightarrow \overline{\mathrm{WR}} \uparrow$ time	tovw	AD15 to AD00, WRH, WRL	$3 \mathrm{tcp} / 2-20$	-	ns	
$\overline{\mathrm{WR}} \uparrow \rightarrow$ data hold time	twhox	AD15 to AD00, WRH, WRL	20	-	ns	Multiplex mode
$\overline{\mathrm{WR}} \uparrow \rightarrow$ address effective time	twhax	A23 to A16, WRH, WRL	tcp/2-10	-	ns	
$\overline{\mathrm{WR}} \uparrow \rightarrow$ ALE \uparrow time	twнLн	$\overline{\text { WRH, }}$ WRL, ALE	tcp/2-15	-	ns	
$\overline{\mathrm{WR}} \downarrow \rightarrow$ CLK \uparrow time	twLCH	$\overline{\text { WRH, }}$ WRL, CLK	tcp/2-20	-	ns	

- Bus write timing

MB90550A Series

(7) Ready Input Timing
$\left(\mathrm{V} \mathrm{cc}=5.0 \mathrm{~V} \pm 10 \%, \mathrm{~V}_{\mathrm{ss}}=\mathrm{AV} \mathrm{ss}=0.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}\right.$ to $\left.+85^{\circ} \mathrm{C}\right)$

Parameter	Symbol	Pin name	Value		Unit	Remarks
			Min.	Max.		
RDY setup time		tRYHs	RDY	45	-	ns
RDY hold time	tRYHH	CLK	0	-	ns	

Note : Use the automatic ready function when the setup time for the rising edge of the RDY signal is not sufficient.

MB90550A Series

(8) Hold Timing
$\left(\mathrm{V}_{\mathrm{cc}}=5.0 \mathrm{~V} \pm 10 \%, \mathrm{~V}_{\text {ss }}=\mathrm{AV}\right.$ ss $=0.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$)

Parameter	Symbol	Pin name	Value		Unit	Remarks
			Min.	Max.		
Pins in floating status $\rightarrow \overline{\mathrm{HAK}} \downarrow$ time	txhaL	$\overline{\text { HAK }}$	30	tcp	ns	
$\overline{\text { HAK }} \uparrow \rightarrow$ pin valid time	thaнv		tcp	2 tcp	ns	

Note : More than 1 machine cycle is needed before HAK changes after HRQ pin is fetched.

- Hold timing

(9) UART, Extended I/O Sirial 0, 1 Timing
$\left(\mathrm{Vcc}=5.0 \mathrm{~V} \pm 10 \%, \mathrm{Vss}=\mathrm{AV}\right.$ ss $=0.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $\left.+85^{\circ} \mathrm{C}\right)$

Parameter	Symbol	Pin name	Condition	Value		Unit	Remarks
				Min.	Max.		
Serial clock cycle time	tscyc	SCK0 to SCK2	Internal shift clock mode $C L=80 \mathrm{pF}$ +1 TTL for an output pin	8 tcp	-	ns	
SCK $\downarrow \rightarrow$ SOT delay time	tsıov	SCK0 to SCK2, SOT0 to SOT2		-80	80	ns	
Valid SIN \rightarrow SCK \uparrow	tivs	SCK0 to SCK2, SINO to SIN2		100	-	ns	
SCK $\uparrow \rightarrow$ valid SIN hold time	tshlx	SCK0 to SCK2, SINO to SIN2		tcp	-	ns	
Serial clock "H" pulse width	tshsL	SCK0 to SCK2	External shift clock mode $\mathrm{CL}=80 \mathrm{pF}$ +1 TTL for an output pin	4 tcp	-	ns	
Serial clock "L" pulse width	tsLsh	SCK0 to SCK2		4 tcp	-	ns	
SCK $\downarrow \rightarrow$ SOT delay time	tstov	SCKO to SCK2, SOT0 to SOT2		-	150	ns	
Valid SIN \rightarrow SCK \uparrow	tivsh	SCK0 to SCK2, SIN0 to SIN2		60	-	ns	
SCK $\uparrow \rightarrow$ valid SIN hold time	tshix	SCK0 to SCK2, SINO to SIN2		60	-	ns	

Notes: - These are AC ratings in the CLK synchronous mode.

- C_{L} is the load capacitance value connected to pins while testing.

MB90550A Series

- Internal shift clock mode

- External shift clock mode

(10) Timer Input Timing
$\left(\mathrm{Vcc}=5.0 \mathrm{~V} \pm 10 \%, \mathrm{Vss}=\mathrm{AV}\right.$ ss $=0.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $\left.+85^{\circ} \mathrm{C}\right)$

Parameter	Symbol	Pin name	Value		Unit	Remarks
			Max.			
Input pulse width	triwh tTwL	TINO, TIN1 IN0 to IN3	4 tcp	-	ns	

- Timer input timing

MB90550A Series

(11) Timer Output Timing
$\left(\mathrm{Vcc}=5.0 \mathrm{~V} \pm 10 \%, \mathrm{~V}_{\mathrm{ss}}=\mathrm{AV} \mathrm{ss}=0.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}\right.$ to $\left.+85^{\circ} \mathrm{C}\right)$

Parameter	Symbol	Pin name	Value		Unit	Remarks
			Min.	Max.		
CLK $\uparrow \rightarrow$ Tout transition time	tтo	TOT0,TOT1,OUT0, OUT1,PPGO to PPG5	30	-	ns	

- Timer output timing

(12) Trigger Input Timing

$\left(\mathrm{Vcc}=5.0 \mathrm{~V} \pm 10 \%, \mathrm{Vss}=\mathrm{AV} \mathrm{Ss}=0.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}\right.$ to $\left.+85^{\circ} \mathrm{C}\right)$						
Parameter	Symbol	Pin name	Value		Remarks	
			Min.	Max.		
Input pulse width	ttrgl	IRQ0 to IRQ7	5 tcp	-	ns	

- Trigger input timing

MB90550A Series

(13) $I^{2} C$ Interface
$\left(\mathrm{V}_{\mathrm{cc}}=5.0 \mathrm{~V} \pm 10 \%, \mathrm{~V}_{\mathrm{ss}}=\mathrm{AV} \mathrm{Vs}=0.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}\right.$ to $\left.+85^{\circ} \mathrm{C}\right)$

Parameter	Symbol	Pin name	Value		Unit	Remarks
			Min.	Max.		
Internal clock cycle time	tcp	-	62.5	666	ns	All products
Start condition output	tstao	SDA0 to SDA2 SCL0 toSCL2	top $\times \mathrm{m} \times \mathrm{n} / 2-20$	tcp $\times \mathrm{m} \times \mathrm{n} / 2+20$	ns	Only as master
Stop condition output	tstoo		$\begin{gathered} \operatorname{tcp}(\mathrm{m} \times \mathrm{n} / 2+4) \\ -20 \end{gathered}$	$\begin{gathered} \operatorname{tcp}(\mathrm{m} \times \mathrm{n} / 2+4) \\ +20 \end{gathered}$	ns	
Start condition detection	tstal		$3 \mathrm{tcp}+40$	-	ns	Only as slave
Stop condition detection	tstol		$3 \mathrm{tcp}+40$	-	ns	
SCL output "L" width	tıowo	SCL0 to SCL2	top $\times \mathrm{m} \times \mathrm{n} / 2-20$	tcp $\times m \times n / 2+20$	ns	Only as master
SCL output "H" width	tніно		$\begin{gathered} \hline \operatorname{tcp}(\mathrm{m} \times \mathrm{n} / 2+4) \\ -20 \end{gathered}$	$\begin{gathered} \operatorname{tcp}(\mathrm{m} \times \mathrm{n} / 2+4) \\ +20 \end{gathered}$	ns	
SDA output delay time	tooo	SDA0 to SDA2 SCL0 to SCL2	2 tcp - 20	2 tcp +20	ns	
Setup after SDA output interrupt period	toosuo		4 tcp - 20	-	ns	
SCL input "L" width	tLow	SCL0 to SCL2	$3 \mathrm{tcp}+40$	-	ns	
SCL input "H" width	tHIGнI		tcp +40	-	ns	
SDA input setup time	tsul	SDA0 to SDA2 SCL0 to SCL2	40	-	ns	
SDA input hold time	thol		0	-	ns	

Notes: • "m" and"n" in the above table represent the values of shift clock frequency setting bits (CS4 to CSO) in the clock control register "ICCR". For details, refer to the register description in the hardware manual.

- toosuo represents the minimum value when the interrupt period is equal to or greater than the SCL " L " width.
- The SDA and SCL output values indicate that that rise time is 0 ns .

MB90550A Series

- ${ }^{2} \mathrm{C}$ interface [data transmitter (master/slave)]

- ${ }^{2} \mathrm{C}$ interface [data receiver (master/slave)]

SCL

MB90550A Series

5. A / D Converter

(1)Electrical Characteristics
(4.5 $\mathrm{V} \leq \mathrm{AVRH}-\mathrm{AVRL}, \mathrm{V} \mathrm{cc}=\mathrm{AV} \mathrm{cc}=5.0 \mathrm{~V} \pm 10 \%, \mathrm{~V} \mathrm{ss}=\mathrm{AV} \mathrm{ss}=0.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$)

Parameter	Symbol	Pin name	Value			Unit	Remarks
			Min.	Typ.	Max.		
Resolution	-	-	-	10	-	bit	
Total error	-	-	-	-	± 5.0	LSB	
Non-linear error	-	-	-	-	± 2.5	LSB	
Differential linearity error	-	-	-	-	± 1.9	LSB	
Zero transition voltage	Vot	AN0 to AN7	$\begin{aligned} & \text { AVRL- } \\ & 3.5 \mathrm{LSB} \end{aligned}$	AVRL+ 0.5 LSB	AVRL+ 4.5 LSB	V	$\begin{aligned} & \text { 1LSB= } \\ & \text { (AVRH-AVRL) } \\ & / 1024 \end{aligned}$
Full-scale transition voltage	Vfst	AN0 to AN7	$\begin{aligned} & \hline \text { AVRH- } \\ & 6.5 \mathrm{LSB} \end{aligned}$	$\begin{aligned} & \hline \text { AVRH- } \\ & 1.5 \mathrm{LSB} \end{aligned}$	$\begin{aligned} & \hline \text { AVRH }+ \\ & 1.5 \mathrm{LSB} \end{aligned}$	V	
Sampling period	tsmp	-	64	-	4096	top	
Compare time	tcmp	-	22	-	-	$\mu \mathrm{s}$	*1
A/D Conversion time	tonv	-	26.3	-	-	$\mu \mathrm{s}$	*2
Analog port input current	Iain	AN0 to AN7	-	-	10	$\mu \mathrm{A}$	
Analog input voltage	$\mathrm{V}_{\text {AIN }}$	AN0 to AN7	AVRL	-	AVRH	V	
Reference voltage	-	AVRH	AVRL	-	AVcc	V	
	-	AVRL	0	-	AVRH	V	
Power supply current	IA	AVcc	-	3.5	7.0	mA	
	ІАН		-	-	5	$\mu \mathrm{A}$	*3
Reference voltage supply current	IR	AVRH	-	300	500	$\mu \mathrm{A}$	
	Іrh		-	-	5	$\mu \mathrm{A}$	*3
Offset between channels	-	AN0 to AN7	-	-	4	LSB	

*1: When Fcp $=8 \mathrm{MHz}$, tcmp $=176 \times$ tcp. When Fcp $=16 \mathrm{MHz}$, tcmp $=352 \times$ tcp.
*2:Equivalent to the time for conversion per channel if "tsmp $=64 \times$ tcp" or "tcmp $=352 \times$ tcp" is selected when FcP $=$ 16 MHz .
*3:Specifies the power-supply current $(\mathrm{Vcc}=\mathrm{AVcc}=\mathrm{AVRH}=5.0 \mathrm{~V})$ when the A / D converter is inactive and the CPU has been stopped.
Notes: - The error becomes larger relatively as |AVRH-AVRL| becomes smaller.

- Use the output impedance rs of the external circuit for analog input under the following condition: External circuit output impedance $\mathrm{rs}=10 \mathrm{k} \Omega$ max.
- If the output impedance of the external circuit is too high, the analog voltage sampling time may be insufficient.
- If you insert a DC-blocking capacitor between the external circuit and the input pin, select the capacitance about several thousands times the sampling capacitance Csн in the chip to suppress the effect of capacity potential division with Cs_{s}.

MB90550A Series

- Analog input circuit model

Microcontroller internal circuit

<Recommended/reference values for device parameters>
$\mathrm{rs}=10 \mathrm{k} \Omega$ or less
Rsh $=$ About $3 \mathrm{k} \Omega$
Csh = About 25 pF
Note: Device parameter values are provided as reference values for design purposes; they are not guaranteed.

MB90550A Series

(2) Definitions of Terms

- Resolution: Analog transition identifiable by the A/D converter.

Analog voltage can be divided into $1024\left(2^{10}\right)$ components at 10-bit resolution.

- Total error: Difference between actual and logical values. This error is the sum of an offset error, gain error, non-linearity error, and an error caused by noise.
- Linearity error: Deviation of the straight line drawn between the zero transition point (00 00000000 <-> 00 0000 0001) and the full-scale transition point (11 $11111110<->111111$ 1111) of the device from actual conversion characteristics
- Differential linearity error: Deviation from the ideal input voltage required to shift output code by one LSB
- 10-bit A/D converter conversion characteristics

$$
\begin{aligned}
1 \mathrm{LSB} & =\frac{\mathrm{V}_{\mathrm{FST}}-\mathrm{V}_{\mathrm{OT}}}{1022} \\
\text { Linearity error } & =\frac{\mathrm{V}_{N T}-\left(1 \mathrm{LSB} \times \mathrm{N}+\mathrm{V}_{\mathrm{OT}}\right)}{1 \mathrm{LSB}}[\mathrm{LSB}] \\
\text { Differential linearity error } & =\frac{\mathrm{V}(\mathrm{~N}+1) \mathrm{T}-\mathrm{V}_{N T}}{1 \mathrm{LSB}}-1[\mathrm{LSB}]
\end{aligned}
$$

MB90550A Series

EXAMPLE CHARACTERISTICS

1. "L" level output voltage

Vol - lol
Other than P20 to P27

Vol - lol
P20 to P27

MB90550A Series

2. "H" level output voltage
(Vcc - Voн) - Іон
Other than P50 to P55

3. "H" level input voltage / "L" level input voltage (CMOS input)

$$
\mathrm{V}_{\mathrm{H}} / \mathrm{V}_{\mathrm{IL}}-\mathrm{V}_{\text {cc }}
$$

MB90550A Series

4. "H" level input voltage / "L" level input voltage (CMOS hysteresis input)

MB90550A Series

5. Power supply current

(FcP = internal operating clock frequency)

- MB90552A
- Measurement conditions : External clock mode, ROM read loop operation, without resource operation, Typ. sample, internal operating frequency $=4 \mathrm{MHz}$ (external rectangular wave clock at 8 MHz), $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

$$
\mathrm{Icc}-\mathrm{V}_{\mathrm{cc}}
$$

Iccs - Vcc

MB90550A Series

- MB90F553A
- Measurement conditions : External clock mode, ROM read loop operation, without resource operation, Typ. sample, internal operating frequency $=4 \mathrm{MHz}$ (external rectangular wave clock at 8 MHz), $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

$$
\mathrm{Icc}-\mathrm{V} \mathrm{cc}
$$

Iccs - Vcc

MB90550A Series

6. Pull-up resistance

Pull-up resistance - Vcc

MB90550A Series

■ INSTRUCTIONS (340 INSTRUCTIONS)

Table 1 Explanation of Items in Tables of Instructions

Item	Meaning
Mnemonic	Upper-case letters and symbols: Represented as they appear in assembler. Lower-case letters: Replaced when described in assembler. Numbers after lower-case letters: Indicate the bit width within the instruction code.
\#	Indicates the number of bytes.
\sim	Indicates the number of cycles. m : When branching n : When not branching See Table 4 for details about meanings of other letters in items.
RG	Indicates the number of accesses to the register during execution of the instruction. It is used calculate a correction value for intermittent operation of CPU.
B	Indicates the correction value for calculating the number of actual cycles during execution of the instruction. (Table 5) The number of actual cycles during execution of the instruction is the correction value summed with the value in the " \sim " column.
Operation	Indicates the operation of instruction.
LH	Indicates special operations involving the upper 8 bits of the lower 16 bits of the accumulator. Z : Transfers " 0 ". X : Extends with a sign before transferring. - : Transfers nothing.
AH	Indicates special operations involving the upper 16 bits in the accumulator. * : Transfers from AL to AH. - : No transfer. Z : Transfers 00 н to AH. X : Transfers 00 н or FF н to AH by signing and extending AL.
I	Indicates the status of each of the following flags: I (interrupt enable), S (stack), T (sticky bit), N (negative), Z (zero), V (overflow), and C (carry). * : Changes due to execution of instruction. - : No change. S: Set by execution of instruction. R : Reset by execution of instruction.
S	
T	
N	
Z	
V	
C	
RMW	Indicates whether the instruction is a read-modify-write instruction. (a single instruction that reads data from memory, etc., processes the data, and then writes the result to memory.) * : Instruction is a read-modify-write instruction. - : Instruction is not a read-modify-write instruction. Note: A read-modify-write instruction cannot be used on addresses that have different meanings depending on whether they are read or written.

- Number of execution cycles

The number of cycles required for instruction execution is acquired by adding the number of cycles for each instruction, a corrective value depending on the condition, and the number of cycles required for program fetch. Whenever the instruction being executed exceeds the two-byte (word) boundary, a program on an internal ROM connected to a 16 -bit bus is fetched. If data access is interfered with, therefore, the number of execution cycles is increased.
For each byte of the instruction being executed, a program on a memory connected to an 8-bit external data bus is fetched. If data access in interfered with, therefore, the number of execution cycles is increased. When a general-purpose register, an internal ROM, an internal RAM, an internal I/O device, or an external bus is accessed during intermittent CPU operation, the CPU clock is suspended by the number of cycles specified by the CG1/0 bit of the low-power consumption mode control register. When determining the number of cycles required for instruction execution during intermittent CPU operation, therefore, add the value of the number of times access is done \times the number of cycles suspended as the corrective value to the number of ordinary execution cycles.

Table 2 Explanation of Symbols in Tables of Instructions

Symbol	Meaning
A	32-bit accumulator The bit length varies according to the instruction. Byte : Lower 8 bits of AL Word : 16 bits of AL Long : 32 bits of AL and AH
AH	Upper 16 bits of A Lower 16 bits of A
SP	Stack pointer (USP or SSP)
PC	Program counter
PCB	Program bank register
DTB	Data bank register
ADB	Additional data bank register
SSB	System stack bank register
USB	User stack bank register
SPB	Current stack bank register (SSB or USB)
DPR	Direct page register
brg1	DTB, ADB, SSB, USB, DPR, PCB, SPB
brg2	DTB, ADB, SSB, USB, DPR, SPB
Ri	R0, R1, R2, R3, R4, R5, R6, R7
RWi	RW0, RW1, RW2, RW3, RW4, RW5, RW6, RW7
RWj	RW0, RW1, RW2, RW3
RLi	RL0, RL1, RL2, RL3
dir	Compact direct addressing
addr16 addr24 ad24 0 to 15 ad24 16 to 23	Direct addressing Physical direct addressing Bit 0 to bit 15 of addr24 Bit 16 to bit 23 of addr24
io	I/O area (000000 to 0000FFr)
imm4 imm8 imm16 imm32 ext (imm8)	4-bit immediate data 8 -bit immediate data 16-bit immediate data 32-bit immediate data 16-bit data signed and extended from 8-bit immediate data
$\begin{gathered} \hline \text { disp8 } \\ \text { disp16 } \end{gathered}$	8-bit displacement 16-bit displacement
bp	Bit offset
$\begin{aligned} & \text { vct4 } \\ & \text { vct8 } \end{aligned}$	Vector number (0 to 15) Vector number (0 to 255)
()b	Bit address
rel	PC relative addressing
$\begin{aligned} & \hline \text { ear } \\ & \text { eam } \end{aligned}$	Effective addressing (codes 00 to 07) Effective addressing (codes 08 to $1 F$)
rlst	Register list

MB90550A Series

Table 3 Effective Address Fields

Code	Notation			Address format	Number of bytes in address extension *	
00	R0	RW0	RLO	Register direct		
01	R1	RW1	(RLO)			
02	R2	RW2	RL1	"ea" corresponds to byte, word, and		
03	R3	RW3	(RL1)	long-word types, starting from the left	-	
04	R4	RW4	RL2			
05	R5	RW5	(RL2)			
06	R6	RW6	RL3			
07	R7	RW7	(RL3)			
08				Register indirect		
09					0	
OA					0	
0B						
OC	@RW0 + @RW1 + @RW2 + @RW3 +			Register indirect with post-increment		
0D					0	
0E					0	
OF						
10				Register indirect with 8-bit displacement		
11	@RW0 + disp8					
12	@RW2 + disp8					
13	@RW3 + disp8				1	
14	@RW4 + disp8				1	
15	@RW5 + disp8					
16						
17	@RW7 + disp8					
18	@RW0 + disp16				Register indirect with 16-bit displacement	
19	@RW1 + disp16 @RW2 + disp16 @RW3 + disp16			2		
1A						
1B						
1 C	@RW0 + RW7			Register indirect with index	0	
1D	@RW1 + RW7			Register indirect with index	0	
1E	@PC + disp16			PC indirect with 16-bit displacement	2	
1F	addr16			Direct address	2	

Note : The number of bytes in the address extension is indicated by the " + " symbol in the "\#" (number of bytes) column in the tables of instructions.

MB90550A Series

Table 4 Number of Execution Cycles for Each Type of Addressing

Code	Operand	(a)	Number of register accesses for each type of addressing
		Number of execution cycles for each type of addressing	
00 to 07	Ri RWi RLi	Listed in tables of instructions	Listed in tables of instructions
08 to 0B	@RWj	2	1
OC to OF	@RWj +	4	2
10 to 17	@RWi + disp8	2	1
18 to 1B	@RWj + disp16	2	1
$\begin{aligned} & 1 \mathrm{C} \\ & 1 \mathrm{D} \\ & 1 \mathrm{E} \\ & 1 \mathrm{1} \end{aligned}$	@RW0 + RW7 @RW1 + RW7 @PC + disp16 addr16	$\begin{aligned} & 4 \\ & 4 \\ & 2 \\ & 1 \end{aligned}$	$\begin{aligned} & 2 \\ & 2 \\ & 0 \\ & 0 \end{aligned}$

Note : "(a)" is used in the " \sim " (number of states) column and column B (correction value) in the tables of instructions.
Table 5 Compensation Values for Number of Cycles Used to Calculate Number of Actual Cycles

Operand	(b) byte		(c) word		(d) long	
	Cycles	Access	Cycles	Access	Cycles	Access
Internal register	+0	1	+0	1	+0	2
Internal memory even address	+0	1	+0	1	+0	2
Internal memory odd address	+0	1	+2	2	+4	4
Even address on external data bus (16 bits)	+1	1	+1	1	+2	2
Odd address on external data bus (16 bits)	+1	1	+4	2	+8	4
External data bus (8 bits)	+1	1	+4	2	+8	4

Notes: • "(b)", "(c)", and "(d)" are used in the " \sim " (number of states) column and column B (correction value) in the tables of instructions.

- When the external data bus is used, it is necessary to add in the number of wait cycles used for ready input and automatic ready.
Table 6 Correction Values for Number of Cycles Used to Calculate Number of Program Fetch Cycles

Instruction	Byte boundary	Word boundary
Internal memory	-	+2
External data bus (16 bits)	-	+3
External data bus (8 bits)	+3	-

Notes: • When the external data bus is used, it is necessary to add in the number of wait cycles used for ready input and automatic ready.

- Because instruction execution is not slowed down by all program fetches in actuality, these correction values should be used for "worst case" calculations.

MB90550A Series

Table 7 Transfer Instructions (Byte) [41 Instructions]

	Mnemonic	\#	\sim	RG	B	Operation	LH	H AH	at	1	s		T	N	z	v	c	Rмw
MOV	A, dir	2	3	0	(b)	byte $(\mathrm{A}) \leftarrow$ (dir)	Z	Z *										
MOV	A, addr16	3	4	0	(b)	byte (A) \leftarrow (addr16)	Z	*	*	-	-		-	*		-		-
MOV	A, Ri	1	2	1	0	byte (A) \leftarrow (Ri)	Z	*	*	-	-			*		-		-
MOV	A, ear	2	2	1	0	byte (A) \leftarrow (ear)	Z	*	*	-	-			*		-	-	-
MOV	A, eam	2+	$3+$ (a)	0	(b)	byte $(A) \leftarrow($ eam $)$	Z	*	*	-	-		-	*		-	-	-
MOV	A, io	2	3	0	(b)	byte (A) \leftarrow (io)	Z	*	*	-	-		-	*		-	-	-
MOV	A, \#imm8	2	2	0	0	byte $($ A $) \leftarrow$ imm8	Z	*	*	-	-		-	*		-	-	-
MOV	A, @A	2	3	0	(b)	byte $($ A $) \leftarrow(($ A $)$)	Z	-	-	-	-			*		-	-	-
MOV	A, @RLi+disp8	3	10	2	(b)	byte $(\mathrm{A}) \leftarrow((\mathrm{RLi})+$ disp8)	Z	*	*	-	-		-			-	-	-
MOVN	A, \#imm4	1	1	0	O	byte (A) \leftarrow imm4	Z	*	*	-	-		-	R		-	-	-
MOVX	A, dir	2	3	0	(b)	byte $($ A $) \leftarrow$ (dir)	X			-	-		-	*		-	-	-
MOVX	A, addr16	3	4	0	(b)	byte $($ A $) \leftarrow$ (addr16)	X			-	-		-	*		-	-	-
MOVX	A, Ri	2	2	1	0	byte (A) $\leftarrow($ Ri)	X			-	-		-	*		-	-	-
MOVX	A, ear	2	2	1	0	byte (A) \leftarrow (ear)	X			-	-					-	-	-
MOVX	A, eam	2+	$3+$ (a)	0	(b)	byte (A) \leftarrow (eam)	X			-	-			*		-	-	-
MOVX	A, io	2	3	0	(b)	byte (A) \leftarrow (io)	X			-	-		-	*		-	-	-
MOVX	A, \#imm8	2	2	0)	byte (A) \leftarrow imm8	X			-	-		-	*		-	-	-
MOVX	A, @A	2	3	0	(b)	byte $(\mathrm{A}) \leftarrow((\mathrm{A})$)	X		-	-	-		-	*		-		-
MOVX	A,@RWi+disp8	2	5	1	(b)	byte $(\mathrm{A}) \leftarrow(($ RWi) $)$ disp8)	X			-	-					-		-
MOVX	A, @RLi+disp8	3	10	2	(b)	byte $(\mathrm{A}) \leftarrow((\mathrm{RLi})+$ disp8)	X			-	-					-		
MOV	dir, A		3	0	(b)	byte (dir) $\leftarrow(A)$			-	-	-							
MOV	addr16, A	3	4	0	(b)	byte (addr16) \leftarrow (A)			-	-	-		-			-	-	-
MOV	Ri, A		2	1	0	byte (Ri) $\leftarrow(\mathrm{A})$			-	-	-			*		-	-	-
MOV	ear, A	2	2	1	0	byte (ear) $\leftarrow(A)$			-	-	-		-	*		-	-	-
MOV	eam, A	$2+$	$3+$ (a)	0	(b)	byte (eam) $\leftarrow(A)$			-	-	-		-			-	-	-
MOV	io, A	2	3	0	(b)	byte (io) $\leftarrow(\mathrm{A})$			-	-	-		-			-	-	-
MOV	@RLi+disp8, A	3	10	2	(b)	byte ((RLi) +disp8) \leftarrow (A)			-	-	-		-			-	-	-
MOV	Ri, ear	2	3	2	0	byte (Ri) \leftarrow (ear)			-	-	-		-	*		-	-	-
MOV	Ri, eam	2+	4+ (a)	1	(b)	byte $($ Ri) $\leftarrow($ eam $)$			-	-	-		-			-	-	-
MOV	ear, Ri	2	4	2	0	byte (ear) \leftarrow (Ri)			-	-	-					-	-	-
MOV	eam, Ri	$2+$	$5+$ (a)	1	(b)	byte (eam) \leftarrow (Ri)			-	-	-					-	-	-
MOV	Ri, \#imm8	2	2	1	0	byte (Ri) \leftarrow imm8			-	-	-					-	-	-
MOV	io, \#imm8	3	5	0	(b)	byte (io) \leftarrow imm8			-	-	-		-	-	-	-	-	-
MOV	dir, \#imm8	3	5	0	(b)	byte (dir) $\leftarrow \mathrm{imm} 8$			-	-	-		-	-		-	-	-
MOV	ear, \#imm8	3	2	1	(b)	byte (ear) \leftarrow imm8			-	-	-		-			-	-	-
MOV	eam, \#imm8	3+	4+ (a)	0	(b)	byte $($ eam $) \leftarrow$ imm8			-	-	-			-		-	-	-
$\begin{aligned} & \mathrm{MOV} \\ & \mathrm{MOV} \end{aligned}$	@AL, AH @A, T	2	3	0	(b)				-	-	-					-		
XCH	A, ear	2	4	2	0	byte $(\mathrm{A}) \leftrightarrow$ (ear)	z		-	-	-			-	-	-		-
XCH	A, eam	$2+$	$5+$ (a)	0	$2 \times$ (b)	byte (A) \leftrightarrow (eam)	z	-	-	-	-	-	-	-	-	-	-	-
XCH	Ri, ear	2	7	4	0	byte (Ri) \leftrightarrow (ear)			-	-	-		-	-	-	-	-	-
XCH	Ri, eam	2+	9+ (a)	2	$2 \times$ (b)	byte (Ri) \leftrightarrow (eam)	-		-	-	-		$-$	-	-	-	-	-

Note : For an explanation of "(a)" to "(d)", refer to Table 4, "Number of Execution Cycles for Each Type of Addressing," and Table 5, "Correction Values for Number of Cycles Used to Calculate Number of Actual Cycles."

MB90550A Series

Table 8 Transfer Instructions (Word/Long Word) [38 Instructions]

Mnemonic	\#	~	RG	B	Operation	LH	AH		1	s	T	N	z	v	c	Rмw
MOVW A, dir	2	3	0	(c)	word (A) \leftarrow (dir)	-				-	-					
MOVW A, addr	3	4	0	(c)	word $(A) \leftarrow$ (addr16)	-			-	-	-	*		-	-	
MOVW A, SP	1	1	0	0	word $(A) \leftarrow(S P)$	-			-	-	-	*	*	-	-	-
MOVW A, RWi	1	2		0	word $(A) \leftarrow(R W i)$	-			-	-	-	*	*	-	-	-
MOVW A, ear	2	2	1	0	word $(A) \leftarrow($ ear $)$	-			-	-	-	*	*	-	-	-
MOVW A, eam	2+	$3+$ (a)	0	(c)	word (A) \leftarrow (eam)	-			-	-	-	*	*	-	-	-
MOVW A, io	2	+	0	(c)	word (A) \leftarrow (io)	-			-	-	-	*	*	-	-	-
MOVW A, @A	2	3	0	(c)	word (A) $\leftarrow((\mathrm{A})$)	-	-		-	-	-	*	*	-	-	-
MOVW A, \#imm16	3	2	0	(word (A) \leftarrow imm16	-			-	-	-	*	*	-	-	-
MOVW A, @RWi+disp8	2	5	1	(c)	word $(\mathrm{A}) \leftarrow((\mathrm{RWi})+$ disp8)	-			-	-	-	*		-	-	-
MOVW A, @RLi+disp8	3	10	2	(c)	word $(\mathrm{A}) \leftarrow((\mathrm{RLi})+$ disp8)	-			-	-	-	*		-	-	-
MOVW dir, A	2	3	0	(c)	word (dir) $\leftarrow(\mathrm{A})$	-				-	-				-	-
MOVW addr16, A	3	4	0	(c)	word (addr16) $\leftarrow(A)$	-			-	-	-	*		-	-	-
MOVW SP, A	1	1	0	0	word (SP) $\leftarrow(\mathrm{A})$		-		-	-	-			-	-	-
MOVW RWi, A	1	2	1	0	word (RWi) $\leftarrow(A)$		-		-	-	-			-	-	-
MOVW ear, A	2	2	0	0	word (ear) $\leftarrow(A)$		-		-	-	-			-	-	-
MOVW eam, A	$2+$	$3+$ (a)	0	(c)	word (eam) $\leftarrow(A)$		-		-	-	-				-	-
MOVW io, A	2	3	0	(c)	word (io) \leftarrow (A)				-	-	-				-	
MOVW @RWi+disp8, A	2	5	1	(c)	word ((RWi) + disp8) $\leftarrow(\mathrm{A})$				-		-				-	
MOVW @RLi+disp8, A	3	10	2	(c)	word (RLL L$)+$ disp8 $) \leftarrow(\mathrm{A})$		-		-	-	-				-	
MOVW RWi, ear	2	3	2	(0)	word (RWi) \leftarrow (ear)				-						-	
MOVW RWi, eam	$2+$	4+ (a)	1	(c)	word (RWi) $\leftarrow($ eam $)$		-		-	-	-				-	
MOVW ear, RWi	2		2	0	word (ear) $\leftarrow(\mathrm{RWi})$		-		-		-				-	
MOVW eam, RWi	2+	5+ (a)	1	(c)	word (eam) $\leftarrow($ RWi)		-		-	-	-			-	-	
MOVW RWi, \#imm16	3	2	1	0	word $(\mathrm{RWi}) \leftarrow$ imm16		-				-				-	
MOVW io, \#imm16	4	5	0	(c)	word (io) \leftarrow imm16		-				-	-	-		-	-
MOVW ear, \#imm16	4	2	1	0	word (ear) \leftarrow imm16		-				-				-	-
MOVW eam, \#imm16	4+	4+ (a)	0	(c)	word (eam) \leftarrow imm16	-	-				-	-	-			-
MOVW @AL, AH /MOVW@A, T	2	3	0	(c)	$((\mathrm{A})) \leftarrow(\mathrm{AH})$	-	-		-							
XCHW A, ear	2	4	2	0	word $(\mathrm{A}) \leftrightarrow$ (ear)		-				-	-	-		-	
XCHW A, eam	2+	$5+$ (a)	0	$2 \times$ (c)	word (A) \leftrightarrow (eam)	-	-		-	-	-	-	-	-	-	-
XCHW RWi, ear	2	7	4	0	word (RWi) \leftrightarrow (ear)	-	-		-	-	-	-	-	-	-	-
XCHW RWi, eam	2+	9+ (a)	2	$2 \times$ (c)	word (RWi) \leftrightarrow (eam)	-	-		-	-	-	-	-	-	-	-
MOVL A, ear	2	4	2	(d)	long (A) \leftarrow (ear)				-		-					-
MOVL A, eam	$2+$	$5+$ (a)	0	(d)	long $(A) \leftarrow($ eam $)$	-	-		-	-	-			-	-	-
MOVL A, \#imm32	5	,	0	-	long $(A) \leftarrow$ imm32	-	-		-	-	-		*	-	-	-
MOVL ear, A	2	4	2	0	long (ear) $\leftarrow(\mathrm{A})$	-	-		-	-	-	*		-	-	-
MOVL eam, A	2+	5+ (a)	0	(d)	long (eam) $\leftarrow(\mathrm{A})$	-	-		-	-	-			-	-	-

Note : For an explanation of "(a)" to "(d)", refer to Table 4, "Number of Execution Cycles for Each Type of Addressing," and Table 5, "Correction Values for Number of Cycles Used to Calculate Number of Actual Cycles."

MB90550A Series

Table 9 Addition and Subtraction Instructions (Byte/Word/Long Word) [42 Instructions]

Note : For an explanation of "(a)" to "(d)", refer to Table 4, "Number of Execution Cycles for Each Type of Addressing," and Table 5, "Correction Values for Number of Cycles Used to Calculate Number of Actual Cycles."

MB90550A Series

Table 10 Increment and Decrement Instructions (Byte/Word/Long Word) [12 Instructions]

Note : For an explanation of "(a)" to "(d)", refer to Table 4, "Number of Execution Cycles for Each Type of Addressing," and Table 5, "Correction Values for Number of Cycles Used to Calculate Number of Actual Cycles."

Table 11 Compare Instructions (Byte/Word/Long Word) [11 Instructions]

Mnemonic	\#	\sim	RG	B	Operation	LH	AH	1	S	T	N	Z	v	C	RMW
CMP A	1	1	0	0	byte (AH) - (AL)	-	-	-	-	-	*	*	*	*	-
CMP A, ear	2	2	1	0	byte $(A) \leftarrow$ (ear)	-	-	-	-	-	*	*	*	*	-
CMP A, eam	2+	$3+(a)$	0	(b)	byte $(A) \leftarrow$ (eam)	-	-	-	-	-	*	*	*	*	-
CMP A, \#imm8	2	2	0	0	byte $(\mathrm{A}) \leftarrow$ imm8	-	-	-	-	-	*	*	*	*	-
CMPW A	1	1	0	0	word (AH) - (AL)	-	-	-	-	-	*	*	*	*	-
CMPW A, ear	2	2	1	0	word $(A) \leftarrow$ (ear)	-	-	-	-	-	*	*	*	*	-
CMPW A, eam	2+	$3+$ (a)	0	(c)	word $(A) \leftarrow($ eam $)$	-	-	-	-	-	*	*	*	*	-
CMPW A, \#imm16	3	2	0	0	word $(A) \leftarrow$ imm16	-	-	-	-	-	*	*	*	*	-
CMPL A, ear	2	6	2	0	word $(A) \leftarrow$ (ear)	-	-	-	-	-	*	*	*	*	-
CMPL A, eam	2+	$7+$ (a)	0	(d)	word $(A) \leftarrow($ eam $)$	-	-	-	-	-	*	*	*	*	-
CMPL A, \#imm32	5	3	0	0	word $(A) \leftarrow$ imm32	-	-	-	-	-	*	*	*	*	-

Note : For an explanation of "(a)" to "(d)", refer to Table 4, "Number of Execution Cycles for Each Type of Addressing," and Table 5, "Correction Values for Number of Cycles Used to Calculate Number of Actual Cycles."

MB90550A Series

Table 12 Multiplication and Division Instructions (Byte/Word/Long Word) [11 Instructions]

*1: 3 when the result is zero, 7 when an overflow occurs, and 15 normally.
*2: 4 when the result is zero, 8 when an overflow occurs, and 16 normally.
*3: $6+$ (a) when the result is zero, $9+$ (a) when an overflow occurs, and $19+$ (a) normally.
*4: 4 when the result is zero, 7 when an overflow occurs, and 22 normally.
*5: $6+$ (a) when the result is zero, $8+$ (a) when an overflow occurs, and $26+$ (a) normally.
*6: (b) when the result is zero or when an overflow occurs, and $2 \times(\mathrm{b})$ normally.
*7: (c) when the result is zero or when an overflow occurs, and $2 \times$ (c) normally.
*8: 3 when byte (AH) is zero, and 7 when byte (AH) is not zero.
*9: 4 when byte (ear) is zero, and 8 when byte (ear) is not zero.
*10: $5+$ (a) when byte (eam) is zero, and $9+(\mathrm{a})$ when byte (eam) is not 0 .
*11: 3 when word (AH) is zero, and 11 when word (AH) is not zero.
*12: 4 when word (ear) is zero, and 12 when word (ear) is not zero.
*13: $5+$ (a) when word (eam) is zero, and $13+$ (a) when word (eam) is not zero.
Note : For an explanation of "(a)" to "(d)", refer to Table 4, "Number of Execution Cycles for Each Type of Addressing," and Table 5, "Correction Values for Number of Cycles Used to Calculate Number of Actual Cycles."

MB90550A Series

Table 13 Signed Multiplication and Division Instructions (Byte/Word/Long Word) [11 Instructions]

Mnemonic		\#	\sim	RG	B	Operation	LH	AH	1	s	T	N	z	v	c	RMw
DIV	A	2	*1	0	0	word (AH) /byte (AL) Quotient \rightarrow byte (AL) Remainder \rightarrow byte (AH)	Z	-	-	-	-	-	-	*	*	-
DIV	A, ear	2	*2	1	0	word (A)/byte (ear) Quotient \rightarrow byte (A) Remainder \rightarrow byte (ear)	Z	-	-	-	-	-	-	*	*	-
DIV	A, eam	$2+$	*3	0	*6	word (A)/byte (eam) Quotient \rightarrow byte (A) Remainder \rightarrow byte (eam)	Z	-	-	-	-	-	-	*	*	-
DIVW	A, ear	2	*4	1	0	long (A)/word (ear) Quotient \rightarrow word (A) Remainder \rightarrow word (ear)	-	-	-	-	-	-	-	*	*	-
DIVW	A, eam	2+	*5	0	*7	long (A)/word (eam) Quotient \rightarrow word (A) Remainder \rightarrow word (eam)	-	-	-	-	-	-	-	*	*	-
MULU	A	2	*8	0	0	byte (AH) *byte (AL) \rightarrow word (A)	-	-	-	-	-	-	-	-	-	-
MULU	A, ear	2	*9	1	0	byte (A) *byte (ear) \rightarrow word (A)	-	-	-	-	-	-	-	-	-	-
MULU	A, eam	$2+$	*10	0	(b)	byte (A) *byte (eam) \rightarrow word (A)	-	-	-	-	-	-	-	-	-	-
MULUW	A	2	*11	0	0	word (AH) *word (AL) \rightarrow long (A)	-	-	-	-	-	-	-	-	-	-
MULUW	A, ear	2	*12	1	(c)	word (A) *word (ear) \rightarrow long (A)	-	-	-	-	-	-	-	-	-	-
MULUW	A, eam	$2+$	*13	0	(c)	word (A) *word (eam) \rightarrow long (A)	-	-	-	-	-	-	-	-	-	-

*1: Set to 3 when the division-by-0, 8 or 18 for an overflow, and 18 for normal operation.
*2: Set to 3 when the division-by-0, 10 or 21 for an overflow, and 22 for normal operation.
*3: Set to $4+$ (a) when the division-by- $0,11+$ (a) or $22+$ (a) for an overflow, and $23+$ (a) for normal operation.
*4: Positive dividend: Set to 4 when the division-by- 0,10 or 29 for an overflow, and 30 for normal operation.
Negative dividend: Set to 4 when the division-by-0, 11 or 30 for an overflow and 31 for normal operation.
*5: Positive dividend:Set to $4+$ (a) when the division-by- $0,11+$ (a) or $30+$ (a) for an overflow, and $31+$ (a) for normal operation.
Negative dividend: Set to $4+(\mathrm{a})$ when the division-by- $0,12+(\mathrm{a})$ or $31+(\mathrm{a})$ for an overflow, and $32+(\mathrm{a})$ for normal operation.
*6: When the division-by-0, (b) for an overflow, and $2 \times$ (b) for normal operation.
*7: When the division-by-0, (c) for an overflow, and $2 \times$ (c) for normal operation.
*8: Set to 3 when byte (AH) is zero, 12 when the result is positive, and 13 when the result is negative.
*9: Set to 3 when byte (ear) is zero, 12 when the result is positive, and 13 when the result is negative.
*10: Set to $4+(\mathrm{a})$ when byte (eam) is zero, $13+$ (a) when the result is positive, and $14+(\mathrm{a})$ when the result is negative.
*11: Set to 3 when word (AH) is zero, 12 when the result is positive, and 13 when the result is negative.
*12: Set to 3 when word (ear) is zero, 16 when the result is positive, and 19 when the result is negative.
*13: Set to $4+(a)$ when word (eam) is zero, $17+$ (a) when the result is positive, and $20+(a)$ when the result is negative.
Notes: - When overflow occurs during DIV or DIVW instruction execution, the number of execution cycles takes two values because of detection before and after an operation.

- When overflow occurs during DIV or DIVW instruction execution, the contents of AL are destroyed.
- For (a) to (d), refer to "Table 4 Number of Execution Cycles for Effective Address in Addressing Modes" and "Table 5 Correction Values for Number of Cycles for Calculating Actual Number of Cycles."

MB90550A Series

Table 14 Logical 1 Instructions (Byte/Word) [39 Instructions]

	emonic	\#		RG	B	Operation	LH	AH		1	s	T	N	z	v	c	RMW
AND	A, \#imm8	2	2	0	0	by	-				-	-			R	-	
AND	A, ear	2	3	1	0	byte $(\mathrm{A}) \leftarrow(\mathrm{A})$ and (ear)	-	-		-	-	-			R	-	
AND	A, eam	$2+$	4+ (a)	0	(b)	byte $(\mathrm{A}) \leftarrow(\mathrm{A})$ and (eam)	-	-		-	-	-			R	-	-
AND	ear, A	2	3	2	0	byte (ear) \leftarrow (ear) and (A)	-	-			-	-			R	-	-
AND	eam, A	2+	$5+$ (a)	0	$2 \times$ (b)	byte (eam) \leftarrow (eam) and (A)	-	-			-	-			R	-	
OR	A, \#imm	2	2	0	0	byte $(\mathrm{A}) \leftarrow(\mathrm{A})$ or imm8	-	-			-	-			R	-	-
OR	A, ear	2	3	1	0	byte (A) $\leftarrow(\mathrm{A})$ or (ear)	-	-			-	-			R	-	
\bigcirc	A, eam	$2+$	4+ (a)	0	(b)	byte $(A) \leftarrow(A)$ or (eam)	-	-		-	-	-			R	-	-
OR	ear, A	2	3	2	$2 \times$	byte (ear) $\leftarrow($ ear) or (A)	-	-			-	-			R	-	-
OR	eam, A	2+	$5+$ (a)	0	$2 \times$ (b)	byte (eam) \leftarrow (eam) or (A)	-	-			-	-			R	-	*
XOR	A, \#imm8	2	2	0	0	byte $(\mathrm{A}) \leftarrow(\mathrm{A})$ xor imm8					-	-			R	-	-
XOR	A, ear	2	3	1	0	byte $(\mathrm{A}) \leftarrow(\mathrm{A})$ xor (ear)	-				-	-			R	-	-
XOR	A, eam	2+	4+ (a)	0	(b)	byte $(A) \leftarrow(A)$ xor (eam)	-	-			-	-			R	-	-
XOR	ear, A	2	(a)	2	0	byte (ear) \leftarrow (ear) xor (A)	-	-			-	-			R	-	
XOR	eam, A	2+	$5+$ (a)	0	$2 \times$ (b)	byte (eam) \leftarrow (eam) xor (A)	-	-							R	-	
NOT	A	1	2	0	0	byte $(\mathrm{A}) \leftarrow \operatorname{not}(\mathrm{A})$	-								R	-	-
NOT	ear		3	2	0	byte (ear) \leftarrow not (ear)	-	-			-	-			R	-	-
NOT	eam	2+	$5+$ (a)	0	$2 \times$ (b)	byte (eam) \leftarrow not (eam)	-	-				-			R		
ANDW	A	1	2	0	0	word (A) $\leftarrow(\mathrm{AH}$) and (A)	-	-			-	-			R	-	-
ANDW	A, \#imm	3	2	0	0	word $(A) \leftarrow(A)$ and imm16	-	-		-	-	-	*		R	-	-
ANDW	A, ear	2	3	1	0	word $(A) \leftarrow(A)$ and (ear)	-	-		-	-	-	*		R	-	-
ANDW	A, eam	$2+$	4+ (a)	0	(c)	word $(A) \leftarrow(A)$ and (eam)	-	-		-	-	-	*		R	-	-
ANDW	ear, A	2	3	2	0	word (ear) \leftarrow (ear) and (A)	-	-			-	-	*		R	-	-
ANDW	eam, A	2+	$5+$ (a)	0	$2 \times$ (c)	word (eam) $\leftarrow($ eam) and (A)	-	-			-	-	*		R	-	
ORW	A	1	2	0	0	rd $(\mathrm{A}) \leftarrow(\mathrm{AH})$ or (A)	-	-		-	-	-			R	-	-
ORW	A, \#imm16	3	2	0	0	word $(\mathrm{A}) \leftarrow(\mathrm{A})$ or imm16	-	-			-	-			R	-	-
ORW	A, ear	2	3	1	0	word $(A) \leftarrow(A)$ or (ear)	-	-			-	-			R	-	-
ORW	A, eam	$2+$	4+ (a)	0	(c)	word $(A) \leftarrow(A)$ or (eam)	-	-			-	-			R	-	-
ORW	ear, A	2	3	2	0	word (ear) \leftarrow (ear) or (A)	-	-			-	-			R	-	-
ORW	eam, A	2+	5+ (a)	0	$2 \times$ (c)	word (eam) \leftarrow (eam) or (A)	-	-			-	-	*		R	-	*
XORW		1	2	0	0	word $(A) \leftarrow(A H)$ xor (A)	-	-				-			R	-	-
XORW	A, \#imm1	3	2	0	0	word $(A) \leftarrow(A)$ xor imm16	-	-			-	-			R	-	-
XORW	A, ear	2	3	1	0	word $(A) \leftarrow(A)$ xor (ear)	-				-	-			R	-	-
XORW	A, eam	$2+$	4+ (a)	0	(c)	word $(A) \leftarrow(A)$ xor (eam)	-				-	-			R	-	-
XORW	ear, A	2	3	2	0	word (ear) \leftarrow (ear) xor (A)	-				-	-			R	-	-
XORW	eam, A	2+	$5+$ (a)	0	$2 \times$ (c)	word (eam) $\leftarrow($ eam) xor (A)	-	-			-				R	-	*
N	A	1	2	0	0	word $(\mathrm{A}) \leftarrow \operatorname{not}(\mathrm{A})$	-			-	-	-	*		R	-	-
NOTW		2	3	2	(c)	word (ear) \leftarrow not (ear)	-	-		-	-	-	*	*	R	-	-
NOTW	eam	2+	$5+$ (a)	0	$2 \times$ (c)	word (eam) \leftarrow not (eam)	-	-			-	-			R	-	*

Note : For an explanation of "(a)" to "(d)", refer to Table 4, "Number of Execution Cycles for Each Type of Addressing," and Table 5, "Correction Values for Number of Cycles Used to Calculate Number of Actual Cycles."

MB90550A Series

Table 15 Logical 2 Instructions (Long Word) [6 Instructions]

Mnemonic		\#	\sim	RG	B	Operation	LH	AH	1	s	T	N	z	v	c	RMw
ANDL	A, ear	2	6	2	0	long $(A) \leftarrow(A)$ and	-	-	-	-	-			R	-	
ANDL	A, eam	2+	7+ (a)	0	(d)	long $(A) \leftarrow(A)$ and (eam)	-	-	-	-	-	*	*	R	-	-
ORL	A, ear	2	${ }^{6}$	2	0	long $(\mathrm{A}) \leftarrow(\mathrm{A})$ or (ear)	-	-	-	-	-	*	*	R	-	
ORL	A, eam	2+	7+ (a)	0	(d)	long $(A) \leftarrow(A)$ or (eam)	-	-	-	-	-	*	*	R	-	-
XORL	A, ea	2	6	2	0	long $(A) \leftarrow(A)$ xor (ear)	-	-	-	-	-	*	*	R	-	-
XORL	A, eam	2+	7+ (a)	0	(d)	long $(\mathrm{A}) \leftarrow(\mathrm{A})$ xor (eam)	-	-	-	-	-			R	-	-

Table 16 Sign Inversion Instructions (Byte/Word) [6 Instructions]

Mnemonic		\#	\sim	RG	B	Operation	LH	AH	1	s	T	N	z	v	c	RMw
NEG A		1	2	0	0	byte $(\mathrm{A}) \leftarrow 0-(\mathrm{A})$	X	-	-	-	-	*	*	*		-
NEG	ear	+	3	2	(b)	byte (ear) $\leftarrow 0-$ (ear)	-	-	-	-	-	*	*	*	*	-
NEG	eam	2+	$5+$ (a)	0	$2 \times$ (b)	byte (eam) $\leftarrow 0-$ (eam)	-	-	-	-	-		*	*	*	*
NEGW A NEGW ear NEGW eam		1	2	0	0	word (A$) \leftarrow 0-(\mathrm{A})$	-	-	-	-	-	*	*	*	,	-
		2	3	2	0	word (ear) $\leftarrow 0-$ (ear)	-	-	-	-	-	*	*	*	*	-
		$2+$	5+ (a)	0	$2 \times$ (c)	word (eam) $\leftarrow 0$ - (eam)	-	-	-	-	-		*			

Table 17 Normalize Instruction (Long Word) [1 Instruction]

Mnemonic	\#	\sim	RG	B	Operation	LH	AH	I	s	T	N	z	v	C	RMw
NRML A, RO	2	$* 1$	1	0	long $($ A $) \leftarrow$ Shift until first digit in " $1 "$ byte $(R 0) ~$ \leftarrow Current shift count	-	-	-	-	-	-	$*$	-	-	-

*1: 4 when the contents of the accumulator are all zeroes, $6+(\mathrm{RO})$ in all other cases (shift count).
Note : For an explanation of "(a)" to "(d)", refer to Table 4, "Number of Execution Cycles for Each Type of Addressing," and Table 5, "Correction Values for Number of Cycles Used to Calculate Number of Actual Cycles."

MB90550A Series

Table 18 Shift Instructions (Byte/Word/Long Word) [18 Instructions]

Mnemonic	\#	\sim	RG	B	Operation	LH	AH	1	S	T	N	z	V	c	RMW
RORC A	2	2	0	0	byte $(\mathrm{A}) \leftarrow$ Right rotation with carry	-	-	-	-	-			-	*	-
ROLC A	2	2	0	0	byte $(A) \leftarrow$ Left rotation with carry	-	-	-	-	-	*		-	*	-
RORC ear	2	3	2	0	byte (ear) \leftarrow Right rotation with carry	-	-	-	-	-			-	*	-
RORC eam	2+	$5+$ (a)	0	$2 \times$ (b)	byte (eam) \leftarrow Right rotation with carry	-	-	-	-	-	*	*	-	*	*
ROLC ear	2	3	2	0	byte (ear) \leftarrow Left rotation with carry	-	-	-	-	-			-	*	-
ROLC eam	2+	$5+$ (a)	0	$2 \times(\mathrm{b})$	byte (eam) \leftarrow Left rotation with carry	-	-	-	-	-	*	*	-	*	*
ASR A, R0	2	*1	1	0	byte (A) \leftarrow Arithmetic right barrel shift (A, R0)	-	-	-	-	*	*	*	-	*	-
LSR A, R0	2	*1	1	0	byte (A) \leftarrow Logical right barrel shift (A, RO)	-	-	-	-	*	*	*	-	*	-
LSL A, R0	2	*1	1	0	byte (A) \leftarrow Logical left barrel shift (A, R0)	-	-	-	-	-	*	*	-	*	-
ASRW A	1	2	0	0	word (A) \leftarrow Arithmetic right shift (A, 1 bit)	-	-	-	-	*	*	*	-	*	-
LSRW A/SHRW A	1	2	0	0	word $(A) \leftarrow$ Logical right shift (A, 1 bit)	-	-	-	-	*	R	*	-	*	-
LSLW A/SHLW A	1	2	0	0	word $(A) \leftarrow$ Logical left shift (A, 1 bit)		-	-	-	-			-		-
ASRW A, R0	2	*1	1	0	word (A) \leftarrow Arithmetic right barrel shift (A,	-	-	-	-	*	*	*	-	*	-
LSRW A, R0	2	*1	1	0	R0)	-	-	-	-	*	*	*	-	*	-
LSLW A, R0	2	*1	1	0	word (A) \leftarrow Logical right barrel shift (A, RO) word (A) \leftarrow Logical left barrel shift (A, RO)	-	-	-	-	-	*	*	-	*	-
ASRL A, R0	2	*2	1	0	long (A) \leftarrow Arithmetic right shift (A, RO)	-	-	-	-	*			-	*	-
LSRL A, R0	2	*2	1	0	long (A) \leftarrow Logical right barrel shift (A, R0)	-	-	-	-	*	*	*	-	*	-
LSLL A, R0	2	*2	1	0	long (A) \leftarrow Logical left barrel shift (A, R0)	-	-	-	-	-	*	*	-	*	-

*1: 6 when R0 is $0,5+(\mathrm{R} 0)$ in all other cases.
*2: 6 when R0 is $0,6+(R 0)$ in all other cases.
Note : For an explanation of "(a)" to "(d)", refer to Table 4, "Number of Execution Cycles for Each Type of Addressing," and Table 5, "Correction Values for Number of Cycles Used to Calculate Number of Actual Cycles."

MB90550A Series

Table 19 Branch 1 Instructions [31 Instructions]

Mnemonic	\#	\sim	RG	B	Operation	LH		AH	1	s		T	N	z	v	c	Rmw
BZ/BEQ rel	2	*1	0	0	Branch when (Z) = 1	-		-	-			-	-		- -		
BNZ/BNE rel	2	*1	0	0	Branch when (Z) $=0$	-		-	-	-	-	-	-	-	-	-	-
BC/BLO rel	2	*1	0	0	Branch when (C) = 1	-		-	-	-	-	-	-	-	-	-	-
BNC/BHS rel	2	*1	0	0	Branch when (C) $=0$	-		-	-	-	-	-	-	-	-	-	-
BN rel	2	*1	0	0	Branch when (N) $=1$	-		-	-	-	-	-	-	-	-	-	-
BP rel	2	*1	0	0	Branch when (N) $=0$	-		-	-	-	-	-	-	-	-	-	-
BV rel	2	*1	0	0	Branch when (V) = 1	-		-	-	-	-	-	-	-	-	-	-
BNV rel	2	*1	0	0	Branch when (V) $=0$	-		-	-	-	-	-	-	-	-	-	-
BT rel	2	*1	0	0	Branch when (T) $=1$	-		-	-	-	-	-	-	-	-	-	-
BNT rel	2	*1	0	0	Branch when (T) $=0$	-		-	-	-	-	-	-	-	-	-	
BLT rel	2	*1	0	0	Branch when (V) xor (N) $=1$	-		-	-	-	-	-	-	-	-	-	-
BGE rel	2	*1	0	0	Branch when (V) xor (N) $=0$	-		-	-	-	-	-	-	-	-	-	-
BLE rel	2	*1	0	0	Branch when (V) xor (N)) or (Z) = 1	-		-		-		-	-		-	-	-
BGT rel	2	${ }^{*} 1$	0	0	Branch when (V) xor (N)) or (Z) $=0$	-		-		-		-	-		-	-	-
BLS rel	2	*1	0	0	Branch when (C) or $(Z)=1$	-		-	-	-		-	-		-	-	-
BHI rel	2	${ }^{*} 1$	0	0	Branch when (C) or (Z) $=0$	-		-	-	-		-	-		-	-	
BRA rel	2	*1	0	0	Branch unconditionally	-		-	-	-		-	-		- -	-	-
JMP @A	1	2	0	0	word (PC) \leftarrow (A)	-		-				-	-		- -	-	-
JMP addr16	3	3	0	0	word (PC) \leftarrow addr16	-		-		-		-	-		-	-	
JMP @ear	2	3	1	0	word (PC) \leftarrow (ear)	-		-		-		-	-		-	-	
JMP @eam	$2+$	4+ (a)	0	(c)	word (PC) $\leftarrow($ eam)	-		-		-		-	-		-	-	
JMPP @ear*3	2	(a)	2	0	word (PC) $\leftarrow($ ear), (PCB) $\leftarrow($ ear +2$)$	-		-		-		-	-		-	-	
JMPP @eam*3	$2+$	$6+$ (a)	0	(d)	word (PC) $\leftarrow($ eam), (PCB) $\leftarrow($ eam +2$)$	-		-	-	-		-	-		-	-	
JMPP addr24	4	4	0	0	word $(\mathrm{PC}) \leftarrow \operatorname{ad} 240$ to 15, $(\mathrm{PCB}) \leftarrow \operatorname{ad} 2416$ to 23	-						-					
CALL @ear*4	2	6	1	(c)	word (PC) \leftarrow (ear)	-		-	-	-		-	-	-	- -	- -	-
CALL @eam*4	2+	$7+$ (a)	0	$2 \times$ (c)	word (PC) $\leftarrow($ eam $)$	-		-	-	-			-	-	-	-	
CALL addr16*5	3	6	0	(c)	word (PC) \leftarrow addr16	-		-	-	-			-	-	-	-	-
CALLV \#vct4*5	1	7	0	$2 \times$ (c)	Vector call instruction	-		-	-	-		-	-		-	-	-
CALLP @ear *6	2	10	2	2×(c)	word $(\mathrm{PC}) \leftarrow$ (ear) 0 to 15, $(\mathrm{PCB}) \leftarrow($ ear $) 16$ to 23	-		-	-			-	-			-	-
CALLP @eam *6	2+	11+ (a)	0	*2	word $(\mathrm{PC}) \leftarrow($ eam $) 0$ to 15 , $(\mathrm{PCB}) \leftarrow(\mathrm{eam}) 16$ to 23	-		-	-			-	-			-	-
CALLP addr24 *7	4	10	0	$2 \times$ (c)	word (PC) \leftarrow addr0 to 15 , $(\mathrm{PCB}) \leftarrow$ addr16 to 23	-		-	-			-	-			-	-

*1: 4 when branching, 3 when not branching.
*2: (b) $+3 \times$ (c)
*3: Read (word) branch address.
*4: W: Save (word) to stack; R: read (word) branch address.
*5: Save (word) to stack.
*6: W: Save (long word) to W stack; R: read (long word) R branch address.
*7: Save (long word) to stack.
Note : For an explanation of "(a)" to "(d)", refer to Table 4, "Number of Execution Cycles for Each Type of Addressing," and Table 5, "Correction Values for Number of Cycles Used to Calculate Number of Actual Cycles."

MB90550A Series

Table 20 Branch 2 Instructions [19 Instructions]

*1: 5 when branching, 4 when not branching
*2: 13 when branching, 12 when not branching
*3: $7+$ (a) when branching, $6+$ (a) when not branching
*4: 8 when branching, 7 when not branching
*5: 7 when branching, 6 when not branching
*6: $8+$ (a) when branching, $7+$ (a) when not branching
*7: Set to $3 \times(\mathrm{b})+2 \times$ (c) when an interrupt request occurs, and $6 \times$ (c) for return.
*8: Retrieve (word) from stack
*9: Retrieve (long word) from stack
*10: In the CBNE/CWBNE instruction, do not use the RWj+ addressing mode.
Note : For an explanation of "(a)" to "(d)", refer to Table 4, "Number of Execution Cycles for Each Type of Addressing," and Table 5, "Correction Values for Number of Cycles Used to Calculate Number of Actual Cycles."

MB90550A Series

Table 21 Other Control Instructions (Byte/Word/Long Word) [36 Instructions]

Mnemonic	\#	\sim	RG	B	Operation	LH	AH	1	s	T	N	z	v	c	RMW
PUSHW A	1	4	0	(c)	word (SP) $\leftarrow(\mathrm{SP})-2,((\mathrm{SP})) \leftarrow(\mathrm{A})$	-	-	-	-	-	-	-	-	-	-
PUSHW AH	1	4	0	(c)	word $(\mathrm{SP}) \leftarrow(\mathrm{SP})-2,((\mathrm{SP})) \leftarrow(\mathrm{AH})$	-	-	-	-	-	-	-	-	-	-
PUSHW PS	1	4	0	(c)	word $(\mathrm{SP}) \leftarrow(\mathrm{SP})-2,((\mathrm{SP})) \leftarrow(\mathrm{PS})$	-	-	-	-	-	-	-	-	-	-
PUSHW rlst	2	*3	*5	*4	$(\mathrm{SP}) \leftarrow(\mathrm{SP})-2 \mathrm{n},((\mathrm{SP})) \leftarrow(\mathrm{rlst})$	-	-	-	-	-	-	-	-	-	-
POPW A	1	3	0	(c)	word $(\mathrm{A}) \leftarrow((\mathrm{SP}))$, (SP) $\leftarrow(\mathrm{SP})+2$	-	*	-	-	-	-	-	-	-	-
POPW AH	1	3	0	(c)	word $(\mathrm{AH}) \leftarrow((\mathrm{SP})),(\mathrm{SP}) \leftarrow(\mathrm{SP})+2$	-	-	-	-	-	-	-	-	-	-
POPW PS	1	4	0	(c)	word $(\mathrm{PS}) \leftarrow((\mathrm{SP})),(\mathrm{SP}) \leftarrow(\mathrm{SP})+2$	-	-	*	*	*	*	*	*	*	-
POPW rlst	2	*2	*5	*4	$(\mathrm{rlst}) \leftarrow((\mathrm{SP})),(\mathrm{SP}) \leftarrow(\mathrm{SP})+2 \mathrm{n}$	-	-	-	-	-	-	-	-	-	-
JCTX @A	1	14	0	$6 \times$ (c)	Context switch instruction	-	-	*	*	*	*	*	*	*	-
AND CCR, \#imm8	2	3	0	0	byte $(\mathrm{CCR}) \leftarrow(\mathrm{CCR})$ and imm8	-	-	*	*	*	*	*	*	*	-
OR CCR, \#imm8	2	3	0	0	byte $(C C R) \leftarrow(C C R)$ or imm8	-	-	*	*	*	*	*	*	*	-
MOV RP, \#imm8	2	2	0	0	byte (RP) ↔imm8	-	-	-	-	-	-	-	-	-	-
MOV ILM, \#imm8	2	2	0	0	byte $($ ILM $) \leftarrow$ ¢mm8	-	-	-	-	-	-	-	-	-	-
MOVEA RWi, ear	2	3	1	0	word (RWi) ¢ear	-	-	-	-	-	-	-	-	-	-
MOVEA RWi, eam	2+	2+ (a)	1	0	word $(\mathrm{RWi}) \leftarrow$ eam	-	-	-	-	-	-	-	-	-	-
MOVEA A, ear	2	1	0	0	word (A) \leftarrow ear	-	*	-	-	-	-	-	-	-	-
MOVEA A, eam	2+	$1+(\mathrm{a})$	0	0	word $(A) \leftarrow e a m$	-	*	-	-	-	-	-	-	-	-
ADDSP \#imm8	2	3	0	0	word (SP) $\leftarrow(\mathrm{SP})+$ +ext (imm8)	-	-	-	-	-	-	-	-	-	-
ADDSP \#imm16	3	3	0	0	word $(\mathrm{SP}) \leftarrow(\mathrm{SP})+$ +imm16	-	-	-	-	-	-	-	-	-	-
MOV A, brgl	2	*1	0	0	byte $(\mathrm{A}) \leftarrow$ (brgl)	Z	*	-	-	-	*	*	-	-	-
MOV brg2, A	2	1	0	0	byte $($ brg2 $) \leftarrow(\mathrm{A})$	-	-	-	-	-	*	*	-	-	-
NOP	1	1	0	0	No operation	-	-	-	-	-	-	-	-	-	-
ADB	1	1	0	0	Prefix code for accessing AD space	-	-	-	-	-	-	-	-	-	-
DTB	1	1	0	0	Prefix code for accessing DT space	-	-	-	-	-	-	-	-	-	-
PCB	1	1	0	0	Prefix code for accessing PC space	-	-	-	-	-	-	-	-	-	-
SPB	1	1	0	0	Prefix code for accessing SP space	-	-	-	-	-	-	-	-	-	-
NCC	1	1	0	0	Prefix code for no flag change	-	-	-	-	-	-	-	-	-	-
CMR	1	1	0	0	Prefix code for common register bank	-	-	-	-	-	-	-	-	-	-

*1: PCB, ADB, SSB, USB, and SPB : 1 state DTB, DPR : 2 states
*2: $7+3 \times$ (pop count) $+2 \times$ (last register number to be popped), 7 when rlst $=0$ (no transfer register)
*3: $29+$ (push count) $-3 \times$ (last register number to be pushed), 8 when rlst $=0$ (no transfer register)
*4: Pop count \times (c), or push count \times (c)
*5: Pop count or push count.
Note : For an explanation of "(a)" to "(d)", refer to Table 4, "Number of Execution Cycles for Each Type of Addressing," and Table 5, "Correction Values for Number of Cycles Used to Calculate Number of Actual Cycles."

MB90550A Series

Table 22 Bit Manipulation Instructions [21 Instructions]

Mnemonic	\#	\sim	RG	B	Operation	LH	A		1	s	T	N	z	z	v	c	RMw
MOVB A, dir:bp	3	5	0	(b)	byte (A) \leftarrow (dir:bp) b	Z			-	-	-				-	-	-
MOVB A, addr16:bp	4	5	0	(b)	byte $(A) \leftarrow($ addr16:bp) b	Z			-	-	-				-	-	-
MOVB A, io:bp	3	4	0	(b)	byte $(\mathrm{A}) \leftarrow$ (io:bp) b	Z			-	-	-				-	-	-
MOVB dir:bp, A	3	7	0	$2 \times$ (b)	bit (dir:bp) $\mathrm{b} \leftarrow(\mathrm{A})$	-		-	-	-	-				-	-	*
MOVB addr16:bp, A	4	7	0	2x (b)	bit (addr16:bp) $\mathrm{b} \leftarrow(\mathrm{A})$	-			-	-	-	*		*	-	-	
MOVB io:bp, A	3	6	0	2× (b)	bit (io:bp) $\mathrm{b} \leftarrow(\mathrm{A})$	-			-	-	-				-	-	
SETB dir:bp	3	7	0	$2 \times$ (b)	bit (dir:bp) $\mathrm{b} \leftarrow 1$				-	-	-				-	-	*
SETB addr16:bp	4	7	0	$2 \times$ (b)	bit (addr16:bp) b $\leftarrow 1$	-			-	-	-	-	-	-	-	-	
SETB io:bp	3	7	0	$2 \times$ (b)	bit (io:bp) $\mathrm{b} \leftarrow 1$				-	-	-		-	-	-	-	*
CLRB dir:bp	3	7	0	$2 \times$ (b)	bit (dir:bp) $\mathrm{b} \leftarrow 0$				-	-	-	-		-	-	-	
CLRB addr16:bp	4	7	0	$2 \times$ (b)	bit (addr16:bp) $\mathrm{b} \leftarrow 0$	-			-	-	-	-	-	-	-	-	
CLRB io:bp	3	7	0	2×(b)	bit (io:bp) $\mathrm{b} \leftarrow 0$	-			-	-	-	-	-	-	-	-	*
BBC dir:bp, rel	4	*1	0	(b)	Branch when (dir:bp) $\mathrm{b}=0$				-	-	-	-			-	-	-
BBC addr16:bp, rel	5	*1	0	(b)	Branch when (addr16:bp) $\mathrm{b}=0$	-	-		-	-	-	-			-	-	-
BBC io:bp, rel	4	*2	0	(b)	Branch when (io:bp) $\mathrm{b}=0$	-	-		-	-	-	-			-	-	-
BBS dir:bp, rel	4	*1	0	(b)	Branch when (dir:bp) $\mathrm{b}=1$				-	-	-	-			-	-	-
BBS addr16:bp, rel	5	*1	0	(b)	Branch when (addr16:bp) $b=1$		-		-	-	-	-			-	-	-
BBS io:bp, rel	4	*2	0	(b)	Branch when (io:bp) $b=1$	-	-		-	-	-	-			-	-	-
SBBS addr16:bp, rel	5	*3	0	2× (b)	Branch when (addr16:bp) $\mathrm{b}=1, \mathrm{bit}=1$	-			-	-	-	-	*		-	-	*
WBTS io:bp	3	*4	0	*5	Wait until (io:bp) $\mathrm{b}=1$	-	-		-	-	-	-			-	-	-
WBTC io:bp	3	*4	0	*5	Wait until (io:bp) $\mathrm{b}=0$	-	-		-	-	-	-	- -		-	-	-

*1: 8 when branching, 7 when not branching
*2: 7 when branching, 6 when not branching
*3: 10 when condition is satisfied, 9 when not satisfied
*4: Undefined count
*5: Until condition is satisfied
Note : For an explanation of "(a)" to "(d)", refer to Table 4, "Number of Execution Cycles for Each Type of Addressing," and Table 5, "Correction Values for Number of Cycles Used to Calculate Number of Actual Cycles."

Table 23 Accumulator Manipulation Instructions (Byte/Word) [6 Instructions]

Mnemonic	\#	\sim	RG	B	Operation	LH	AH	1	s	T	N	z	v	c	RMW
SWAP	1	3	0	0	byte (A) 0 to $7 \leftrightarrow(A) 8$ to 15	-	-	-	-	-	-	-	-	-	-
SWAPW	1	2	0	0	word (AH) ↔(AL)	-	*	-	-	-	-	-	-	-	-
EXT	1	1	0	0	byte sign extension	X	-	-	-	-	*	*	-	-	-
EXTW	1	2	0	0	word sign extension	-	X	-	-	-	*	*	-	-	-
ZEXT	1	1	0	0	byte zero extension	Z	-	-	-	-	R	*	-	-	-
ZEXTW	1	1	0	0	word zero extension	-	Z	-	-	-	R	*	-	-	-

MB90550A Series

Table 24 String Instructions [10 Instructions]

Mnemonic	\#	\sim	RG	B	Operation	LH	AH	1	s	T	N	z	v	c	RMW
MOVS/MOVSI	2	*2	*5	*3	Byte transfer @AH+ ¢@AL+, counter = RW0	-	-	-	-	-	-	-	-	-	-
MOVSD	2	*2	*5	*3	Byte transfer @AH- ¢@AL-, counter = RW0	-	-	-	-	-	-	-	-	-	-
SCEQ/SCEQI	2	*1	*5	*4	Byte retrieval (@AH+) - AL, counter = RW0	-	-	-	-	-	*	*	*	*	-
SCEQD	2	*1	*5	*4	Byte retrieval (@AH-) - AL, counter = RW0	-	-	-	-	-	*	*	*	*	-
FISL/FILSI	2	$6 \mathrm{~m}+6$	*5	*3	Byte filling @AH $+\leftarrow A L$, counter $=$ RW0	-	-	-	-	-	*	*	-	-	-
MOVSW/MOVSWI	2	*2	*8	*6	Word transfer @AH $+\leftarrow$ @AL+, counter = RW0	-	-	-	-	-	-	-	-	-	-
MOVSWD	2	*2	*8	*6	Word transfer @AH- ¢ @AL-, counter = RW0	-	-	-	-	-	-	-	-	-	-
SCWEQ/SCWEQI	2	*1	*8	*7	Word retrieval (@AH+) - AL, counter = RW0	-	-	-	-	-	*	*	*	*	-
SCWEQD	2	*1	*8	*7	Word retrieval (@AH-) - AL, counter = RW0	-	-	-	-	-	*	*	*	*	-
FILSW/FILSWI	2	$6 \mathrm{~m}+6$	*8	*6	Word filling @AH $+\leftarrow A L$, counter $=$ RW0	-	-	-	-	-	*	*	-	-	-

m : RW0 value (counter value)
n: Loop count
*1: 5 when RW0 is $0,4+7 \times($ RW0 $)$ for count out, and $7 \times n+5$ when match occurs
*2: 5 when RW0 is $0,4+8 \times($ RW0) in any other case
*3: (b) $\times($ RW0 $)+(b) \times($ RW0 $)$ when accessing different areas for the source and destination, calculate (b) separately for each.
*4: (b) $\times \mathrm{n}$
*5: $2 \times$ (RW0)
*6: (c) $\times($ RWO $)+(c) \times($ RWO $)$ when accessing different areas for the source and destination, calculate (c) separately for each.
*7: (c) $\times \mathrm{n}$
*8: $2 \times$ (RW0)
Note : For an explanation of "(a)" to "(d)", refer to Table 4, "Number of Execution Cycles for Each Type of Addressing," and Table 5, "Correction Values for Number of Cycles Used to Calculate Number of Actual Cycles."

MB90550A Series

■ ORDERING INFORMATION

Part number	Package	Remarks
MB90552APF		
MB90553APF	100-pin plastic QFP	
MB90T552APF	(FPT-100P-M06)	
MB90T553APF		
MB90F553APF		
MB90P553APF		
MB90552APF	100-pin plastic LQFP	
MB90553APF	(FPT-100P-M05)	
MB90T552APF		
MB90T533APF		
MB90F553APF		

MB90550A Series

PACKAGE DIMENSIONS

```
100-pin plastic QFP
(FPT-100P-M06)
```


© 1994 FUJITSU LIMTED F100008-3C-2
Dimensions in mm (inches)

100-pin plastic LQFP
(FPT-100P-M05)

© 1995 FUUTSU LIMITED F100007-2C-3
Dimensions in mm (inches)

MB90550A Series

FUJITSU LIMITED

For further information please contact:

Japan

FUJITSU LIMITED
Corporate Global Business Support Division
Electronic Devices
KAWASAKI PLANT, 4-1-1, Kamikodanaka
Nakahara-ku, Kawasaki-shi
Kanagawa 211-8588, Japan
Tel: 81(44) 754-3763
Fax: 81(44) 754-3329
http://www.fujitsu.co.jp/

North and South America

FUJITSU MICROELECTRONICS, INC.
Semiconductor Division
3545 North First Street
San Jose, CA 95134-1804, USA
Tel: (408) 922-9000
Fax: (408) 922-9179
Customer Response Center
Mon. - Fri.: 7 am - 5 pm (PST)
Tel: (800) 866-8608
Fax: (408) 922-9179
http://www.fujitsumicro.com/

Europe

FUJITSU MICROELECTRONICS EUROPE GmbH
Am Siebenstein 6-10
D-63303 Dreieich-Buchschlag
Germany
Tel: (06103) 690-0
Fax: (06103) 690-122
http://www.fujitsu-ede.com/

Asia Pacific

FUJITSU MICROELECTRONICS ASIA PTE LTD
\#05-08, 151 Lorong Chuan
New Tech Park
Singapore 556741
Tel: (65) 281-0770
Fax: (65) 281-0220
http://www.fmap.com.sg/

All Rights Reserved.
The contents of this document are subject to change without notice. Customers are advised to consult with FUJITSU sales representatives before ordering.

The information and circuit diagrams in this document are presented as examples of semiconductor device applications, and are not intended to be incorporated in devices for actual use. Also, FUJITSU is unable to assume responsibility for infringement of any patent rights or other rights of third parties arising from the use of this information or circuit diagrams.

FUJITSU semiconductor devices are intended for use in standard applications (computers, office automation and other office equipment, industrial, communications, and measurement equipment, personal or household devices, etc.).

CAUTION:

Customers considering the use of our products in special applications where failure or abnormal operation may directly affect human lives or cause physical injury or property damage, or where extremely high levels of reliability are demanded (such as aerospace systems, atomic energy controls, sea floor repeaters, vehicle operating controls, medical devices for life support, etc.) are requested to consult with FUJITSU sales representatives before such use. The company will not be responsible for damages arising from such use without prior approval.

Any semiconductor devices have an inherent chance of failure. You must protect against injury, damage or loss from such failures by incorporating safety design measures into your facility and equipment such as redundancy, fire protection, and prevention of over-current levels and other abnormal operating conditions.

If any products described in this document represent goods or technologies subject to certain restrictions on export under the Foreign Exchange and Foreign Trade Law of Japan, the prior authorization by Japanese government will be required for export of those products from Japan.

[^0]: *:The current value is preliminary value and may be subject to change for enhanced characteristics without previous notice. The power supply current is measured with an external clock.

