MAGNACHIP SEMICONDUCTOR LTD. 8-BIT SINGLE-CHIP MICROCONTROLLERS

GMS81C7208 GMS81C7216

User's Manual (Ver. 1.04)

REVISION HISTORY

VERSION 1.04 (FEB. 2005) This book

Fixed some errata at page32 (Port Mode Register).

VERSION 1.03 (SEP. 2004) This book

The company name, Hynix Semiconductor Inc. changed to MagnaChip Semiconductor Ltd.

VERSION 1.02 (AUG. 2003)

Delete I_{DD3} and the following sentence at page 11.

The bit7(SUBM) of LCR register must be set to "1" by software because of reduction current consumption(reset value="0").

VERSION 1.01 (AUG. 2003)

Fixed some errata.

VERSION 1.00 (AUG. 2003) First Edition

44MQFP/LQFP package.

Version 1.04

Published by

MCU Application Team

©2004 MagnaChip Semiconductor Ltd. All right reserved.

Additional information of this manual may be served by MagnaChip Semiconductor offices in Korea or Distributors and Representatives listed at address directory.

MagnaChip Semiconductor reserves the right to make changes to any information here in at any time without notice.

The information, diagrams and other data in this manual are correct and reliable; however, MagnaChip Semiconductor is in no way responsible for any violations of patents or other rights of the third party generated by the use of this manual.

1. OVERVIEW	1	15. SERIAL COMMUNICATION	54
Description	1	Transmission/Receiving Timing	55
Features		The Method of Serial I/O	
Development Tools		The Method to Test Correct Transmission	56
Ordering Information		16. BUZZER FUNCTION	57
2. BLOCK DIAGRAM	3	17. INTERRUPTS	59
3. PIN ASSIGNMENT	4	Interrupt Sequence	
4. PACKAGE DIMENSION	5	BRK Interrupt	
		Multi Interrupt	62
5. PIN FUNCTION	6	External Interrupt	
6. PORT STRUCTURES 7		18. LCD DRIVER	
7. ELECTRICAL CHARACTERISTICS	10	LCD Control Registers	
Absolute Maximum Ratings		Duty and Bias Selection of LCD Driver	
Recommended Operating Conditions		Selecting Frame Frequency	
DC Electrical Characteristics		LCD Display Memory	70
A/D Converter Characteristics		Control Method of LCD Driver	/1
AC Characteristics		19. WATCH / WATCHDOG TIMER	73
Serial Interface Timing Characteristics		Watch Timer	73
Typical Characteristics	15	Watchdog Timer	73
8. MEMORY ORGANIZATION		20. POWER DOWN OPERATION	76
Registers	17	SLEEP Mode	76
Program Memory		STOP Mode	77
Data Memory		21. OSCILLATOR CIRCUIT	80
List of Control Registers	24		
Addressing Mode		22. RESET	81
9. I/O PORTS		External Reset Input	
Port Data Registers		Watchdog Timer Reset	81
I/O Ports Configuration		23. POWER FAIL PROCESSOR	82
10. CLOCK GENERATOR		24. DEVELOPMENT TOOLS	84
		OTP Programming	
11. OPERATION MODE		Emulator EVA. Board Setting	86
Operation Mode		A. MASK ORDER SHEET	
12. BASIC INTERVAL TIMER	40		
13. TIMER/EVENT COUNTER	42	B. INSTRUCTION	
8-bit Timer / Counter Mode		Terminology List	iii
16-bit Timer / Counter Mode		Instruction Map	
8-bit Capture Mode		Instruction Set	V
16-bit Capture Mode		C. SOFTWARE EXAMPLE	yiii
14 ANALOG DIGITAL CONVEPTED		O. OO. THAILE EAGIN EE	7.111

Transmission/Receiving Timing	55
The Method of Serial I/O	56
The Method to Test Correct Transmission .	
16. BUZZER FUNCTION	57
17. INTERRUPTS	59
Interrupt Sequence	61
BRK Interrupt	
Multi Interrupt	
External Interrupt	
18. LCD DRIVER	
LCD Control Registers Duty and Bias Selection of LCD Driver	66
Selecting Frame Frequency	67
LCD Display Memory	70
LCD Display MemoryControl Method of LCD Driver	71
19. WATCH / WATCHDOG TIMER	73
Watch Timer	73
Watchdog Timer	73
20. POWER DOWN OPERATION	76
SLEEP Mode	
STOP Mode	77
21. OSCILLATOR CIRCUIT	80
22. RESET	81
External Reset Input	
Watchdog Timer Reset	
23. POWER FAIL PROCESSOR	82
24. DEVELOPMENT TOOLS	84
OTP Programming	
Emulator EVA. Board Setting	86
A. MASK ORDER SHEET	
B. INSTRUCTION	
Terminology List	
Instruction Map	
Instruction Set	

GMS81C7208/16

CMOS SINGLE-CHIP 8-BIT MICROCONTROLLER WITH LCD DRIVER & A/D CONVERTER

1. OVERVIEW

1.1 Description

The GMS81C7208/7216 is advanced CMOS 8-bit microcontrollers with 8K/16K bytes of ROM. There are a powerful microcontroller which provides a highly flexible and cost effective solution to many LCD applications. These provide the following standard features:8K/16K bytes of mask type ROM or 16K bytes OTP ROM, 448 bytes of RAM, 8-bit Timer/Counter, 8-bit A/D converter, programmable buzzer driving port, 8-bit basic interval timer, watch dog timer, serial peripheral interface, on chip oscillator and clock circuitry. They also come with 4com/17seg LCD driver. In addition, it support power saving mode to reduce power consumption.

Device Name	ROM Size	RAM Size	I/O	ОТР	Package
GMS81C7208	8K bytes	448 bytes	29	CMC07C704C	44MOED 44LOED
GMS81C7216	16K bytes	448 bytes	29	GMS87C7216	44MQFP, 44LQFP

1.2 Features

- 8K/16K Bytes On-chip Programmable ROM
- 448 Bytes of On-chip Data RAM (Included Stack Area and 27 Nibbles LCD Display RAM)
- Minimum Instruction Execution Time 1μs at 4MHz (2cycle NOP Instruction)
- One 8-bit Basic Interval Timer
- One Watch Timer
- One Watchdog Timer
- Four 8-bit Timer/Event Counter (or Two 16-bit Timer/Event Counter)
- Three External Interrupt Input Ports
- One Programmable 6-bit Buzzer Driving Port
 500Hz ~ 250kHz@4MHz
- 29 I/O Ports
- Three Channel 8-bit A/D Converter
- One 8-bit Serial Communication Interface
- LCD Display/ Controller
 - Static Mode (20SEG x 1COM, Static)
 - 1/2 Duty Mode (19SEG x 2COM, 1/2 or 1/3 Bias)
 - 1/3 Duty Mode (18SEG x 3COM, 1/3 Bias)
 - 1/4 Duty Mode (17SEG x 4COM, 1/3 Bias)
 - Internal Built-in Resistor Circuit for Bias

• Twelve Interrupt Sources

- Basic Interval Timer: 1

- External Input: 3

- Timer/Event Counter: 4

- ADC: 1

- Serial Interface: 1

- WT:1 - WDT: 1

Main Clock Oscillation (1.0~4.5MHz)

- Crystal
- Ceramic Resonator
- External R Oscillator (Built-in Capacitor)

Power Saving Operation Mode

- 2/8/16/64 Divided System Clock Selectable
- Power Down Mode
 - STOP Mode
 - SLEEP Mode

• Wide Temperature Range

- Industrial : -40°C ~ + 85°C

2.7V to 5.5V Wide Operating Voltage Range

- Noise Immunity Circuit for EMS
 - Power Fail Processor
 - Built-in Noise Filter
- 44MQFP, 44LQFP Package Types
- Available 16K Bytes OTP Version

1.3 Development Tools

Note: There are several setting switches in the Emulator. User should read carefully and do setting properly before developing the program refer to "24.2 Emulator EVA. Board Setting" on page 86. Otherwise, the Emulator may not work properly.

Software	- MS- Window base assembler - Linker / Editor / Debugger
Hardware (Emulator)	- CHOICE-Dr. - CHOICE-Dr. EVA81C7X B/D
OTP program- mer	- PGM-Plus - CHOICE-SIGMA (Single type) - CHOICE-GANG4 (4-gang type)

The GMS81C7208/16 is supported by a full-featured macro assembler, an in-circuit emulator CHOICE-Dr. TM and OTP programmers. There are two different type programmers, one is single type, another is gang type. For more detail, refer to OTP Programming chapter. Macro assembler operates under the MS-

Windows 95/98/2000/XPTM.

Please contact sales part of MagnaChip Semiconductor.

1.4 Ordering Information

	Device name	ROM Size (bytes)	RAM size	Package
Mask ROM version	GMS81C7208 Q	8K bytes	448 bytes	44MQFP
	GMS81C7216 Q	16K bytes	448 bytes	44MQFP
	GMS81C7208 LQ	8K bytes	448 bytes	44LQFP
	GMS81C7216 LQ	16K bytes	448 bytes	44LQFP
OTP ROM version	GMS87C7216 Q	16K bytes OTP	448 bytes	44MQFP
	GMS87C7216 LQ	16K bytes OTP	448 bytes	44LQFP

2. BLOCK DIAGRAM

GMS81C7208/7216

3. PIN ASSIGNMENT

4. PACKAGE DIMENSION

5. PIN FUNCTION

VDD: Supply voltage.

VSS: Circuit ground.

RESET: Reset the MCU.

 $AV_{DD}\colon$ Supply voltage to the ladder resistor of ADC circuit. To enhance the resolution of analog to digital converter, use independent power source as well as possible, other than digital power source.

AVSS: ADC circuit ground.

X_{IN}: Input to the inverting oscillator amplifier and input to the internal main clock operating circuit.

X_{OUT}: Output from the inverting oscillator amplifier.

BIAS: LCD bias voltage input pin.

VCL0~VCL2: LCD driver power supply pins. The voltage on each pin is VCL2> VCL1> VCL0. For details, Refer to "18. LCD DRIVER" on page 65.

COM0~COM3: LCD common signal output pins. Also, the pins of COM1,COM2 and COM3 are shared with LCD segment signal outputs of SEG26, SEG25, SEG24 as application requirement.

R00~R07: R0 is an 8-bit CMOS bidirectional I/O port. R0 pins 1 or 0 written to the Port Direction Register can be used as outputs or schmitt trigger inputs. Also, pull-up resistors and open-drain outputs are software assignable.

In addition, R0 serves the functions of the various following special features.

Port Pin	Alternate Function	
R00	INT0 (External Interrupt 0)	
R01	INT1 (External Interrupt 1)	
R02	INT2 (External Interrupt 2)	
R03	EC0 (Event Counter Input 0)	
R04	EC2 (Event Counter Input 2)	
R05	SCK (Serial Clock)	
R06	SO (Serial Data Output)	
R07	SI (Serial Data Input)	

R21~R23: R2 is an 3-bit CMOS bidirectional I/O port. R2 pins 1 or 0 written to the Port Direction Register can be used as outputs or inputs. Also, pull-up resistors and open-drain outputs are software assignable.

In addition, R2 is shared with the ADC input.

Port Pin	Alternate Function
R21	AN1 (Analog Input 1)
R22	AN2 (Analog Input 2)
R23	AN3 (Analog Input 3)

R30: R3 is a 1-bit CMOS bidirectional I/O port. R30 pin 1 or 0

written to the Port Direction Register can be used as output or input. Also, pull-up resistor and open-drain output is software assignable.

In addition, R30 serves the function of the following special feature.

Port Pin	Alternate Function
R30	BUZ (Buzzer driving output)

SEG0~SEG7: These pins generate LCD segment signal output. Every LCD segment pins are shared with normal R4 input/output port. R4 is an 8-bit CMOS bidirectional I/O port. R4 pins 1 or 0 written to the Port Direction Register can be used as outputs or inputs.

LCD Pin Function	Port Pin
SEG0 (LCD Segment 0 Signal Output)	R40
SEG1 (LCD Segment 1 Signal Output)	R41
SEG2 (LCD Segment 2 Signal Output)	R42
SEG3 (LCD Segment 3 Signal Output)	R43
SEG4 (LCD Segment 4 Signal Output)	R44
SEG5 (LCD Segment 5 Signal Output)	R45
SEG6 (LCD Segment 6 Signal Output)	R46
SEG7 (LCD Segment 7 Signal Output)	R47

SEG8~SEG11: These pins generate LCD segment signal output. Every LCD segment pins are shared with normal R5 input/output port. R5 is an 4-bit CMOS bidirectional I/O port. R5 pins 1 or 0 written to the Port Direction Register can be used as outputs or inputs.

LCD Pin Function	Port Pin
SEG8 (LCD Segment 8 Signal Output)	R50
SEG9 (LCD Segment 9 Signal Output)	R51
SEG10 (LCD Segment 10 Signal Output)	R52
SEG11 (LCD Segment 11 Signal Output)	R53

SEG16~SEG20: These pins generate LCD segment signal output.

Every LCD segment pins are shared with normal R6 input/output port. R6 is an 5-bit CMOS bidirectional I/O port. R6 pins 1 or 0 written to the Port Direction Register can be used as outputs or inputs.

LCD Pin Function	Port Pin
SEG16 (LCD Segment 16 Signal Output)	R60
SEG17 (LCD Segment 17 Signal Output)	R61
SEG18 (LCD Segment 18 Signal Output)	R62
SEG19 (LCD Segment 19 Signal Output)	R63
SEG20 (LCD Segment 20 Signal Output)	R64

6. PORT STRUCTURES

PIN NAME	In/Out		Function	
(Alternate)	(Alternate)	Basic	Alternate	
V_{DD}	-	Supply Voltage		
V_{SS}	-	Circuit Ground		
RESET	I	Reset Signal Input		
AV _{DD}	-	Supply Voltage Input Pin for ADC		
AV _{SS}	-	Ground Level Input Pin for ADC		
X _{IN}	1	Oscillation Input		
X _{OUT}	0	Oscillation Output		
BIAS	1	LCD Bias Voltage Input		
VCL0~VCL2	I	LCD Driver Power Supply		
COM0	0	LCD Common Signal Output		
COM1(SEG26)	O(O)			
COM2(SEG25)	O(O)	LCD Common Signal Output	LCD Segment Signal output	
COM3(SEG24)	O(O)			
R00 (INT0)	I/O (I)		External Interrupt 0 Input	
R01 (INT1)	I/O (I)		External Interrupt 1 Input	
R02 (INT2)	I/O (I)		External Interrupt 2 Input	
R03 (EC0)	I/O (I)	0 hit Comerci I/O Borto	Timer/Counter 0 External Input	
R04 (EC2)	I/O (I)	8-bit General I/O Ports	Timer/Counter 1 External Input	
R05 (SCK)	I/O (I/O)		Serial Clock I/O	
R06 (SO)	I/O (O)		Serial Data Output	
R07 (SI)	I/O (I)		Serial Data Input	
R21~R23(AN1~AN3)	I/O(I)	3-bit General I/O Ports	Analog Voltage Input	
R30(BUZO)	I/O(O)	1-bit General I/O Ports	Buzzer Driving Output	
SEG0 ~ SEG7 (R40~R47)	O (I/O)	LCD Segment Signal Output	8-bit General I/O Ports	
SEG8 ~ SEG11 (R50~R53)	O (I/O)	LCD Segment Signal Output	4-bit General I/O Ports	
SEG16 ~ SEG20 (R60~R64)	O (I/O)	LCD Segment Signal Output	5-bit General I/O Ports	

Table 6-1 Port Function Description

R00/INT0, R01/INT1, R02/INT2, R03/EC0, R04/EC2, R05/SCK, R07/SI

R30/BUZ, R06/SO

R21/AN1~R23/AN3

RESET

R40~R47, R50~R53, R60~R64 / SEG0~SEG11, SEG16~SEG20

COM0~COM3 / SEG26~SEG24

X_{IN}, X_{OUT}

7. ELECTRICAL CHARACTERISTICS

7.1 Absolute Maximum Ratings

Supply voltage0.3 to +6.0 V
Storage Temperature40 to +125 °C
Voltage on any pin with respect to Ground (V $_{SS})$ 0.3 to V $_{DD}\!\!+\!0.3$
Maximum current out of V_{SS} pin100 mA
Maximum current into V_{DD} pin80 mA
Maximum current sunk by (I $_{\rm OL}$ per I/O Pin)20 mA
Maximum output current sourced by (I _{OH} per I/O Pin)

Maximum current (ΣI_{OL})	. 100 mA
Maximum current (ΣI_{OH})	60 mA

Note: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

7.2 Recommended Operating Conditions

Doromotor	Symbol	Condition	Specif	ications	l lmi4
Parameter	Symbol	Condition	Min.	Max.	Unit
Supply Voltage	V_{DD}	f _{XIN} =4.19MHz	2.7	5.5	V
Operating Frequency	f _{XIN}	V _{DD} =2.7~5.5V	1	4.5	MHz
Operating Temperature	T _{OPR}		-40	+85	°C

7.3 DC Electrical Characteristics

 $(T_A = -40 \sim 85^{\circ}C, V_{DD} = 2.7 \sim 5.5V),$

D	0		Sp	ecificatio	ns	11!4
Parameter	Symbol	Condition	Min.	Тур.	Max.	Unit
land the Note of	V _{IH1}	RESET, R0 (except R06)	0.8 V _{DD}	-	V _{DD}	٧
Input High Voltage	V _{IH2}	Other pins	0.7 V _{DD}	-	V _{DD}	٧
I	V _{IL1}	RESET, R0 (except R06)	0	-	0.2 V _{DD}	٧
Input Low Voltage	V _{IL2}	Other pins	0	-	0.3 V _{DD}	٧
0 1 11 11 11 11 11	V _{OH1}	R0,R2,R3 I _{OH1} =-0.5mA	V _{DD} -0.1	-	-	V
Output High Voltage V _{OH2}		SEG, COM I _{OH2} =-30μA	-	-	0.4	V
0.1.11	V _{OL1}	R0,R2,R3 I _{OL1} =0.4mA	-	-	0.2	V
Output Low Voltage	V _{OL2}	SEG, COM I _{OL2} =30μA	V _{DD} -0.2	-	-	V
Input High	I _{IH1}	V _{IN} =V _{DD} , All Input Pins except X _{IN}	-	-	1	μΑ
Leakage Current	I _{IH2}	V _{IN} =V _{DD,} X _{IN}	-	-	20	μΑ
Input Low	I _{IL1}	V _{IN} =0, All Input Pins except X _{IN}	-	-	-1	μА
Leakage Current	I _{IL2}	V _{IN} =0, X _{IN}	-	-	-20	μА
Pull-up Resistor	R _{PORT}	V _{IN} =0V, V _{DD} =5.5V, R0, R2	60	160	350	kΩ

		0	S	pecificatio	ns	11.24
Parameter	Symbol	Condition	Min.	Тур.	Max.	Unit
LCD Voltage Dividing Resistor	R _{LCD}	V _{DD} =5.5V	45	65	85	kΩ
Voltage Drop V _{DD} -COMn , n=0~3	V _{DC}	V_{DD} =2.7 ~ 5.5V -15 μ A per Common Pin	-	-	120	mV
Voltage Drop V _{DD} -SEG <i>n</i> , <i>n</i> =0~26	V _{DS}	V_{DD} =2.7 ~ 5.5V -15 μ A per Segment Pin	-	-	120	mV
V _{CL2} Output Voltage	V _{CL2}		V _{DD} -0.3	V_{DD}	V _{DD} +0.3	
V _{CL1} Output Voltage	V _{CL1}	V _{DD} =2.7 ~ 5.5V, 1/3 Bias BIAS pin and VCL2 pin are shorted	0.66V _{DD} -0.2	0.66V _{DD}	0.66V _{DD} +0.3	V
V _{CL0} Output Voltage	V _{CL0}	pin to pin and voll pin are enerted	0.33V _{DD} -0.3	0.33V _{DD}	0.33V _{DD} +0.3	
RC Oscillation Frequency	f _{RC}	R=60kΩ, V _{DD} = 5V	1	2	3	MHz
	I _{DD1}	Main Clock Operation Mode ² V _{DD} =5.5V±10%, X _{IN} =4MHz	-	2.9 (1.3)	7.0 (3.0)	mA
Supply Current ¹ () means at 3V operation	I _{DD2}	Sleep Mode ³ V _{DD} =5.5V±10%, X _{IN} =4MHz	-	0.4 (0.1)	1.7 (1.0)	mA
	I _{DD6}	Stop Mode ⁴ V _{DD} =5V±10%, X _{IN} = 0Hz When the bit7 of LCR register is "1".	-	1.0 (0.5)	12 (5)	μΑ

^{1.} Supply current in the following circuits are not included; on-chip pull-up resistors, internal LCD voltage dividing resistors, comparator voltage divide resistor, LVD circuit and output port drive currents.

^{2.} This mode set System Clock Mode Register(SCMR) to $xxxx0000_B$ that is $f_{XIN}/2$

^{3.} This mode set SCMR to $xxxx0000_B$ ($f_{XIN}/2$) and set SMR to "1"

^{4.} Main frequency clock stops and set SCMR to xxxx0011_B and set SMR to "1".

^{**} Caution : The bit7(SUBM) of LCR register must be set to "1" by software because of reduction current consumption (reset value ="0").

7.4 A/D Converter Characteristics

 $(T_A=25^{\circ}C, V_{SS}=0V, V_{DD}=5.0V, AV_{DD}=5.0V @f_{XIN}=4MHz)$

Downwood ou	Compleal	Took Condition	5	Specificatio	ns	Unit
Parameter	Symbol Test Condition		Min.	Typ. ¹	Typ. ¹ Max.	
Analog Input Voltage Range	V _{AIN}		V _{SS} -0.3	-	AV _{DD} +0.3	V
Non-linearity Error	N _{NLE}		-	±1.0	±1.5	LSB
Differential Non-linearity Error	N _{DNLE}		-	±1.0	±1.5	LSB
Zero Offset Error	N _{ZOE}		-	±0.5	±1.5	LSB
Full Scale Error	N _{FSE}	V _{DD} =AV _{DD} =5.0V	-	±0.25	±0.5	LSB
Gain Error	N _{GE}		-	±1.0	±1.5	LSB
Overall Accuracy	N _{ACC}		-	±1.0	±1.5	LSB
AV _{DD} Input Current	I _{REF}		-	-	200	μА
Conversion Time	T _{CONV}		-	-	20	μS
Analog Power Supply Input Range	AV_DD	V _{DD} =5.0V V _{DD} =3.0V	3.0 2.7	-	V _{DD}	V

^{1.} Data in "Typ" column is at 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

7.5 AC Characteristics

$$(T_A = -40 \sim +85^{\circ}C, V_{DD} = 5V \pm 10\%, V_{SS} = 0V)$$

Doromotor	Cumbal	Pins	S	pecificatio	ns	Unit
Parameter	Parameter Symbol		Min.	Тур.	Max.	Unit
Operating Frequency	f _{MAIN}	X _{IN}	0.455	-	4.2	MHz
External Clock Pulse Width	t _{MCPW}	X _{IN}	80	-	-	ns
External Clock Transition Time	t _{MRCP} ,t _{MFCP}	X _{IN}	-	-	20	ns
Main oscillation Stabilizing Time	t _{MST}	X _{IN} , X _{OUT} at 4MHz	-	-	20	ms
Interrupt Pulse Width	t _{IW}	INTO, INT1, INT2	2	-	-	t _{SYS} 1
RESET Input Width	t _{RST}	RESET	8	-	-	t _{SYS} 1
Event Counter Input Pulse Width	t _{ECW}	EC0, EC2	2	-	-	t _{SYS} 1

^{1.} t_{SYS} is one of $2/f_{MAIN}$ or $8/f_{MAIN}$ or $16/f_{MAIN}$ or $64/f_{MAIN}$ in the main clock operation mode.

Figure 7-1 Timing Chart

7.6 Serial Interface Timing Characteristics

$$(T_A=-40\sim+85^{\circ}C, V_{DD}=2.7\sim5.5V, V_{SS}=0V, f_{XIN}=4MHz)$$

Downwoodow	Cumb al	Dina	S	pecification	ıs	I I m i 4
Parameter	Symbol	Symbol Pins		Тур.	Max.	Unit
Serial Input Clock Pulse	t _{SCYC}	SCK	2t _{SYS} +200	-	8	ns
Serial Input Clock Pulse Width	t _{SCKW}	SCK	t _{SYS} +70	-	8	ns
SIN Input Setup Time (External SCK)	t _{SUS}	SIN	100	-	-	ns
SIN Input Setup Time (Internal SCK)	t _{SUS}	SIN	200	-	-	ns
SIN Input Hold Time	t _{HS}	SIN	t _{SYS} +70	-	-	ns
Serial Output Clock Cycle Time	t _{SCYC}	SCK	4t _{SYS}	-	16t _{SYS}	ns
Serial Output Clock Pulse Width	t _{SCKW}	SCK	t _{SYS} -30	-	-	ns
Serial Output Clock Pulse Transition Time	t _{FSCK}	SCK	-	-	30	ns
Serial Output Delay Time	s _{OUT}	SO	-	-	100	ns

Figure 7-2 Serial I/O Timing Chart

7.7 Typical Characteristics

This graphs and tables provided in this section are for design guidance only and are not tested or guaranteed.

In some graphs or tables the data presented are outside specified operating range (e.g. outside specified V_{DD} range). This is for information only and devices are guaranteed to operate properly only within the specified range.

The data presented in this section is a statistical summary of data collected on units from different lots over a period of time. "Typical" represents the mean of the distribution while "max" or "min" represents (mean $+3\sigma$) and (mean -3σ) respectively where σ is standard deviation

Normal Operation (Main opr.)

8. MEMORY ORGANIZATION

The GMS81C7208/16 has separate address spaces for Program memory and Data Memory. Program memory can only be read, not written to. It can be up to 8K/16K bytes of Program memory.

8.1 Registers

This device has six registers that are the Program Counter (PC), a Accumulator (A), two index registers (X, Y), the Stack Pointer (SP), and the Program Status Word (PSW). The Program Counter consists of 16-bit register.

Figure 8-1 Configuration of Registers

Accumulator: The Accumulator is the 8-bit general purpose register, used for data operation such as transfer, temporary saving, and conditional judgement, etc.

The Accumulator can be used as a 16-bit register with Y Register as shown below.

Figure 8-2 Configuration of YA 16-bit Register

X, Y Registers: In the addressing mode which uses these index registers, the register contents are added to the specified address, which becomes the actual address. These modes are extremely effective for referencing subroutine tables and memory tables. The index registers also have increment, decrement, comparison and data transfer functions, and they can be used as simple accumulators

Stack Pointer: The Stack Pointer is an 8-bit register used for occurrence interrupts and calling out subroutines. Stack Pointer identifies the location in the stack to be access (save or restore).

Generally, SP is automatically updated when a subroutine call is executed or an interrupt is accepted. However, if it is used in ex-

Data memory can be read and written to up to 448 bytes including the stack area and the LCD display RAM area.

cess of the stack area permitted by the data memory allocating configuration, the user-processed data may be lost.

The stack can be located at any position within $011B_{\rm H}$ to $01FF_{\rm H}$ of the internal data memory. The SP is not initialized by hardware, requiring to write the initial value (the location with which the use of the stack starts) by using the initialization routine. Normally, the initial value of "FF_H" is used.

Note: The Stack Pointer must be initialized by software because its value is undefined after RESET.

Example: To initialize the SP $\begin{array}{ccc} \text{LDX} & \# \text{OFFH} \\ & \text{TXSP} & ; & \text{SP} \leftarrow \text{FFH} \end{array}$

Program Counter: The Program Counter is a 16-bit wide which consists of two 8-bit registers, PCH and PCL. This counter indicates the address of the next instruction to be executed. In reset state, the program counter has reset routine address (PC_H:0FF_H, PC_I:0FE_H).

Program Status Word: The Program Status Word (PSW) contains several bits that reflect the current state of the CPU. The PSW is described in Figure 8-3. It contains the Negative flag, the Overflow flag, the Break flag the Half Carry (for BCD operation), the Interrupt enable flag, the Zero flag, and the Carry flag.

[Carry flag C]

This flag stores any carry or not borrow from the ALU of CPU after an arithmetic operation and is also changed by the Shift Instruction or Rotate Instruction.

[Zero flag Z]

This flag is set when the result of an arithmetic operation or data transfer is "0" and is cleared by any other result.

Figure 8-3 PSW (Program Status Word) Register

[Interrupt disable flag I]

This flag enables/disables all interrupts except interrupt caused by Reset or software BRK instruction. All interrupts are disabled when cleared to "0". This flag immediately becomes "0" when an interrupt is served. It is set by the EI instruction and cleared by the DI instruction.

[Half carry flag H]

After operation, this is set when there is a carry from bit 3 of ALU or there is no borrow from bit 4 of ALU. This bit can not be set or cleared except CLRV instruction with Overflow flag (V).

[Break flag B]

This flag is set by software BRK instruction to distinguish BRK from TCALL instruction with the same vector address.

[Direct page flag G]

This flag assigns RAM page for direct addressing mode. In the direct addressing mode, addressing area is from zero page $00_{\rm H}$ to 0FF_H when this flag is "0". If it is set to "1", addressing area is assigned by RPR register (address 0F3_H). It is set by SETG in-

struction and cleared by CLRG.

RAM Page	Instruction	Bit1 of RPR	Bit0 of RPR
0 page	CLRG	X	X
0 page	SETG	0	0
1 page	SETG	0	1
Reserved	SETG	1	0
Reserved	SETG	1	1

When content of RPR is above 2, malfunction will be occurred.

[Overflow flag V]

This flag is set to "1" when an overflow occurs as the result of an arithmetic operation involving signs. An overflow occurs when the result of an addition or subtraction exceeds +127(7F $_{\rm H})$ or -128(80 $_{\rm H})$. The CLRV instruction clears the overflow flag. There is no set instruction. When the BIT instruction is executed, bit 6 of memory is copied to this flag.

[Negative flag N]

This flag is set to match the sign bit (bit 7) status of the result of a data or arithmetic operation. When the BIT instruction is executed, bit 7 of memory is copied to this flag.

Figure 8-4 Stack Operation

8.2 Program Memory

A 16-bit program counter is capable of addressing up to 64K bytes, but this device has 8K/16K bytes program memory space only physically implemented. Accessing a location above $FFFF_H$ will cause a wrap-around to 0000_H .

Figure 8-5, shows a map of Program Memory. After reset, the CPU begins execution from reset vector which is stored in address $FFFE_H$ and $FFFF_H$ as shown in Figure 8-6.

As shown in Figure 8-5, each area is assigned a fixed location in Program Memory. Program Memory area contains the user program.

Figure 8-5 Program Memory Map

Page Call (PCALL) area contains subroutine program to reduce program byte length by using 2 bytes PCALL instead of 3 bytes CALL instruction. If it is frequently called, it is more useful to save program byte length.

Table Call (TCALL) causes the CPU to jump to each TCALL address, where it commences the execution of the service routine. The Table Call service area spaces 2-byte for every TCALL: $0FFCO_H$ for TCALL15, $0FFCO_H$ for TCALL14, etc., as shown in Figure 8-7.

Example: Usage of TCALL

The interrupt causes the CPU to jump to specific location, where it commences the execution of the service routine. The External interrupt 0, for example, is assigned to location 0FFFA $_{\rm H}$. The interrupt service locations spaces 2-byte interval: 0FFF8 $_{\rm H}$ and 0FFF9 $_{\rm H}$ for External Interrupt 1, 0FFFA $_{\rm H}$ and 0FFFB $_{\rm H}$ for External Interrupt 0, etc.

Any area from $0FF00_H$ to $0FFFF_H$, if it is not going to be used, its service location is available as general purpose Program Memory.

Figure 8-6 Interrupt Vector Area

Figure 8-7 PCALL and TCALL Memory Area

$PCALL \rightarrow rel$

4F35 PCALL 35H

$\textbf{TCALL}{\rightarrow}\, n$

4A TCALL 4

Example: The usage software example of Vector address for GMS81C7216.

```
OFFEOH
         ORG
         DW
               TIMER3
                                           ; Timer-3
                                           ; Timer-3
; Timer-2
; Watch Timer
; ADC
               TIMER2
         DW
         DW
               WATCH TIMER
         DW
               ADC
                                            ; Serial Interface
         DW
                SIO
               NOT USED
         DW
               NOT_USED
INT2
         DW
         DW
                                            ; Int.2
         DW
               TIMER1
                                            ; Timer-1
                                            ; Timer-0; Int.1
         DW
                TIMER0
         DW
               INT1
                                            ; Int.0
; Watchdog Timer
         DW
               INT0
               WD TIMER
         DW
         DW
               BIT_TIMER
NOT_USED
RESET
                                            ; Basic Interval Timer
         DW
                                             ; Reset
         DW
                                            ; in case of 16K ROM Start address ; in case of 8K ROM Start address
         ORG
               OC000H
        ORG
              0E000H
       MAIN PROGRAM
SCMR,#0
RESET: LDM
                                            ;When main clock mode
         DI
                                            ;Disable All Interrupts
         LDM
               WDTR,#0
                                            ;Disable Watch Dog Timer
         LDM
               RPR,#1
         CLRG
         LDX
                # 0
RAM CLR: LDA
                                           ;RAM Clear(!0000H ~ !00BFH)
               #0
         STA
               {X}+
         CMPX
               #OCOH
         BNE
               RAM_CLR
         SETG
         LDX
               #0
RAM CLR1:
         LDA
               #0
         STA
               {X}+
                                           ;DISPLAY RAM Clear(!0100H ~ !011AH)
         CMPX
              #1BH
         BNE
               RAM CLR1
         CLRG
               #OFFH
                                           ;Stack Pointer Initialize
         LDX
        TXSP
         LDM
                                            ;Normal Port 0
               R0, #0
                                            ;Normal Port Direction
;Normal Pull Up
         LDM
               RODD, #82H
         LDM
               R0PU,#0
         :
               TDR0,#250
TM0,#0000_1111B
                                           ;8us x 250 = 2000us
;Start Timer0, 8us at 4MHz
         LDM
         LDM
         LDM
               IRQH,#0
         LDM
               IRQL,#0
         LDM
               IENH,#0000 1110B
                                           ;Enable INTO, INT1, TimerO
         LDM
               IENL,#0
               IEDS,#15H
                                            ; Select falling edge detect on INT pin
         LDM
         LDM
              PMR,#3H
                                            ;Set external interrupt pin(INTO, INT1)
         ΕI
                                             ;Enable master interrupt
```


8.3 Data Memory

Figure 8-8 shows the internal Data Memory space available. Data Memory is divided into four groups, a user RAM, control registers, Stack, and LCD memory.

Figure 8-8 Data Memory Map

User Memory

The both GMS81C7208/16 has 448×8 bits for the user memory (RAM).

There are two page internal RAM. Page is selected by G-flag and RAM page selection register RPR. When G-flag is cleared to "0", always page 0 is selected regardless of RPR value. If G-flag is set to "1", page will be selected according to RPR value.

Figure 8-9 RAM Page Configuration

Control Registers

The control registers are used by the CPU and Peripheral function blocks for controlling the desired operation of the device. Therefore these registers contain control and status bits for the interrupt system, the Timer/Counters, analog to digital converters and I/O ports. The control registers are in address range of 0CO_H to 0FF_H.

Note that unoccupied addresses may not be implemented on the chip. Read accesses to these addresses will in general return random data, and write accesses will have an indeterminate effect.

More detailed informations of each register are explained in each peripheral section.

Note: Write only registers can not be accessed by bit manipulation instruction (SET1, CLR1). Do not use read-modify-write instruction. Use byte manipulation instruction, for example "LDM".

Example; To write at CKCTLR

LDM CKCTLR, #09H; Divide ratio (÷16)

Stack Area

The stack provides the area where the return address is saved before a jump is performed during the processing routine at the execution of a subroutine call instruction or the acceptance of an interrupt.

When returning from the processing routine, executing the subroutine return instruction [RET] restores the contents of the program counter from the stack; executing the interrupt return instruction [RETI] restores the contents of the program counter and flags.

The save/restore locations in the stack are determined by the stack pointed (SP). The SP is automatically decreased after the saving, and increased before the restoring. This means the value of the SP indicates the stack location number for the next save. Refer to Figure 8-4 on page 19.

8.4 List of Control Registers

A al al w	Dominton Name	Completed	D.A.	Initial Value
Address	Register Name	Symbol	R/W	7 6 5 4 3 2 1 0 Page
00C0	R0 Port Data Register	R0	R/W	0 0 0 0 0 0 0 0 page 32
00C2	R2 Port Data Register	R2	R/W	0 0 0 - page 32
00C3	R3 Port Data Register	R3	R/W	0 page 32
00C4	R4 Port Data Register	R4	R/W	0 0 0 0 0 0 0 0 page 32
00C5	R5 Port Data Register	R5	R/W	0 0 0 0 page 32
00C6	R6 Port Data Register	R6	R/W	0 0 0 0 0 page 32
00C8	R0 Port I/O Direction Register	R0DD	W	0 0 0 0 0 0 0 0 page 32
00CA	R2 Port I/O Direction Register	R2DD	W	0 0 0 - page 32
00CB	R3 Port I/O Direction Register	R3DD	W	0 page 32
00CC	R4 Port I/O Direction Register	R4DD	W	0 0 0 0 0 0 0 0 page 32
00CD	R5 Port I/O Direction Register	R5DD	W	0 0 0 0 page 32
00CE	R6 Port I/O Direction Register	R6DD	W	0 0 0 0 0 page 32
00D0	R0 Port Pull-up Register	R0PU	W	0 0 0 0 0 0 0 0 page 32
00D2	R2 Port Pull-up Register	R2PU	W	0 0 0 - page 32
00D3	R3 Port Pull-up Register	R3PU	W	0 page 32
00D4	R0 Port Open Drain Control Register	R0CR	W	0 0 0 0 0 0 0 0 page 32
00D6	R2 Port Open Drain Control Register	R2CR	W	0 0 0 - page 32
00D7	R3 Port Open Drain Control Register	R3CR	W	0 page 32
00D8	Ext. Interrupt Edge Selection Register	IEDS	R/W	0 0 0 0 0 0 page 32
00D9	Port Mode Register	PMR	R/W	0 0 0 0 0 page 32, page
00DA	Interrupt Enable Lower Byte Register	IENL	R/W	0 0 0 0 0 0 page 60
00DB	Interrupt Enable Upper Byte Register	IENH	R/W	0 0 0 0 0 0 page 60
00DC	Interrupt Request Flag Lower Byte Register	IRQL	R/W	0 0 0 0 0 0 page 59
00DD	Interrupt Request Flag Upper Byte Register	IRQH	R/W	0 0 0 0 0 0 page 59
00DE	Sleep Mode Register	SMR	W	0 page 76
00DF	Watch Dog Timer Register	WDTR	R/W	1 0 0 1 0 page 74
00E0	Timer0 Mode Register	TM0	R/W	0 0 0 0 0 0 page 43
	Timer0 Counter Register	T0	R	0 0 0 0 0 0 0 page 43
00E1	Timer0 Data Register	TDR0	W	1 1 1 1 1 1 1 page 43
	Timer0 Input Capture Register	CDR0	R	0 0 0 0 0 0 0 0 page 43
00E2	Timer1 Mode Register	TM1	R/W	0 0 0 0 0 page 43
00E3	Timer1 Data Register	TDR1	W	1 1 1 1 1 1 1 1 page 43
0054	Timer1 Counter Register	T1	R	0 0 0 0 0 0 0 0 page 43
00E4	Timer1 Input Capture Register	CDR1	R	0 0 0 0 0 0 0 0 page 43
00E6	Timer2 Mode Register	TM2	R/W	0 0 0 0 0 0 page 44

Table 8-1 Control Registers

Address	Register Name	Symbol	R/W	Initial Value 7 6 5 4 3 2 1 0	Page
	Timer2 Counter Register	T2	R	0000000	
00E7	Timer2 Data Register	TDR2	W	1 1 1 1 1 1 1 1	page 44
	Timer2 Input Capture Register	CDR2	R	00000000	page 44
00E8	Timer3 Mode Register	TM3	R/W	0 0 0 0 0	page 44
00E9	Timer3 Data Register	TDR3	W	1 1 1 1 1 1 1 1	page 44
0054	Timer3 Counter Register	Т3	R	0 0 0 0 0 0 0 0	page 44
00EA	Timer3 Input Capture Register	CDR3	R	0 0 0 0 0 0 0 0	page 44
00EC	A/D Converter Mode Register	ADCM	R/W	- 0 0 0 0 0 0 1	page 53
00ED	A/D Converter Data Register	ADR	R	Undefined	page 53
00EF	Watch Timer Mode Register	WTMR	R/W	- 0 0 0 0 0	page 74
00F1	LCD Control Register	LCR	R/W	- 0 0 0 0 0 0 0	page 66
00F2	LCD Port Mode Register High	LPMR	R/W	0 0 0 0 0 0	page 66
00F3	RAM Paging Register	RPR	R/W	0 0	page 23, page 66
0054	Basic Interval Timer Register	BITR	R	0 0 0 0 0 0 0 0	page 41
00F4	Clock Control Register	CKCTLR	W	0 0 1 1 1	page 41
00F5	System Clock Mode Register	SCMR	R/W	000000000	page 37
00FB	LVD Register	LVDR	R/W	0 0 0 0 0	page 82
00FD	Buzzer Data Register	BUR	W	000000000	page 57
00FE	Serial I/O Mode Register	SIOM	R/W	0 0 0 0 0 0 0 1	page 54
00FF	Serial I/O Data Register	SIOR	R/W	Undefined	page 54

Table 8-1 Control Registers

W	Registers are controlled by byte manipulation instruction such as LDM etc., do not use bit manipulation instruction such as SET1, CLR1 etc. If bit manipulation instruction is used on these registers, content of other seven bits are may varied to unwanted value.
R/W	Registers are controlled by both bit and byte manipulation instruction.

^{-:} this bit location is reserved.

Three registers are mapped on same address.

Address	Timer/Counter Mode	Capture Mode
E1 _H	T0 [R], TDR0 [W]	CDR0 [R], TDR0 [W]
E3 _H	TDR1 [W]	TDR1 [W]
E4 _H	T1 [R]	CDR1 [R]
E7 _H	T2 [R], TDR2 [W]	CDR2 [R], TDR2 [W]
E9 _H	TDR3 [W]	TDR3 [W]
EA _H	T3 [R]	CDR3 [R]

Two registers are mapped on same address.

Address	Basic Interval Timer
F4 _H	BITR [R], CKCTLR [W]

8.5 Addressing Mode

The G(H)MS800 series MCU uses six addressing modes;

- Register Addressing
- Immediate Addressing
- Direct Page Addressing
- Absolute Addressing
- Indexed Addressing
- Register Indirect Addressing

(1) Register Addressing

Register addressing accesses the A, X, Y, C and PSW.

(2) Immediate Addressing → #imm

In this mode, second byte (operand) is accessed as a data immediately.

Example:

0435 ADC #35H

When G-flag is 1, then RAM address is defined by 16-bit address which is composed of 8-bit RAM paging register (RPR) and 8-bit immediate data.

Example: G=1, RPR=01

E45535 LDM 35H, #55H

(3) Direct Page Addressing \rightarrow dp

In this mode, a address is specified within direct page.

Example; G=0

C535 LDA 35H ;A ←RAM[35H]

(4) Absolute Addressing → !abs

Absolute addressing sets corresponding memory data to Data, i.e. second byte (Operand I) of command becomes lower level address and third byte (Operand II) becomes upper level address. With 3 bytes command, it is possible to access to whole memory area.

 $\label{eq:adc_and_configuration} ADC, AND, CMP, CMPX, CMPY, EOR, LDA, LDX, LDY, OR, SBC, STA, STX, STY$

Example;

0735F0 ADC !0F035H ;A ←ROM[0F035H]

The operation within data memory (RAM) ASL, BIT, DEC, INC, LSR, ROL, ROR

Example; Addressing accesses the address 0135_{H} regardless of G-flag.

983501 INC !0135H ;A ←ROM[135H]

(5) Indexed Addressing

X Indexed Direct Page (No Offset) \rightarrow {X}

In this mode, a address is specified by the X register.

ADC, AND, CMP, EOR, LDA, OR, SBC, STA, XMA

Example; X=15_H, G=1

D4 LDA $\{X\}$; ACC \leftarrow RAM[X]

X Indexed Direct Page, Auto Increment → {X}+

In this mode, a address is specified within direct page by the X register and the content of X is increased by 1.

LDA, STA

Example; G=0, $X=35_H$

DB LDA {X}+

X Indexed Direct Page (8 Bit Offset) → dp+X

This address value is the second byte (Operand) of command plus the data of X-register. And it assigns the memory in Direct page.

ADC, AND, CMP, EOR, LDA, LDY, OR, SBC, STA STY, XMA, ASL, DEC, INC, LSR, ROL, ROR

Example; G=0, X=0F5_H

C645 LDA 45H+X

Y Indexed Direct Page (8 Bit Offset) → dp+Y

This address value is the second byte (Operand) of command plus the data of Y-register, which assigns Memory in Direct page.

This is same with above (2). Use Y register instead of X.

Y Indexed Absolute → !abs+Y

Sets the value of 16-bit absolute address plus Y-register data as Memory. This addressing mode can specify memory in whole area

Example; Y=55_H

D500FA LDA !OFA00H+Y

(6) Indirect Addressing

Direct Page Indirect → [dp]

Assigns data address to use for accomplishing command which sets memory data (or pair memory) by Operand.

Also index can be used with Index register X,Y.

JMP, CALL

3F35 JMP [35H]

X Indexed Indirect \rightarrow [dp+X]

Processes memory data as Data, assigned by 16-bit pair memory which is determined by pair data [dp+X+1][dp+X] Operand plus X-register data in Direct page.

ADC, AND, CMP, EOR, LDA, OR, SBC, STA

Example; G=0, X=10_H

1625 ADC [25H+X]

Y Indexed Indirect → [dp]+Y

Processes memory data as Data, assigned by the data [dp+1][dp] of 16-bit pair memory paired by Operand in Direct page plus Y-register data.

ADC, AND, CMP, EOR, LDA, OR, SBC, STA

Example; G=0, Y=10_H

Absolute Indirect \rightarrow [!abs]

The program jumps to address specified by 16-bit absolute address.

JMP

Example; G=0

1F25E0 JMP [!OE025H]

9. I/O PORTS

The GMS81C7208/16 has six ports (R0, R2, R3, R4, R5 and R6), and LCD segment port SEG0~SEG11 and SEG16~SEG20 and LCD common port COM0~COM3, which are multiplexed with SEG24~SEG26.

9.1 Port Data Registers

Port Data Registers

The Port Data Registers in I/O buffer in each six ports (R0,R2,R3,R4,R5,R6) are represented as a Type D flip-flop, which will clock in a value from the internal bus in response to a "write to data register" signal from the CPU. The Q output of the flip-flop is placed on the internal bus in response to a "read data register" signal from the CPU. The level of the port pin itself is placed on the internal bus in response to "read data register" signal from the CPU. Some instructions that read a port activating the "read register" signal, and others activating the "read pin" signal

Port Direction Registers

All pins have data direction registers which can define these ports as output or input. A "1" in the port direction register configure the corresponding port pin as output. Conversely, write "0" to the corresponding bit to specify it as input pin. For example, to use the even numbered bit of R0 as output ports and the odd numbered bits as input ports, write " $55_{\rm H}$ " to address $0C8_{\rm H}$ (R0 port direction register) during initial setting as shown in Figure 9-1.

Figure 9-1 Example of Port I/O Assignment

All the port direction registers in the MCU have 0 written to them by reset function. On the other hand, its initial status is input.

Pull-up Control Registers

The R0, R2 and R3 ports have internal pull-up resistors. Figure 9-2 shows a functional diagram of a typical pull-up port. It is connected or disconnected by pull-up control register (PURn). The value of that resistor is typically $160k\Omega$.

These ports pins may be multiplexed with an alternate function for the peripheral features on the device. In general, in a initial reset state, R0,R2,R3 ports are used as a general purpose input port and R4, R5 and R6 ports are used as LCD segment drive output port.

When a port is used as input, input logic is firmly either low or high, therefore external pull-down or pull-up resisters are required practically. The GMS81C7208/16 has internal pull-up, it can be logic high by pull-up that can be able to configure either connect or disconnect individually by pull-up control registers R0PU, R2PU and R3PU.

When ports are configured as inputs and pull-up resistor is selected by software, they are pulled to high.

Figure 9-2 Pull-up Port Structure

Open Drain Port Registers

The R0, R2 and R3 ports have open drain port resistors R0CR~R3CR.

Figure 9-3 shows a open drain port configuration by control register. It is selected as either push-pull port or open-drain port by R0CR, R1CR, R2CR and R3CR.

Figure 9-3 Open Drain Port Structure

9.2 I/O Ports Configuration

R0 and R0DD Register: R0 is an 8-bit CMOS bidirectional I/O port (address $0C0_H$). Each I/O pin can independently used as an input or an output through the R0DD register (address $0C8_H$). Each port also can be set individually as pull-up port through the R0PU (address $0D0_H$), and as open drain register through the R0CR (address $0D4_H$).

In addition, port R0 is multiplexed with various special features. The control register through the PMR (address $0D9_H$) and the SIOM (address $0FE_H$) control the selection of alternate function. After reset, this value is "0", port may be used as normal I/O port. To use alternate function such as external interrupt, event counter input, serial interface data input, serial interface data output or serial interface clock, write "1" in the corresponding bit of PMR (address $0D9_H$) and SIOM (address $0FE_H$).

Port Pin	Alternate Function
R00	INT0 (External interrupt 0)
R01	INT1 (External interrupt 1)
R02	INT2 (External interrupt 2)
R03	EC0 (Event counter input 0)
R04	EC2 (Event counter input 2)
R05	SCK (Serial clock)
R06	SO (Serial data output)
R07	SI (Serial data input)

Regardless of the direction register R0DD, the control registers of PMR and SIOM are selected to use as alternate functions, port pin can be used as a corresponding alternate features.

R2 and R2DD Register: R2 is an 3-bit CMOS bidirectional I/O port (address $0C2_H$). Each I/O pin can independently used as an input or an output through the R2DD register (address $0CA_H$). Each port also can be set individually as pull-up port through the R2PU (address $0D2_H$), and as open drain register through the R2CR (address $0D6_H$).

In addition, port R2 is multiplexed with analog input port.

Port Pin	Alternate Function
R21	AN1 (Analog Input 1)
R22	AN2 (Analog Input 2)
R23	AN3 (Analog Input 3)

R3 and R3DD Register: R3 is an 1-bit CMOS bidirectional I/O port (address $0C3_H$). Each I/O pin can independently used as an input or an output through the R3DD register (address $0CB_H$). Each port also can be set individually as pull-up port through the R3PU (address $0D3_H$), and as open drain register through the R3CR (address $0D7_H$).

In addition, port R3 is multiplexed with various special features.

Port Pin	Alternate Function
R30	BUZ (Buzzer driving output)

R4 and R4DD Register: R4 is an 8-bit CMOS bidirectional I/O port (address 0C4_H). Each I/O pin can independently used as an input or an output through the R4DD register (address 0CC_H).

After Reset, R4 port is used as LCD segment output SEG0~SEG7. To use general I/O ports user should be written appropriate value into the LPMR (0F3_H).

LCD Pin Function	Port Pin
SEG0 (LCD Segment 0 Signal Output)	R40
SEG1 (LCD Segment 1 Signal Output)	R41
SEG2 (LCD Segment 2 Signal Output)	R42
SEG3 (LCD Segment 3 Signal Output)	R43
SEG4 (LCD Segment 4 Signal Output)	R44
SEG5 (LCD Segment 5 Signal Output)	R45
SEG6 (LCD Segment 6 Signal Output)	R46
SEG7 (LCD Segment 7 Signal Output)	R47

R5 and R5DD Register: R5 is an 4-bit CMOS bidirectional I/O port (address $0C5_H$). Each I/O pin can independently used as an input or an output through the R4DD register (address $0CD_H$).

After Reset, R5 port is used as LCD segment output SEG8~SEG11. To use general I/O ports user should be written appropriate value into the LPMR (0F3_H).

LCD Pin Function	Port Pin
SEG8 (LCD Segment 8 Signal Output)	R50
SEG9 (LCD Segment 9 Signal Output)	R51
SEG10 (LCD Segment 10 Signal Output)	R52
SEG11 (LCD Segment 11 Signal Output)	R53

R5 Da	ata Register	ADDRESS: 0C5 _H RESET VALUE: 00 _H		
R5		R53 R52 R51 R50		
	Input / Outp	ut Data		
R5 D	irection Register	ADDRESS: 0CD _H RESET VALUE: 00 _H		
R5DI	R5DD			
	Port Direction 0: Input 1: Output			

R6 and R6DD Register: R6 is an 5-bit CMOS bidirectional I/O port (address $0C6_H$). Each I/O pin can independently used as an input or an output through the R6DD register (address $0CE_H$).

After Reset, R6 port is used as LCD segment output SEG16~SEG20. To use general I/O ports user should be written

appropriate value into the LPMR (0F3_H).

LCD Pin Function	Port Pin
SEG16 (LCD Segment 16 Signal Output)	R60
SEG17 (LCD Segment 17 Signal Output)	R61
SEG18 (LCD Segment 18 Signal Output)	R62
SEG19 (LCD Segment 19 Signal Output)	R63
SEG20 (LCD Segment 20 Signal Output)	R64

10. CLOCK GENERATOR

As shown in Figure 10-1, the clock generator produces the basic clock pulses which provide the system clock to be supplied to the CPU and the peripheral hardware. It contains an oscillators: a main-frequency clock oscillator. The system clock can also be obtained from the external oscillator.

The clock generator produces the system clocks forming clock pulse, which are supplied to the CPU and the peripheral hardware. The internal system clock can be selected by bit2, and bit3 of the system clock mode register(SCMR).

ODLI OLI I	Instruction Cycle Time
CPU Clock	X _{IN} = 4MHz
÷ 2	0.5 us
÷ 8	2.0 us
÷ 16	4.0 us
÷ 64	16.0 us

The register is shown in Figure 10-2.

To the peripheral block, the clock among the not-divided original clocks, divided by 2, 4,..., up to 1024 can be provided. Peripheral clock is enabled or disabled by STOP instruction.

Figure 10-1 Block Diagram of Clock Generator

The system clock is decided by bit1 (SYCC1) of the system clock mode register(SCMR). On the initial reset, internal system clock

is PS1 which is the fastest and other clock can be provided by bit2 and bit3 of SCMR.

Figure 10-2 SCMR: System Clock Control Registers

11. OPERATION MODE

The system clock controller starts or stops the main-frequency clock oscillator. The operating mode is generally divided into the main-clock mode, which is controlled by system clock mode register (SCMR). Figure 11-1shows the operating mode transition diagram.

System clock control is performed by the system clock mode register, SCMR. During reset, this register is initialized to "0" so that the main-clock operating mode is selected.

Main Clock Operating Mode

This mode is fast-frequency operating mode.

The CPU and the peripheral hardwares are operated on the high-frequency clock. At reset release, this mode is invoked.

SLEEP Mode

In this mode, the CPU clock stops while peripherals and the oscillation source continue to operate normally.

STOP Mode

In this mode, the system operations are all stopped, holding the internal states valid immediately before the stop at the low power consumption level.

Figure 11-1 Operating Mode

11.1 Operation Mode

In the main-clock operation mode, only the high-frequency clock oscillator is used.

During reset, the system clock mode register is initialized at the main-clock mode.

Shifting from the Normal Operation to the SLEEP

By setting bit 0 of SMR, the CPU clock stops and the SLEEP mode is invoked. The CPU stops while other peripherals are operate normally.

The way of release from this mode is RESET and all available interrupts.

For more detail, See "20.1 SLEEP Mode" on page 76

Shifting from the Normal Operation to the STOP Mode

By executing STOP instruction, the main-frequency clock oscillation stops and the STOP mode is invoked. After the STOP op-

eration is released by reset, the operation mode is to main-clock mode

The methods of release are RESET, watch timer interrupt, Timer/ Event Counter1 (EC0, EC2 pin), and external interrupt.

For more details, see "20.2 STOP Mode" on page 77.

Note: In the STOP, the power consumed by the oscillator and the internal hardware is reduced. However, the power for the pin interface (depending on external circuitry and program) is not directly associated with the low-power consumption operation. This must be considered in system design as well as interface circuit design.

12. BASIC INTERVAL TIMER

The GMS81C7208/16 has one 8-bit basic interval timer that is free-run and can not stop. Block diagram is shown in Figure 12-1.

In addition, the basic tnterval timer generates the time base for watchdog timer counting. It also provides a Basic interval timer interrupt (BITIF). As the count overflow from FF_H to 00_H , this overflow causes the interrupt to be generated. The basic interval

timer is controlled by the clock control register (CKCTLR) shown in Figure 12-2.

Source clock can be selected by lower 3 bits of CKCTLR.

The registers BITR and CKCTLR are located at same address, and address $0F9_H$ is read as a BITR, and written to CKCTLR.

Figure 12-1 Block Diagram of Basic Interval Timer

DTO(0.01	CPU Source Clock	Interrupt (overflow) Period (ms)	
BTS[2:0]		@ f _{XIN} = 4MHz	
000	÷ 8	0.512	
001	÷16	1.024	
010	÷32	2.048	
011	÷64	4.096	
100	÷128	8.192	
101	÷256	16.384	
110	÷512	32.768	
111	÷1024	65.536	

Table 12-1 Basic Interval Timer Interrupt Time

Figure 12-2 BITR: Basic Interval Timer Mode Register

Example 1:

Interrupt request flag is generated every 8.192ms at 4MHz.

```
. LDM CKCTLR,#0CH
SET1 BITE
EI
```


13. TIMER/EVENT COUNTER

The GMS81C7208/16 has four Timer/Event Counters. Each module can generate an interrupt to indicate that an event has occurred (i.e. timer match).

Timer 0 and timer 1 are can be used either two 8-bit Timer/Counter or one 16-bit Timer/Counter with combine them. Also timer 2 and timer 3 can be joined as a 16-bit Timer/Counter.

In the "timer" function, the register is increased every internal clock input. Thus, one can think of it as counting internal clock input. The count rate is 1/2 to 1/2048 of the oscillator frequency.

In the "counter" function, the register is incremented in response to a 0-to-1 (rising edge) transition at its corresponding external input pin, EC0 or EC2 pin.

Example 1:

Timer 0 = 8-bit timer mode, 8ms interval at 4MHz Timer 1 = 8-bit timer mode, 4ms interval at 4MHz

Timer 2 = 16-bit event counter mode

```
LDM
       SCMR, #0
                    ; Main clock mode
LDM
       TDR0,#249
LDM
       TM0, #0001_0011B
       TDR1,#124
LDM
       TM1, #0000 1111B
LDM
LDM
       TDR2, #1FH
LDM
       TDR3, #4CH
       TM2,#0001 1111B
LDM
LDM
       TM3,#0100 1100B
SET1
       TOE
SET1
       T2E
EI
```

Example 2:

Timer0 = 16-bit timer mode, 0.5s at 4MHz

Timer2 = 2ms 8-bit timer mode at 4MHz

Timer3 = 250us 8-bit timer mode at 4MHz

```
LDM
       SCMR, #0
                    :Main clock mode
       TDR0,#23H
LDM
LDM
       TDR1,#0F4H
       TMO, #OFH
LDM
                    ;FXIN/32, 8us
LDM
       TM1, #4CH
LDM
       TDR2,#249
LDM
       TDR3, #124
                    ;FXUN/32, 8us
LDM
       TM2,#0FH
       TM3,#0DH
                    ;FXIN/8, 2us
LDM
SET1
       TOE
SET1
       T2E
SET1
       T3E
EI
```

In addition the "capture" function, the register is incremented in response external or internal clock sources same with timer or counter function. When external clock edge input, the count register is captured into capture data register correspondingly.

It has five operating modes: "8-bit Timer/Counter", "16-bit Timer/Counter", "8-bit capture", "16-bit capture" which are selected by bit in timer mode register TMn.

In operation of timer 2, timer 3, their operations are same with timer 0, timer 1, respectively.

When programming the software, you may refer to following example.

Example 3:

Timer0 = 8-bit timer mode, 2ms interval at 4MHz Timer1 = 8-bit capture mode, 2us sampling count.

```
TDR0,#249
T.DM
                    :250x8=2000us
LDM
       TMO, #OFH
                    ;FXIN/32, 8us
LDM
       IEDS, #XXXX 01XXB
                            ; FALLING
       PMR, #XXXX XX1XB
LDM
                            ;AS INT1
LDM
       TDR1,#0FFH
LDM
       TM1, #0001 1011B
                            ;2us
SET1
       TOE
                    ; ENABLE TIMER 0
SET1
       T1E
                    ; ENABLE TIMER 1
       INT1E
SET1
                    ; ENABLE EXT. INT1
EI
```

X: don't care.

Example 4:

Timer0 = 8-bit timer mode, 2ms interval at 4MHz Timer2 = 16-bit capture mode, 8us sampling count.

```
LDM
       TDR0, #249
LDM
       TMO, #OFH
LDM
       IEDS, #XX11 XXXXB
       PMR4, #XXXX X1XXB
LDM
       TDR2,#0FFH
LDM
                              : MAX
T.DM
       TDR3, #0FFH
                              ; MAX
LDM
       TM2, #XX10 1111B
                              ;/32
LDM
       TM3, #X10X 11XXB
SET1
       TOE
                    ; ENABLE TIMER 0
SET1
       T2E
                    ; ENABLE TIMER 2
SET1
       INT2E
                    ; ENABLE EXT. INT2
EI
```

X: don't care.

Figure 13-1 TM0, TM1, TDRn Registers

Figure 13-2 TM2, TM3 Registers

13.1 8-bit Timer / Counter Mode

The GMS81C7208/16 has four 8-bit Timer/Counters, timer 0, timer 1, timer 2, timer 3 which are shown in Figure 13-3, Figure 13-4

The "timer" or "counter" function is selected by control registers TMn. To use as an 8-bit Timer/Counter mode, CAP0, CAP1 and

16BIT0 bits should be cleared to "0". These timers have each 8-bit count register and data register. The count register is increased by every internal or external clock input. The internal clock has a prescaler divide ratio option of $2\sim2048$ selected by control bits of register TMn (n=0,1,2,3).

Figure 13-3 8-bit Timer/Counter 0, 1

Note: The contents of timer data register TDRx should be initialized with $1_H \sim FF_H$, not to 0_H , because it is not to defined before reset.

In the timer 0, timer register T0 increments from 00_H until it matches with TDR0 and then reset to 00_H . The match output of timer 0 generates timer 0 interrupt (latched in T0IF bit)

As TDRx and Tx register are in same address, when reading it as a Tx, written to TDRx.

In counter function, the counter is increased every 0-to-1 (rising edge) transition of EC0 or EC2 pin. In order to use counter function, the bit 3 and bit 4 of the Port mode register PMR are set to "1" by software. The Timer 0 can be used as a counter by pin EC0 input. Similarly, Timer 2 can be used by pin EC2 input.

Figure 13-4 8-bit Timer/Counter 2, 3

8-bit Timer Mode

In the timer mode, the internal clock is used for counting up. Thus, you can think of it as counting internal clock input. The contents of TDRn (n=0,1,2,3) are compared with the contents of up-counter, Tn (n=0,1,2,3). If match is found, a timer 1 interrupt

(T1IF) is generated and the up-counter is cleared to 0. Counting up is resumed after the up-counter is cleared.

As the value of TDRn can be re-written by software, time interval is set as you want.

Figure 13-5 Timer Mode Timing Chart

Figure 13-6 Timer Count Example

8-bit Event Counter Mode

In this mode, counting up is started by an external trigger. This trigger means rising edge of the EC0 or EC2 pin input. Source clock is used as an internal clock selected with timer mode register TM0, TM1, TM2 or TM3. The contents of timer data register TDRn (n = 0,1,2,3,......,FF) are compared with the contents of the up-counter Tn. If a match is found, an timer interrupt request flag TnIF is generated, and the counter is cleared to "0". The counter is restart and count up continuously by every rising edge of the ECn pin input.

The maximum frequency applied to the ECn pin is $f_{XIN}/2$ [Hz].

In order to use event counter function, the bit 3, 4 of the Port Mode Register PMR (address $0D9_{H}$) is required to be set to "1".

After reset, the value of timer data register TDRn is undefined, it should be initialized to between $01_{\text{H}}\sim\text{FF}_{\text{H}}$, not to "0". The interval period of Timer is calculated as below equation.

$$Period (sec) = \frac{1}{f_{XIN}} \times 2 \times Divide Ratio \times TDRn$$

Figure 13-7 Event Counter Mode Timing Chart

Figure 13-8 Count Operation of Timer / Event Counter

13.2 16-bit Timer / Counter Mode

The Timer register is being run with all 16 bits. A 16-bit Timer/Counter register T0, T1 are incremented from $0000_{\rm H}$ until it matches TDR0, TDR1 and then resets to $0000_{\rm H}$. The match output generates Timer 0 interrupt.

The clock source of the Timer 0 is selected either internal or external clock by bit T0SL1, T0SL0.

Even if the Timer 0 (including the Timer 1) is used as a 16-bit timer, the Timer 2 and Timer 3 can still be used as either two 8-bit timer or one 16-bit timer by setting the TM2. Reversely, even if the Timer 2 (including the Timer 3) is used as a 16-bit timer, the Timer 0 and Timer 1 can still be used as 8-bit timer independently.

Figure 13-9 16-bit Timer/Counter

13.3 8-bit Capture Mode

The capture mode can be used to measure the pulse width between two edges. The timer 0 capture mode is set by bit CAP0 of timer mode register TM0, and the timer 1 capture mode is set by CAP1 of timer mode register TM1 as shown in Figure 13-10. Timer 2 and timer 3 have same architecture with timer 0 and timer 1.

The Timer/Counter register is incremented in response internal or external input. This counting function is same with normal timer mode, and timer interrupt is generate when timer register T0 (T1, T2, T3) increase and match TDR0 (TDR1, TDR2, TDR3).

Timer/Counter still does the above, but with the added feature that a edge transition at external input INTn pin causes the current

 $f_{timer} = \frac{f_{xin}}{2 \times prescaler \ value \ \times (TDR + 1)}$

Figure 13-10 8-bit Capture Mode (Timer0/Timer1 Case)

value in the timer counter register (T0,T1), to be captured and stored into registers CDRn (CDR0, CDR1), respectively. After capture, the Timer counter register is cleared and restarts by hardware. At this time, reading the address E1_H as a CDR0, not T0, TDR0, CDR0 are located at same address. The other CDR1~CDR3 are same. Refer to timer registers of page 26.

It has three transition modes: "falling edge", "rising edge", "both edge" which are selected by interrupt edge selection register IEDS. Refer to "17.4 External Interrupt" on page 63. In addition, the transition at INT*n* pin generate an interrupt.

Note: The CDRn and Tn are in same address. In the capture mode, reading operation is read as CDRn, not Tn because addressing path is opened to the CDRn.

Figure 13-11 16-bit Capture Mode

13.4 16-bit Capture Mode

16-bit capture mode is the same as 8-bit capture, except that the timer register is being run will 16 bits. Configuration is shown in Figure 13-11.

14. ANALOG DIGITAL CONVERTER

The analog-to-digital converter (A/D) allows conversion of an analog input signal to a corresponding 8-bit digital value. The A/D module has three analog inputs, which are multiplexed into one sample and hold. The output of the sample and hold is the input into the converter, which generates the result via successive approximation. The analog supply voltage is connected to AV_{DD} of ladder resistance of A/D module.

The A/D module has two registers which are the control register ADCM and A/D result register ADR. The register ADCM, shown in Figure 14-4, controls the operation of the A/D converter module. The port pins can be configured as analog inputs or digital I/O. To use analog inputs, I/O is selected input mode by R2DD direction register.

How to Use A/D Converter

The processing of conversion is start when the start bit ADST is set to "1". After one cycle, it is cleared by hardware. The register ADR contains the results of the A/D conversion. When the conversion is completed, the result is loaded into the ADR, the A/D conversion status bit ADSF is set to "1", and the A/D interrupt flag AIF is set. The block diagram of the A/D module is shown in Figure 14-1. The A/D status bit ADSF is set automatically when A/D conversion is completed, cleared when A/D conversion is in process. The conversion time takes maximum 20 uS (at f_{XIN}=4 MHz).

Figure 14-1 A/D Block Diagram

A/D Converter Cautions

(1) Input voltage range of AN1 to AN3

The input voltage of AN1 to AN3 should be within the specification range. In particular, if a voltage above AV_{DD} or below AV_{SS} is input (even if within the absolute maximum rating range), the conversion value for that channel can not be indeterminate. The conversion values of the other channels may also be affected.

(2) Noise countermeasures

In order to maintain 8-bit resolution, attention must be paid to noise on pins AV_{DD} and AN1 to AN3. Since the effect increases in proportion to the output impedance of the analog input source, it is recommended that a capacitor be connected externally as shown in Figure 14-2 in order to reduce noise.

Figure 14-2 Analog Input Pin Connecting Capacitor

(3) AD pin sharing with normal I/O port

The analog input pins AN1 to AN3 also function as input/output port (PORT R21~R23) pins. When A/D conversion is performed with any of pins AN1 to AN3 selected, be sure not to execute a PORT input instruction while conversion is in progress, as this may reduce the conversion resolution.

Also, if digital pulses are applied to a pin adjacent to the pin in the process of A/D conversion, the expected A/D conversion value may not be obtainable due to coupling noise. Therefore, avoid applying pulses to pins adjacent to the pin undergoing A/D conversion.

(4) AV_{DD} pin input impedance

A series resistor string of approximately $10k\Omega$ is connected between the AV_{DD} pin and the AV_{SS} pin.

Therefore, if the output impedance of the reference voltage source is high, this will result in parallel connection to the series resistor string between the AV_{DD} pin and the AV_{SS} pin, and there will be a large reference voltage error.

Figure 14-3 A/D Converter Operation Flow

Figure 14-4 A/D Converter Control Register

15. SERIAL COMMUNICATION

The serial interface is used to transmit/receive 8-bit data serially. Serial communication block consists of serial I/O data register, serial I/O mode register, clock selection circuit, octal counter and control circuit as illustrated in Figure 15-1.Pin R07/SIN, R06/SOUT and R05/SCLK pins are controlled by the serial mode register. The contents of the Serial I/O data register can be written into or read out by software.

The serial communication is activated by the instruction "SET1

SIOST". The octal counter is reset to "0" by this instruction, starts counting at the falling or rising edge (by POL selection) of the transmit clock (SCLK), and it increments at the every clock. A serial interrupt request flag is set when the eighth transmit clock signal is input (the serial interface is reset) or when serial communication is discontinued (the octal counter is reset).

The data in the serial data register can be shifted synchronously with the transfer clock signal.

SCK1	SCK0	SCLK/R05 Port	Clock Source	Prescaler Divide Ratio
0	0	SCLK output	Internal clock	÷ 4
0	1	SCLK output	Internal clock	÷ 16
1	0	SCLK output	Internal clock	Use clock from Timer 0 overflow
1	1	SCLK input	External clock	-

Figure 15-1 SCI Control Register

Serial I/O mode register(SIOM) controls serial I/O function. The POL bit control which edge.

According to SCK1 and SCK0, the internal clock or external clock can be selected.

Serial I/O data register(SIOR) is an 8-bit shift register.

Figure 15-2 Block Diagram of SCI

15.1 Transmission/Receiving Timing

The serial transmission is started by setting SIOST(bit1 of SIOM) to "1". After one cycle of SCK, SIOST is cleared automatically to "0". The serial output data from 8-bit shift register is output at falling edge of SCLK. And input data

is latched at rising edge of SCLK pin. When transmission clock is counted 8 times, serial I/O counter is cleared as '0". Transmission clock is halted in "H" state and serial I/O interrupt(SIOIF) occurred.

Figure 15-3 SPI Timing Diagram at POL=0

15.2 The Method of Serial I/O

1. Select transmission/receiving mode

When external clock is used, the frequency should be less than 1MHz and recommended duty is 50%.

- 2. In case of sending mode, write data to be send to SIOR.
- 3. Set SIOST to "1" to start serial transmission.

If both transmission mode is selected and transmission is per-

formed simultaneously it would be made error.

- 4. The SIO interrupt is generated at the completion of SIO and SIOSF is set to "1". In SIO interrupt service routine, correct transmission should be tested.
- 5. In case of receiving mode, the received data is acquired by reading the SIOR.

Figure 15-4 SPI Timing Diagram at POL=1

15.3 The Method to Test Correct Transmission

Figure 15-5 Serial Method to Test Transmission

16. BUZZER FUNCTION

The buzzer driver block consists of 6-bit binary counter, buzzer register, and clock source selector. It generates square-wave which has very wide range frequency (500Hz \sim 250kHz at f_{XIN} = 4MHz) by user software.

A 50% duty pulse can be output to R30/BUZ pin to use for piezo-electric buzzer drive. Pin R30 is assigned for output port of Buzzer driver by setting the bit 5 of PMR (address $D9_H$) to "1". At this time, the pin R30 must be defined as output mode (the bit 0 of R3DD=1).

Example: 2.4kHz output at 4MHz.

LDM R3DD, #XXXX XXX1B LDM BUR, #0111_0011B

SET1 PMR.5 ;BUZ ON CLR1 PMR.5 ;BUZ OFF

X means don't care

The bit 0 to 5 of BUR determines output frequency for buzzer driving.

Equation of frequency calculation is shown below.

$$f_{BUZ} = \frac{f_{XIN}}{2 \times DivideRatio \times (BUR[5:0] + 1)}$$

f_{BUZ}: Buzzer frequency f_{XIN}: Oscillator frequency

Divide Ratio: Prescaler divide ratio by BUCK[1:0] BUR: Lower 6-bit value of BUR. Buzzer period value.

The frequency of output signal is controlled by the buzzer control register BUR. The BUR[5:0] determine output frequency for buzzer driving.

Figure 16-1 Block Diagram of Buzzer Driver

Figure 16-2 PMR and Buzzer Register

Note that BUR is a write-only register.

The 6-bit counter is cleared and starts the counting by writing signal at BUR register. It is incremental from $00_{\rm H}$ until it matches 6-

bit BUR value.

When main-frequency is 4MHz, buzzer frequency is shown as below table. The unit is kHz.

BUR	BUCK[1:0]			
[5:0]	00	01	10	11
00	250.000	125.000	62.500	31.250
01	125.000	62.500	31.250	15.625
02	83.333	41.667	20.833	10.417
03	62.500	31.250	15.625	7.813
04	50.000	25.000	12.500	6.250
05	41.667	20.833	10.417	5.208
06	35.714	17.857	8.929	4.464
07	31.250	15.625	7.813	3.906
08	27.778	13.889	6.944	3.472
09	25.000	12.500	6.250	3.125
0A	22.727	11.364	5.682	2.841
0B	20.833	10.417	5.208	2.604
0C	19.231	9.615	4.808	2.404
0D	17.857	8.929	4.464	2.232
0E	16.667	8.333	4.167	2.083
0F	15.625	7.813	3.906	1.953
10	14.706	7.353	3.676	1.838
11	13.889	6.944	3.472	1.736
12	13.158	6.579	3.289	1.645
13	12.500	6.250	3.125	1.563
14	11.905	5.952	2.976	1.488
15	11.364	5.682	2.841	1.420
16	10.870	5.435	2.717	1.359
17	10.417	5.208	2.604	1.302
18	10.000	5.000	2.500	1.250
19	9.615	4.808	2.404	1.202
1A	9.259	4.630	2.315	1.157
1B	8.929	4.464	2.232	1.116
1C	8.621	4.310	2.155	1.078
1D	8.333	4.167	2.083	1.042
1E	8.065	4.032	2.016	1.008
1F	7.813	3.906	1.953	0.977

BUR	BUCK[1:0]			
[5:0]	00	01	10	11
20	7.576	3.788	1.894	0.947
21	7.353	3.676	1.838	0.919
22	7.143	3.571	1.786	0.893
23	6.944	3.472	1.736	0.868
24	6.757	3.378	1.689	0.845
25	6.579	3.289	1.645	0.822
26	6.410	3.205	1.603	0.801
27	6.250	3.125	1.563	0.781
28	6.098	3.049	1.524	0.762
29	5.952	2.976	1.488	0.744
2A	5.814	2.907	1.453	0.727
2B	5.682	2.841	1.420	0.710
2C	5.556	2.778	1.389	0.694
2D	5.435	2.717	1.359	0.679
2E	5.319	2.660	1.330	0.665
2F	5.208	2.604	1.302	0.651
30	5.102	2.551	1.276	0.638
31	5.000	2.500	1.250	0.625
32	4.902	2.451	1.225	0.613
33	4.808	2.404	1.202	0.601
34	4.717	2.358	1.179	0.590
35	4.630	2.315	1.157	0.579
36	4.545	2.273	1.136	0.568
37	4.464	2.232	1.116	0.558
38	4.386	2.193	1.096	0.548
39	4.310	2.155	1.078	0.539
3A	4.237	2.119	1.059	0.530
3B	4.167	2.083	1.042	0.521
3C	4.098	2.049	1.025	0.512
3D	4.032	2.016	1.008	0.504
3E	3.968	1.984	0.992	0.496
3F	3.906	1.953	0.977	0.488

Table 16-1 Buzzer Frequency at 4MHz

17. INTERRUPTS

The GMS81C7208/16 interrupt circuits consist of interrupt enable register (IENH, IENL), interrupt request flags of IRQH, IRQL, priority circuit, and master enable flag ("I" flag of PSW). twelve interrupt sources are provided. The configuration of interrupt circuit is shown in Figure 17-2.

The basic interval timer interrupt is generated by BITIF which is set by an overflow in the timer register.

The watchdog timer interrupt is generated by WDTIF which set by a match in watchdog timer register.

The external interrupts $INT0 \sim INT2$ each can be transition-activated (1-to-0 or 0-to-1 transition) by selection IEDS.

The flags that actually generate these interrupts are bit INT0IF, INT1IF and INT2IF in register IRQH and IRQL. When an external interrupt is generated, the flag that generated it is cleared by the hardware when the service routine is vectored to only if the interrupt was transition-activated.

The timer $0\sim$ timer 3 interrupts are generated by T0IF \sim T3IF which are set by a match in their respective Timer/Counter register

The serial communication interrupts are generated by SIOIF which is set by 8-bit serial data transmitting or receiving through SCK, SIN, SOUT pin.

The AD converter interrupt is generated by ADIF which is set by finishing the analog to digital conversion.

The watch timer interrupt is generated by WTIF which is set by an 14-bit binary counter overflow.

The interrupts are controlled by the interrupt master enable flag

I-flag (bit 2 of PSW on page 18), the interrupt enable register (IENH, IENL), and the interrupt request flags (in IRQH and IRQL) except power-on reset and software BRK interrupt. Below table shows the Interrupt priority.

Reset/Interrupt	Symbol	Priority
Hardware Reset	RESET	-
Reserved	-	1
Basic Interval Timer	BIT	2
Watchdog Timer	WDT	3
External Interrupt 0	INT0	4
External Interrupt 1	INT1	5
Timer/Counter 0	Timer 0	6
Timer/Counter 1	Timer 1	7
External Interrupt 2	INT2	8
Serial Communication	SCI	9
ADC Interrupt	ADC	10
Watch Timer Interrupt	WT	11
Timer/Counter 2	Timer 2	12
Timer/Counter 3	Timer 3	13

Vector addresses are shown in Figure 8-6 on page 20. Interrupt enable registers are shown in Figure 17-3. These registers are composed of interrupt enable flags of each interrupt source and these flags determines whether an interrupt will be accepted or not. When enable flag is "0", a corresponding interrupt source is prohibited. Note that PSW contains also a master enable bit, I-flag, which disables all interrupts at once.

Figure 17-1 Interrupt Request Flag

Figure 17-3 Interrupt Enable Flag

17.1 Interrupt Sequence

An interrupt request is held until the interrupt is accepted or the interrupt latch is cleared to "0" by a reset or an instruction. Interrupt acceptance sequence requires 8 f_{X1N} (2 μs at f_{MAIN} =4.19MHz) after the completion of the current instruction execution. The interrupt service task is terminated upon execution of an interrupt return instruction [RETI].

Interrupt Acceptance

1. The interrupt master enable flag (I-flag) is cleared to "0" to temporarily disable the acceptance of any following maskable interrupts. When a non-maskable interrupt is accepted, the acceptance of any following interrupts is temporarily disabled.

- 2. Interrupt request flag for the interrupt source accepted is cleared to "0".
- 3. The contents of the program counter (return address) and the program status word are saved (pushed) onto the stack area. The stack pointer decreases 3 times.
- 4. The entry address of the interrupt service program is read from the vector table address and the entry address is loaded to the program counter.
- 5. The instruction stored at the entry address of the interrupt service program is executed.

Figure 17-4 Timing Chart of Interrupt Acceptance and Interrupt Return Instruction

Correspondence between vector table address for Watch Timer Interrupt and the entry address of the interrupt service program.

A interrupt request is not accepted until the I-flag is set to "1" even if a requested interrupt has higher priority than that of the current interrupt being serviced.

When nested interrupt service is required, the I-flag should be set to "1" by "EI" instruction in the interrupt service program. In this case, acceptable interrupt sources are selectively enabled by the individual interrupt enable flags.

Saving/Restoring General Purpose Register

During interrupt acceptance processing, the program counter and the program status word are automatically saved on the stack, but accumulator and other registers are not saved itself. These registers are saved by the software if necessary. Also, when multiple interrupt services are nested, it is necessary to avoid using the same data memory area for saving registers.

The following method is used to save/restore the general-purpose registers.

Example: Register save using push and pop instructions

INTxx:	PUSH PUSH PUSH	A X Y	;SAVE ACC. ;SAVE X REG. ;SAVE Y REG.
	interrupt processing		
	POP POP POP RETI	Y X A	; RESTORE Y REG. ; RESTORE X REG. ; RESTORE ACC. ; RETURN

General-purpose register save/restore using push and pop instructions;

17.2 BRK Interrupt

Software interrupt can be invoked by BRK instruction, which has the lowest priority order.

Interrupt vector address of BRK is shared with the vector of TCALL 0 (Refer to Program Memory Section). When BRK interrupt is generated, B-flag of PSW is set to distinguish BRK from TCALL 0.

Each processing step is determined by B-flag as shown in Figure 17-5.

Figure 17-5 Execution of BRK/TCALL0

17.3 Multi Interrupt

If two requests of different priority levels are received simultaneously, the request of higher priority level is serviced. If requests of the interrupt are received at the same time simultaneously, an internal polling sequence determines by hardware which request is serviced.

However, multiple processing through software for special features is possible. Generally when an interrupt is accepted, the I-flag is cleared to disable any further interrupt. But as user sets I-flag in interrupt routine, some further interrupt can be serviced even if certain interrupt is in progress.

Example: During Timer1 interrupt is in progress, INT0 interrupt serviced without any suspend.

Figure 17-6 Execution of Multi Interrupt

17.4 External Interrupt

The external interrupt on INT0, INT1 and INT3 pins are edge triggered depending on the edge selection register IEDS (address 0D8_H) as shown in Figure 17-7.

The edge detection of external interrupt has three transition activated mode: rising edge, falling edge, and both edge.

Figure 17-7 External Interrupt Block Diagram

 $INT0 \sim INT2$ are multiplexed with general I/O ports (R00~R02). To use as an external interrupt pin, the bit of Port Mode Register PMR should be set to "1" correspondingly as shown in Figure 17-9

Example: To use as an INTO and INT2

```
;**** Set port as an input port R00,R02

LDM R0DD, #1111_1010B
;
;**** Set port as an external interrupt port

LDM PMR, #05H
;
;**** Set Falling-edge Detection

LDM IEDS, #0001_0001B
:
:
```

Response Time

The INT0 \sim INT2 edge are latched into INT1IF \sim INT2IF at every machine cycle. The values are not actually polled by the circuitry until the next machine cycle. If a request is active and conditions are right for it to be acknowledged, a hardware subroutine call to the requested service routine will be the next instruction to be executed. The DIV itself takes twelve cycles. Thus, a minimum of twelve complete machine cycles elapse between activation of an external interrupt request and the beginning of execution of the first instruction of the service routine.

Figure 17-8 shows interrupt response timings.

Figure 17-8 Interrupt Response Timing Diagram

Figure 17-9 PMR and IEDS Registers

18. LCD DRIVER

The GMS81C7208/16 has the circuit that directly drives the liquid crystal display (LCD) and its control circuit. In addition, VCL*n* pin is provided as the drive power pin.

	GMS81C7208/16	
1/4 Duty:	17 SEG × 4COM	
1/3 Duty:	18 SEG × 3COM	
1/2 Duty:	19 SEG × 2COM	
Static:	20 SEG × 1COM	

Basically, the GMS81C7208/16 has 17 seg. \times 4 com. ports of LCD driver. Extend display modes are shown in left table.

Figure 18-1shows the configuration of the LCD driver.

********Caution ******

When you developing the software using by Emulator, you must select the external bias resistor mode because of no internal bias resistor inside the Emulator (EVA. chip).

Figure 18-1 LCD Driver Block Diagram

18.1 LCD Control Registers

The LCD driver is controlled by the LCD control register LCR which is shown in Figure 18-2. LCD block input the clock from

the watch timer. When LCD is operate, the watch timer much be enabled by WTEN (bit 6 of address 0EF_H).

Figure 18-2 LCD Control Register

18.2 Duty and Bias Selection of LCD Driver

5 kinds of driving methods can be selected by DTY (bits 3 and 2 of LCD Control Register and connection of VCL pin externally.

Figure 18-3 shows typical driving waveforms for LCD.).

Figure 18-3 LCD Drive Waveform (Voltage COM-SEG Pins)

18.3 Selecting Frame Frequency

Frame frequency is set to the main frequency as shown in the following Table 18-1.

The LCK[1:0] of LCR determines the frequency of COM signal scanning of each segment output. The watch timer must be enabled when the LCD display is turned on. RESET clears the LCD control register LCR values to logic zero. The LCD display can continue to operate even during the SLEEP and STOP modes.

LCK[1:0]	LCD clock	Frame Frequency (Hz) (When f _{XIN} = 4.19 MHz)
00	$f_{XIN} \div 2^7 \div 32$	1024
01	$f_{XIN} \div 2^7 \div 64$	512
10	$f_{XIN} \div 2^7 \div 128$	256
11	$f_{XIN} \div 2^7 \div 256$	128

Table 18-1 Setting of LCD Frame Frequency

LCD Port Selection

Segment pins are also used for normal I/O pins. The LCD port selection register LPMR is used to set Rn pin for ordinary digital input. Refer to LPMR register as shown in Figure 18-2.

Bias Resistor

To operate LCD, built-in Bias resistor dividing V_{DD} to V_{SS} section into several stages generates necessary voltage.

The BTC (Bit 6 of LCR) switches Transistor supplying voltage to serially connected Bias resistor. If it is '1', it turns on, and if it is '0', it turns off. The LCD drive voltage (V_{CL2}) is given by the difference in potential (V_{DD} - V_{CL2}) between pins V_{DD} and V_{CL2} . Therefore, when the MCU operating voltage is 5V and LCD drive voltage are the same, the Bias pin is connected to the V_{CL2} pin as shown in (a) of Figure 18-5.

Figure 18-4 Application Example of 5V LCD Panel

When require supply 3V output to the LCD, the voltage of V_{CL2} becomes 3V as shown in Figure 18-5. Because V_{DD} is down to 3V through internal 2R resistor.

The LCD light only when the difference in potential between the segment and common output is \pm VCL, and turn off at all other times. During reset, the power switch of the LCD driver is turned off automatically, shutting off the VCL voltage.

Figure 18-5 Application Example of 3V LCD Panel

Some user want to use external bias resister instead of internal, you can connect external resistor as shown in Figure 18-6. And

the external capacitors are may required for stable display according to your system environment.

Figure 18-6 External Resistor

18.4 LCD Display Memory

Display data are stored to the display data area (address 100_{H} - $11A_{H}$) in the data memory.

The display data stored to the display data area are read automatically and sent to the LCD driver by the hardware.

The LCD driver generates the segment signals and common signals in accordance with the display data and drive method.

Figure 18-7 LCD Display Memory

Therefore, display patterns can be changed by only overwriting the contents of the display data area with a program. The table look up instruction is mainly used for this overwriting.

Figure 18-7 shows the correspondence between the display data area and the SEG/COM pins. The LCD lights when the display data is "1" and turn off when "0".

The number of segment which can be driven differs depending on the LCD drive method, therefore, the number of display data area bits used to store the data also differs (Refer to Figure 18-2). Consequently, data memory not

Drive Methods	Bit 3	Bit 2	Bit 1	Bit 0
1/4 Duty	COM3	COM2	COM1	COM0
1/3 Duty	-	COM2	COM1	COM0
1/2 Duty	-	-	COM1	COM0
Static	-	-	-	СОМО

Table 18-2 The Duty vs. COM Port Configuration

used to store display data and data memory for which the address are not connected to LCD can be used to store ordinary user's processing data.

Blanking

Blanking is applied by setting LCDEN (bit 7 of LCR) to "0" and

turns off the LCD by outputting the non light operation level to the COM pin. When setting Frame frequency or changing operating mode, LCD display should be off before operation, to prevent display flickering.

18.5 Control Method of LCD Driver

Initial Setting

Flow chart of initial setting is shown in Figure 18-8.

Example: When operating with 1/4 duty LCD using a

frame frequency of 512Hz.

```
LCR, #0101 0001B; 1/4duty, f_F = 512Hz (f_{SUB} = 32.768kHz)
Select Frame Frequency
                       LDM
                       SETG
                       LDM
                               RPR, #1; Select LCD Memory
                                  ; area (Page 1 = address 1XX_H)
Clear
                       LDX
                               #0 ; RAM Clear
             C LCD1:
LCD Display
                       LDA
                                  ;RAM(100H~11AH)
Memory
                       STA
                               {X}+
                       CMPX
                               #01BH
                       BNE
                               C LCD1
                       CLRG
 Turn on LCD
                       SET1
                               LCR.5; Enable LCD display
                       :
```


Figure 18-8 Initial Setting of LCD Driver

Figure 18-9 Example of Connection COM & SEG

Display Data Setting

Normally, display data are kept permanently in the program memory and then stored at the display data area by the table look-up instruction. This can be explained using

numerical display with 1/4 duty LCD as an example. The COM and SEG connections to the LCD and display data are the same as those shown is Figure 18-9. Programming

example for displaying character is shown below.

```
CLRG
                                  LDX#DISPRAM
                     GOLCD:
                                  LDA{X}
                                  TAY
                                  LDA!FONT+Y;LOAD FONT DATA
Write into the
                                  LDMRPR, #1; Set RPR = 1 to access LCD
                                  SETG
                                          ;Set Page 1
LCD Memory
                                  LDX#0
                                  STA\{X\}+;LOWER 4 BITS OF ACC. -> M(X)
                                  XCN
                                  STA{X}; UPPER 4 BITS OF ACC. -> M(X+1)
                                  CLRG ; Set Page = 0
                                 DB 1101_0111B;
DB 0000_0110B;
DB 1110_0011B;
DB 1010_0111B;
DB 0011_0110B;
DB 1011_0101B;
DB 1111_0101B;
DB 0000_0111B;
DB 1111_0111B;
DB 0011_0111B;
  Font data
                    FONT
                                                            "0"
                                                           "1"
                                                           "2"
                                                            "3"
                                                            ~4″
                                                            "5"
                                                           "6"
                                                           "7"
                                                            "8"
                                                           "9"
```

Note: When power on RESET, an oscillation start up time is required. Enable LCD display after an oscillation is stabilized, or LCD may occur flicker at power on time shortly.

19. WATCH / WATCHDOG TIMER

19.1 Watch Timer

The watch timer goes the clock continuously even during the power saving mode. When MCU is in the Stop or Sleep mode, MCU can wake up itself every 2Hz or 4Hz or 16Hz.

The watch timer consists of input clock selector, 14-bit binary counter, interval selector and watch timer mode register WTMR (address $0EF_H$). The WTMR is 5-bit read/write register and shown in Figure 19-2. WTMR can select the clock input by 2 bits WTCK[1:0] and interval time selector by 2 bits WTIN[1:0] and enable/disable bit. The WTEN bit is set to "1" timer start counting. Input clocks can be selected among three different source

which are divided main clock (f_{XIN} ÷128) or main clock. Recommend the oscillator 4.194304MHz as a main. Because above main frequency is equal to 128 times of 32.768kHz. Generally main clock (f_{XIN}) at WTCK=10_B is not be used, it is just for test purpose in factory.

In the Stop Mode, the main clock is stopped.

LDM IENL, #XXXX_X1XXB EI LDM WTMR, #0100 1000B

Figure 19-1 Block Diagram of Watchdog Timer

19.2 Watchdog Timer

The watchdog timer rapidly detects the CPU malfunction such as endless looping caused by noise or the like, and resumes the CPU to the normal state.

The watchdog timer signal for detecting malfunction can be selected either a reset CPU or a interrupt request as you want.

When the watchdog timer is not being used for malfunction detection, it can be used as a timer to generate an interrupt at fixed intervals.

Watchdog Timer Control

Figure 19-2 shows the watchdog timer control register WDTR (address $0\mathrm{DF}_H$). The watchdog timer is automatically enabled initially and watchdog output to reset CPU but clock input source is disabled. To enable this function, you should write bit WTEN of WTMR (address $0\mathrm{EF}_H$) set to "1".

The CPU malfunction is detected during setting of the detection time, selecting of output, and clearing of the binary counter. Clearing the 2-bit binary counter by bit WDCLR of WDTR is repeated within the detection time.

If the malfunction occurs for any cause, the watchdog timer output will become active from the binary counters unless the binary counter is cleared. At this time, when WDOM=1, a reset is generated, which drives the RESET pin to low to reset the internal hardware. When WDOM=0, a watchdog timer interrupt (WD-TIF) is generated instead of Reset function. This interrupt can be used general timer as user want.

When main clock is selected as clock input source on the STOP mode, clock input is stopped so the watchdog timer temporarily stops counting.

Figure 19-2 WTMR, WDTR: Watch Timer and Watchdog Timer Data Register

Example: Sets the Watchdog Timer Detection Time to 1 SEC at 4.19MHz

Enable and Disable Watchdog

Watchdog timer is enabled by setting WDEN (bit 4 in CKCTLR) to "1". WDEN is initialized to "1" during reset and it should be clear to "0" disable.

Example: Enables watchdog timer for Reset

```
:
LDM WTMR,#0100_XXXXB;WTEN ← 1
LDM WDTR,#00X1_XX11B;WDEN ← 1
```

The watchdog timer is disabled by clearing either bit 4 (WDEN) of WDTR or bit 6 (WTEN) of WTMR. The watchdog timer is halted in STOP mode and restarts automatically after STOP mode is released.

Clearing 2-Bit Binary Counter of the Watchdog Timer

The watchdog timer count the clock source as 14-bit binary

counter which is free run can not be cleared. The watchdog timer has 2-bit binary counter. It is incremented by 14-bit binary counter match as shown in Figure 19-1. Interrupt request flag or Reset signal are generated by overflow 2-bit binary counter.

During normal operation in the software, 2-bit binary counter

should be cleared by bit WDCLR of WDTR within watchdog timer overflow.

The time of clearing must be within 3 times of 14-bit binary counter interval as shown in Figure 19-3.

The worst case, watchdog time is just 3 times of 14-bit counter.

Figure 19-3 Watchdog Timer Timing

If the watchdog timer output becomes active, a reset is generated, which drives the RESET pin low to reset the internal hardware.

The main clock oscillator also turns on when a watchdog timer reset is generated in sub clock mode.

20. POWER DOWN OPERATION

The GMS81C7208/16 has two power-down modes. In power-down mode, power consumption is reduced considerably that in Battery operation Battery life can be extended a lot.

Sleep mode is entered by setting bit 0 of sleep mode register, and STOP mode is entered by STOP instruction.

20.1 SLEEP Mode

In this mode, the internal oscillation circuits remain active.

Oscillation continues and peripherals are operate normally but CPU stops. Movement of all Peripherals is shown in Table 20-1. Sleep mode is entered by setting bit 0 of SMR (address 0DE_H).

It is released by RESET or interrupt. To be release by interrupt, interrupt should be enabled before Sleep mode.

Figure 20-1 SLEEP Mode Register

Figure 20-2 Sleep Mode Release Timing by External Interrupt

Figure 20-3 SLEEP Mode Release Timing by RESET Pin

20.2 STOP Mode

For applications where power consumption is a critical factor, device provides reduced power of STOP.

Start the Stop Operation

An instruction that STOP causes to be the last instruction is executed before going into the STOP mode. In the Stop

mode, the on-chip main-frequency oscillator is stopped. With the clock frozen, all functions are stopped, but the on-chip RAM and Control registers are held. The port pins output the values held by their respective port data register, the port direction registers. The status of peripherals during Stop mode is shown below.

Peripheral	STOP Mode	SLEEP Mode
CPU	All CPU operations are disabled	All CPU operations are disabled
RAM	Retain	Retain
LCD Driver	LCD driver operates continuously	LCD driver operates continuously
Basic Interval Timer	Halted	BIT operates continuously
Timer/Event Counter	Halted (Only when the Event counter mode is enabled, Timer operates normally)	Timer/Event Counter operates continuously
Watch Timer	Watch Timer operates continuously	Watch Timer operates continuously
Main-oscillation	Stop (X _{IN} pin = "L", X _{OUT} pin = "L")	Oscillation
Sub-oscillation	Oscillation	Oscillation
I/O Ports	Retain	Retain
Control Registers	Retain	Retain
Release Method	RESET, SIO interrupt, Watch Timer interrupt, Timer interrupt (EC0,2), External interrupt	RESET, All interrupts

Table 20-1 Peripheral Operation During Power Down Mode

Note: Since the X_{IN} pin is connected internally to GND to avoid current leakage due to the crystal oscillator in STOP mode, do not use STOP instruction when an external clock is used as the main system clock.

In the Stop mode of operation, V_{DD} can be reduced to minimize power consumption. Be careful, however, that V_{DD} is not reduced before the Stop mode is invoked, and that V_{DD} is restored to its normal operating level before the Stop mode is terminated.

The reset should not be activated before V_{DD} is restored to its normal operating level, and must be held active long enough to allow the oscillator to restart and stabilize.

And after STOP instruction, at least two or more NOP instruction should be written as shown in example below.

Example)

;	LDM LDM STOP NOP	CKCTLR, #0EBH; 32.8ms CKCTLR, #0FBH; 65.5ms
	NOD	

The interval timer register CKCTLR should be initialized ($0F_H$ or $0E_H$) by software in order that oscillation stabilization time should be longer than 20ms before STOP mode.

Release the STOP Mode

The exit from STOP mode is using hardware reset or external interrupt, watch timer, key scan or Timer/Counter.

To release STOP mode, corresponding interrupt should be enabled before STOP mode.

Specially as a clock source of Timer/Event Counter, EC0 or EC2 pin can release it by Timer/Event Counter interrupt request.

Reset redefines all the control registers but does not change the on-chip RAM. External interrupts allow both on-chip RAM and Control registers to retain their values.

Start-up is performed to acquire the time for stabilizing oscillation. During the start-up, the internal operations are all stopped.

Figure 20-4 STOP Mode Release Timing by External Interrupt

Figure 20-5 STOP Mode Release Timing by RESET

Minimizing Current Consumption

The stop mode is designed to reduce power consumption. To minimize current drawn during stop mode, the user should turn-off output drivers that are sourcing or sinking current, if it is practical.

Note: In the STOP operation, the power dissipation associated with the oscillator and the internal hardware is lowered; however, the power dissipation associated with the

pin interface (depending on the external circuitry and program) is not directly determined by the hardware operation of the STOP feature. This point should be little current flows when the input level is stable at the power voltage level (V_{DD}/V_{SS}); however, when the input level becomes higher than the power voltage level (by approximately 0.3V), a current begins to flow. Therefore, if cutting off the output transistor at an I/O port puts the pin signal into the high-impedance state, a current flow across the ports input transistor, requiring it to fix the level by pull-up or other means.

It should be set properly that current flow through port doesn't exist

First consider the setting to input mode. Be sure that there is no current flow after considering its relationship with external circuit. In input mode, the pin impedance viewing from external MCU is very high that the current doesn't flow.

But input voltage level should be V_{SS} or V_{DD} . Be careful that if unspecified voltage, i.e. if un-firmed voltage level (not V_{SS} or

 V_{DD}) is applied to input pin, there can be little current (max. 1mA at around 2V) flow.

If it is not appropriate to set as an input mode, then set to output mode considering there is no current flow. Setting to High or Low is decided considering its relationship with external circuit. For example, if there is external pull-up resistor then it is set to output mode, i.e. to High, and if there is external pull-down register, it is set to low.

Figure 20-6 Application Example of Unused Input Port

Figure 20-7 Application Example of Unused Output Port

21. OSCILLATOR CIRCUIT

The GMS81C7208/16 has two oscillation circuits internally. $X_{\rm IN}$ and $X_{\rm OUT}$ are input and output for main frequency and $SX_{\rm IN}$ and $SX_{\rm OUT}$ are input and output for sub frequency, respectively, inverting amplifier which can be configured for being used as an on-chip oscillator, as shown in Figure 21-1. To use RC oscillation instead of crystal, user should check mark on the "MASK ORDER & VERIFICATION SHEET" of the appendix of this manual. However in the OTP device, when the programming RC oscillation can be selected or not into the configuration bit. For

more detail, refer to "24.1 OTP Programming" on page 84.

Note: When using the sub clock oscillation, connect a resistor in series with R which is shown as below figure. In order to reduce the power consumption, the sub clock oscillator employs a low amplification factor circuit. Because of this, the sub clock oscillator is more sensitive to noise than the main system clock oscillator.

Figure 21-1 Oscillation Circuit

Oscillation circuit is designed to be used either with a ceramic resonator or crystal oscillator. Since each crystal and ceramic resonator have their own characteristics, the user should consult the crystal manufacturer for appropriate values of external components.

Oscillation circuit is designed to be used either with a ceramic resonator or crystal oscillator. Since each crystal and ceramic resonator have their own characteristics, the user should consult the crystal manufacturer for appropriate values of external components. In addition, see Figure 21-2 for the layout of the crystal.

Note: Minimize the wiring length. Do not allow the wiring to intersect with other signal conductors. Do not allow the wiring to come near changing high current. Set the potential of the grounding position of the oscillator capacitor to that of Vss. Do not ground it to any ground pattern where high current is present. Do not fetch signals from the oscillator.

Figure 21-2 Recommend Layout of Oscillator PCB Circuit

22. RESET

The GMS81C7208/16 has two types of reset generation procedures; one is an external reset input, the other is a watch-dog timer reset. Table 22-1 shows on-chip hardware initialization by reset action.

Figure 22-1 Simple Power-On Reset Circuit.

Initial Value On-chip Hardware Program Counter (PC) (FFFF_H) - (FFFE_H) G-Flag (G) Main Operating Mode Operation Mode Peripheral Clock On Disable (Because the Watch Watchdog Timer timer is disabled) Refer to Table 8-1 on Control Registers page 24 Low Voltage Detector Enable

Table 22-1 Initializing Internal Status by Reset Action

22.1 External Reset Input

The reset input is the RESET pin, which is the input to a Schmitt Trigger. A reset in accomplished by holding the RESET pin low for at least 8 oscillator periods, within the operating voltage range and oscillation stable, it is applied, and the internal state is initialized. After reset, 64ms (at 4 MHz) add with 7 oscillator periods are required to start execution as shown in Figure 22-2.

Internal RAM is not affected by reset. When V_{DD} is turned on, the RAM content is indeterminate. Therefore, this RAM should

be initialized before read or tested it.

When the RESET pin input goes to high, the reset operation is released and the program execution starts at the vector address stored at addresses FFFE_H - FFFF_H.

A connection for simple power-on-reset is shown in Figure .

Figure 22-2 Timing Diagram after RESET

22.2 Watchdog Timer Reset

Refer to "18. LCD DRIVER" on page 65.

23. POWER FAIL PROCESSOR

The GMS81C7208/16 has an on-chip low voltage detection circuitry to detect the V_{DD} voltage. A configuration register, LVDR (address $0\mathrm{FB}_H$), can enable or disable the low voltage detect circuitry. Whenever V_{DD} falls close to or below 2.2V, the LVD0 is just set to "1", and if it recovering 3.4V, LVD0 is held to "1". If V_{DD} falls below around 3.4V range, the low voltage situation may reset the MCU or freeze the clock according to setting of bit 5 (LVDM) of LVDR . The bit 4 LVD1 function is same with LVD0 except different voltage level 2.1V. The detection voltage is varied very little. See "7.3 DC Electrical Characteristics" on page 10 for more detail voltage level.

In the in-circuit emulator, power fail function is not implemented and user may not use it. Therefore, after completed development of user program, this function may be experimented or evaluated using by OTP.

When power fail certainly occur the MCU was reset, program notify this Reset circumstance cause by LVD function. So, does not erase the all RAM contents and operates subsequently as shown in Figure .

Figure 23-1 Low Voltage Detector Register

Figure 23-2 S/W Example for RESET by Power Fail

Figure 23-3 Power Fail Processor Situations

24. DEVELOPMENT TOOLS

24.1 OTP Programming

The GMS87C7216 is OTP (One Time Programmable) type microcontrollers. Its internal user memory is constructed with EPROM (Electrically programmable read only memory).

The OTP microcontroller is generally used for chip evaluation, first production, small amount production, fast mass production, etc.

Blank OTP's internal EPROM is filled by 00_H, not FF_H.

Note: In any case, you have to use the *.OTP file for programming, not the *.HEX file. After assemble the source program, both OTP and HEX file are generated by automatically. The HEX file is used during program emulation on the emulator.

How to Program

To program the OTP devices, user should use MagnaChip own programmer. Ask to MagnaChip sales part for purchasing or more detail.

Programmer: CHOICE-SIGMA (Single type)

PGM-Plus (Single type)

StandAlone-GANG4 (4-gang type)

Socket adapter:87C70XX-64SD (for 64SDIP)

87C70XX-64QF (for 64MQFP) 87C70XX-64LQ (for 64LQFP)

The CHOICE-SIGMA is a MagnaChip universal single programmer for all of MagnaChip OTP devices, also the StandAlone-GANG4 can program four OTPs at once.

Programming Procedure

- 1. Select device GMS87C7216 as you want.
- 2. Load the *.OTP file from the PC to programmer. The file is composed of Motorola-S1 format.
- 3. Set the programming address range as below table.
- 4. Mount the socket adapter on the programmer.
- 5. Set the configuration bytes as your needs.
- 6. Start program/verify.

Select the Options for Program Lock and RC Oscillation

Except the user program memory $C000_H \sim FFFF_H$, there is configuration byte (address $707F_H$) for the selection of program lock and RC oscillation. The configuration byte of OTP is shown as Figure 24-1. It could be served when user use the OTP program-

mer (PGM-Plus, Choice-Sigma or StandAlone-Gang4).

Figure 24-1 The OTP Configuration Byte

24.2 Emulator EVA. Board Setting

DIP Switch and VR Setting

Before execute the user program, keep in your mind the below configuration

DIP S/V	V, VR	Description	ON/OFF Setting
SW1	-	Emulator Reset Switch. Reset the Emulator.	Reset the Emulator.
SW2	1	EVA. Chip RESET pin Pod RESET pin configuration	Normally OFF . EVA. chip can be reset by external user target board. ON : Reset is available by either user target system board or Emulator RESET switch. OFF : Reset the MCU by Emulator RESET switch. Does not work from user target board.
	2	EVA. Chip Oscillator Pod XOUT pin configuration	Normally OFF . MCU XOUT pin is disconnected internally in the Emulator. Some circumstance user may connect this circuit. ON : Output XOUT signal OFF : Disconnect circuit
	1 2 3	EVA. Chip Internal BIAS VCL2 VCL1 VCL1 VCL1 VCL1 VCL2 VCL1 VCL2 VCL1 VCL2 VCL1 VCL2 VCL1 VCL2 VCL3 VCL3 VCL3 VCL3 VCL3 VCL3 VCL4 VCL5 External Resistor and Capacitor	Must be ON position. It serves the external bias resistors. If this switches are turned off, LCD bias voltage does not supplied, floated because there are no internal bias resistors and bias Tr. inside the Emulator.
SW4	4 5 6	LCD Voltage doubling circuit.	Must be OFF position. It is reserved for the GMS81C5108.
	7	Select the Stack Page.	Must be ON position. This switch select the Stack page 0 (off) or page 1 (on). ON : For the 81C7XXX OFF : For the GMS81C5108
	8	81Cx detect the VDD voltage but Emulator can not do because Emulator can not operate if V _{DD} is below normal opr. voltage (5V), This switch serves LVD environment through the applying 0V to LVD pin of EVA. chip during 5V normal operation.	Position ON during normal operation. ON : Normal operation OFF : Force to detect the LVD, refer to "23. POWER FAIL PROCESSOR" on page 82.

DIP S/V	V, VR	Description	ON/OFF Setting
CIME	1	Internal power supply to sub-oscillation circuit.	Must be ON position.
SW5	2	Reserved for other purpose.	Must be OFF position.
VR1	-	Adjust the LCD contrast. It supply bias voltage and adjust the VCL2 voltage. EVA. Chip Internal VDD Adjust Contrast VR1 50kΩ VCL2 VCL1 WCL1 WCL2 VCL2 VCL1 WCL3 External Resistor and Capacitor	Adjust the proper position as well as LCD display good.
VR2	-	Reserved for other purpose.	Don't care.

APPENDIX

A. MASK ORDER SHEET

	MASK ORDER & VE GMS81C7208 GMS81C7216	-LA							
Customer should w 1. Customer Info	rite inside thick line box. rmation	2. Device Information							
Company Name		Package 44MQFP 44LQFP							
Application		ROM Size 8K 16K							
Order Date	YYYY MM DD • •	RC OSC Opt. Crystal RC							
Tel:	Fax:	Mask Data File Name: (.OTP) Check Sum: ()							
E-mail: Name & Signature:		Internet OTP file data OWS81C7216 (16K ROM) OTP file data OTP file data OTP file data OTP file data							
As Marking Specification (Please check mark into) MagnaChip* GMS81C72 -LA									
	number	Customer logo is not required. — rk, please submit a clean original of the logo.							
	Date	Quantity MagnaChip Confirmation							
Customer Sample	YYYY MM DD • •	pcs							
Risk Order	YYYY MM DD ◆	pcs							
5. ROM Code Ver	rification	This box is written after "5.Verification".							
Verification Date:	YYYY MM DD • •	Approval Date:							
Please confirm our v	rerification data.	I agree with your verification data and confirm you to make mask set.							
Check Sum:		Tel: Fax:							
Tel: E-mail: Name &	Fax:	Name & Signature:							
Signature:		MagnaChip•							

B. INSTRUCTION

B.1 Terminology List

Terminology	Description
Α	Accumulator
X	X - register
Υ	Y - register
PSW	Program Status Word
#imm	8-bit Immediate Data
dp	Direct Page Offset Address
!abs	Absolute Address
[]	Indirect Expression
{}	Register Indirect Expression
{}+	Register Indirect Expression, after that, Register Auto-Increment
.bit	Bit Position
A.bit	Bit Position of Accumulator
dp.bit	Bit Position of Direct Page Memory
M.bit	Bit Position of Memory Data (000 _H ~0FFF _H)
rel	Relative Addressing Data
upage	U-page (0FF00 _H ~0FFFF _H) Offset Address
n	Table CALL Number (0~15)
+	Addition
x	Upper Nibble Expression in Opcode Bit Position
у	Upper Nibble Expression in Opcode Bit Position
_	Subtraction
×	Multiplication
1	Division
()	Contents Expression
٨	AND
V	OR
•	Exclusive OR
~	NOT
←	Assignment / Transfer / Shift Left
\rightarrow	Shift Right
\leftrightarrow	Exchange
=	Equal
≠	Not Equal

FEB. 2005 Ver 1.04 iii

B.2 Instruction Map

LOW HIGH	00000	00001 01	00010 02	00011 03	00100 04	00101 05	00110 06	00111 07	01000 08	01001 09	01010 0A	01011 0B	01100 0C	01101 0D	01110 0E	01111 0F
000	-	SET1 dp.bit	BBS A.bit,r el	BBS dp.bit, rel	ADC #imm	ADC dp	ADC dp+X	ADC !abs	ASL A	ASL dp	TCAL L 0	SETA 1 .bit	BIT dp	POP A	PUSH A	BRK
001	CLRC				SBC #imm	SBC dp	SBC dp+X	SBC !abs	ROL A	ROL dp	TCAL L 2	CLRA 1 .bit	COM dp	POP X	PUSH X	BRA rel
010	CLRG				CMP #imm	CMP dp	CMP dp+X	CMP !abs	LSR A	LSR dp	TCAL L 4	NOT1 M.bit	TST dp	POP Y	PUSH Y	PCAL L Upage
011	DI				OR #imm	OR dp	OR dp+X	OR !abs	ROR A	ROR dp	TCAL L 6	OR1 OR1B	CMPX dp	POP PSW	PUSH PSW	RET
100	CLRV				AND #imm	AND dp	AND dp+X	AND !abs	INC A	INC dp	TCAL L 8	AND1 AND1 B	CMPY dp	CBNE dp+X	TXSP	INC X
101	SETC				EOR #imm	EOR dp	EOR dp+X	EOR !abs	DEC A	DEC dp	TCAL L 10	EOR1 EOR1 B	DBNE dp	XMA dp+X	TSPX	DEC X
110	SETG				LDA #imm	LDA dp	LDA dp+X	LDA !abs	TXA	LDY dp	TCAL L 12	LDC LDCB	LDX dp	LDX dp+Y	XCN	DAS
111	EI				LDM dp,#i mm	STA dp	STA dp+X	STA !abs	TAX	STY dp	TCAL L 14	STC M.bit	STX dp	STX dp+Y	XAX	STOP

LOW HIGH	10000 10	10001 11	10010 12	10011 13	10100 14	10101 15	10110 16	10111 17	11000 18	11001 19	11010 1A	11011 1B	11100 1C	11101 1D	11110 1E	11111 1F
000	BPL rel	CLR1 dp.bit	BBC A.bit,rel	BBC dp.bit,r el	ADC {X}	ADC !abs+ Y	ADC [dp+X]	ADC [dp]+Y	ASL !abs	ASL dp+X	TCAL L 1	JMP !abs	BIT !abs	ADD W dp	LDX #imm	JMP [!abs]
001	BVC rel				SBC {X}	SBC !abs+ Y	SBC [dp+X]	SBC [dp]+Y	ROL !abs	ROL dp+X	TCAL L 3	CALL !abs	TEST !abs	SUB W dp	LDY #imm	JMP [dp]
010	BCC rel				CMP {X}	CMP !abs+ Y	CMP [dp+X]	CMP [dp]+Y	LSR !abs	LSR dp+X	TCAL L 5	MUL	TCLR 1 !abs	CMP W dp	CMPX #imm	CALL [dp]
011	BNE rel				OR {X}	OR !abs+ Y	OR [dp+X]	OR [dp]+Y	ROR !abs	ROR dp+X	TCAL L 7	DBNE Y	CMPX !abs	LDYA dp	CMPY #imm	RETI
100	BMI rel				AND {X}	AND !abs+ Y	AND [dp+X]	AND [dp]+Y	INC !abs	INC dp+X	TCAL L 9	DIV	CMPY !abs	INCW dp	INC Y	TAY
101	BVS rel				EOR {X}	EOR !abs+ Y	EOR [dp+X]	EOR [dp]+Y	DEC !abs	DEC dp+X	TCAL L 11	XMA {X}	XMA dp	DEC W dp	DEC Y	TYA
110	BCS rel				LDA {X}	LDA !abs+ Y	LDA [dp+X]	LDA [dp]+Y	LDY !abs	LDY dp+X	TCAL L 13	LDA {X}+	LDX !abs	STYA dp	XAY	DAA
111	BEQ rel				STA {X}	STA !abs+ Y	STA [dp+X]	STA [dp]+Y	STY !abs	STY dp+X	TCAL L 15	STA {X}+	STX !abs	CBNE dp	XYX	NOP

B.3 Instruction Set

Arithmetic / Logic Operation

No.	Mnemonic	Op Code	Byte No	Cycle No	Operation	Flag NVGBHIZC
1	ADC #imm	04	2	2		
2	ADC dp	05	2	3		
3	ADC dp + X	06	2	4		
4	ADC !abs	07	3	4	Add with carry.	
5	ADC !abs + Y	15	3	5	A ← (A) + (M) + C	NVH-ZC
6	ADC [dp + X]	16	2	6		
7	ADC [dp]+Y	17	2	6		
8	ADC {X}	14	1	3		
9	AND #imm	84	2	2		
10	AND dp	85	2	3		
11	AND dp + X	86	2	4		
12	AND !abs	87	3	4	Logical AND	
13	AND !abs + Y	95	3	5	$A \leftarrow (A) \land (M)$	NZ-
14	AND [dp + X]	96	2	6		
15	AND [dp]+Y	97	2	6		
16	AND {X}	94	1	3		
17	ASL A	08	1	2	A middle manaking albright ladd	
18	ASL dp	09	2	4	Arithmetic shift left C	
19	ASL dp + X	19	2	5	□ ← ← ← ← ← ← ← ← ← ← ← ← ← ← ← ← ← ← 	NZC
20	ASL !abs	18	3	5		
21	CMP #imm	44	2	2		
22	CMP dp	45	2	3		
23	CMP dp + X	46	2	4		
24	CMP !abs	47	3	4	Compare accumulator contents with memory contents	
25	CMP !abs + Y	55	3	5	(A)-(M)	NZC
26	CMP [dp + X]	56	2	6		
27	CMP [dp]+Y	57	2	6		
28	CMP {X}	54	1	3		
29	CMPX #imm	5E	2	2		
30	CMPX dp	6C	2	3	Compare X contents with memory contents (X)-(M)	NZC
31	CMPX !abs	7C	3	4	(\(\tau \) - \(\text{IVI } \)	
32	CMPY #imm	7E	2	2		
33	CMPY dp	8C	2	3	Compare Y contents with memory contents (Y)-(M)	NZC
34	CMPY !abs	9C	3	4	(' / - (IVI /	
35	COM dp	2C	2	4	1'S Complement : (dp) ← ~(dp)	NZ-
36	DAA	DF	1	3	Decimal adjust for addition	NZC
37	DAS	CF	1	3	Decimal adjust for subtraction	NZC

No.	Mnemonic	Op Code	Byte No	Cycle No	Operation	Flag NVGBHIZC
38	DEC A	A8	1	2		
39	DEC dp	A9	2	4		
40	DEC dp + X	В9	2	5	Decrement	
41	DEC !abs	В8	3	5	M ← (M)-1	NZ-
42	DEC X	AF	1	2		
43	DEC Y	BE	1	2		
44	DIV	9B	1	12	Divide: YA / X Q: A, R: Y	NVH-Z-
45	EOR #imm	A4	2	2		
46	EOR dp	A5	2	3		
47	EOR dp + X	A6	2	4		
48	EOR !abs	A7	3	4	Exclusive OR	
49	EOR !abs + Y	B5	3	5	$A \leftarrow (A) \oplus (M)$	NZ-
50	EOR [dp+X]	В6	2	6		
51	EOR [dp]+Y	В7	2	6		
52	EOR {X}	B4	1	3		
53	INC A	88	1	2		NZC
54	INC dp	89	2	4		
55	INC dp + X	99	2	5	Increment	
56	INC !abs	98	3	5	M ← (M) + 1	NZ-
57	INC X	8F	1	2		
58	INC Y	9E	1	2		
59	LSR A	48	1	2	La si and a biffi sinh A	
60	LSR dp	49	2	4	Logical shift right	
61	LSR dp + X	59	2	5	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	NZC
62	LSR !abs	58	3	5		
63	MUL	5B	1	9	Multiply: $YA \leftarrow Y \times A$	NZ-
64	OR #imm	64	2	2		
65	OR dp	65	2	3		
66	OR dp + X	66	2	4		
67	OR !abs	67	3	4	Logical OR	
68	OR !abs + Y	75	3	5	$A \leftarrow (A) \lor (M)$	NZ-
69	OR [dp + X]	76	2	6		
70	OR [dp]+Y	77	2	6		
71	OR {X}	74	1	3		
72	ROL A	28	1	2	Datata laft through Com.	
73	ROL dp	29	2	4	Rotate left through Carry C 7 6 5 4 3 2 1 0	
74	ROL dp + X	39	2	5		NZC
75	ROL !abs	38	3	5		

No.	Mnemonic	Op Code	Byte No	Cycle No	Operation	Flag NVGBHIZC
76	ROR A	68	1	2	Rotate right through Carry	
77	ROR dp	69	2	4	7 6 5 4 3 2 1 0 C	
78	ROR dp + X	79	2	5	→ →→→→→→ → □ ─	NZC
79	ROR !abs	78	3	5		
80	SBC #imm	24	2	2		
81	SBC dp	25	2	3		
82	SBC dp + X	26	2	4		
83	SBC !abs	27	3	4	Subtract with Carry	
84	SBC !abs + Y	35	3	5	A ← (A)-(M)-~(C)	NVHZC
85	SBC [dp + X]	36	2	6		
86	SBC [dp]+Y	37	2	6		
87	SBC {X}	34	1	3		
88	TST dp	4C	2	3	Test memory contents for negative or zero, (dp) - 00 _H	NZ-
89	XCN	CE	1	5	Exchange nibbles within the accumulator $A_7{^\sim}A_4 \leftrightarrow A_3{^\sim}A_0$	NZ-

FEB. 2005 Ver 1.04 vii

Register / Memory Operation

No.	Mnemonic	Op Code	Byte No	Cycle No	Operation	Flag NVGBHIZC
1	LDA #imm	C4	2	2		
2	LDA dp	C5	2	3		
3	LDA dp + X	C6	2	4		
4	LDA !abs	C7	3	4	Load accumulator	
5	LDA !abs + Y	D5	3	5	A ← (M)	NZ-
6	LDA [dp + X]	D6	2	6		
7	LDA [dp]+Y	D7	2	6		
8	LDA {X}	D4	1	3		
9	LDA {X}+	DB	1	4	X- register auto-increment : A \leftarrow (M) , X \leftarrow X + 1	-
10	LDM dp,#imm	E4	3	5	Load memory with immediate data : (M) ← imm	
11	LDX #imm	1E	2	2		
12	LDX dp	СС	2	3	Load X-register	
13	LDX dp + Y	CD	2	4	$X \leftarrow (M)$	NZ-
14	LDX !abs	DC	3	4		
15	LDY #imm	3E	2	2		
16	LDY dp	C9	2	3	Load Y-register	
17	LDY dp + X	D9	2	4	$Y \leftarrow (M)$	NZ-
18	LDY !abs	D8	3	4		
19	STA dp	E5	2	4		
20	STA dp + X	E6	2	5		
21	STA !abs	E7	3	5		
22	STA !abs + Y	F5	3	6	Store accumulator contents in memory (M) \leftarrow A	
23	STA [dp + X]	F6	2	7		
24	STA [dp]+Y	F7	2	7		
25	STA {X}	F4	1	4		
26	STA {X}+	FB	1	4	X- register auto-increment : (M) \leftarrow A, X \leftarrow X + 1	
27	STX dp	EC	2	4		
28	STX dp + Y	ED	2	5	Store X-register contents in memory (M) ← X	
29	STX !abs	FC	3	5	(M) ← X	
30	STY dp	E9	2	4		
31	STY dp + X	F9	2	5	Store Y-register contents in memory (M) ← Y	
32	STY !abs	F8	3	5	(w) < 1	
33	TAX	E8	1	2	Transfer accumulator contents to X-register : $X \leftarrow A$	NZ-
34	TAY	9F	1	2	Transfer accumulator contents to Y-register : $Y \leftarrow A$	NZ-
35	TSPX	AE	1	2	Transfer stack-pointer contents to X-register : $X \leftarrow sp$	NZ-
36	TXA	C8	1	2	Transfer X-register contents to accumulator: $A \leftarrow X$	NZ-
37	TXSP	8E	1	2	Transfer X-register contents to stack-pointer: $sp \leftarrow X$	NZ-
38	TYA	BF	1	2	Transfer Y-register contents to accumulator: A ← Y	NZ-

viii FEB. 2005 Ver 1.04

39	XAX	EE	1	4	Exchange X-register contents with accumulator :X ↔ A	
40	XAY	DE	1	4	Exchange Y-register contents with accumulator :Y ↔ A	
41	XMA dp	ВС	2	5		
42	XMA dp+X	AD	2	6	Exchange memory contents with accumulator (M) ↔ A	NZ-
43	XMA {X}	BB	1	5	(111) \ \ / / \ \	
44	XYX	FE	1	4	Exchange X-register contents with Y-register : $X \leftrightarrow Y$	

16-BIT operation

No.	Mnemonic	Op Code	Byte No	Cycle No	Operation	Flag NVGBHIZC
1	ADDW dp	1D	2	5	16-Bits add without Carry YA ← (YA) (dp +1) (dp)	NVH-ZC
2	CMPW dp	5D	2	4	Compare YA contents with memory pair contents : (YA) – (dp+1)(dp)	NZC
3	DECW dp	BD	2	6	Decrement memory pair $(dp+1)(dp) \leftarrow (dp+1)(dp) - 1$	NZ-
4	INCW dp	9D	2	6	Increment memory pair $(dp+1)(dp) \leftarrow (dp+1)(dp) + 1$	NZ-
5	LDYA dp	7D	2	5	Load YA YA ← (dp +1) (dp)	NZ-
6	STYA dp	DD	2	5	Store YA (dp +1) (dp) ← YA	
7	SUBW dp	3D	2	5	16-Bits subtract without carry YA ← (YA) - (dp +1) (dp)	NVH-ZC

Bit Manipulation

No.	Mnemonic	Op Code	Byte No	Cycle No	Operation	Flag NVGBHIZC
1	AND1 M.bit	8B	3	4	Bit AND C-flag : $C \leftarrow (C) \land (M.bit)$	C
2	AND1B M.bit	8B	3	4	Bit AND C-flag and NOT : C \leftarrow (C) \land \sim (M .bit)	C
3	BIT dp	0C	2	4	Bit test A with memory :	
4	BIT !abs	1C	3	5	$Z \leftarrow (A) \land (M), N \leftarrow (M_7), V \leftarrow (M_6)$	MMZ-
5	CLR1 dp.bit	y1	2	4	Clear bit : (M.bit) ← "0"	
6	CLRA1 A.bit	2B	2	2	Clear A bit : (A.bit) ← "0"	
7	CLRC	20	1	2	Clear C-flag : C ← "0"	0
8	CLRG	40	1	2	Clear G-flag : G ← "0"	0
9	CLRV	80	1	2	Clear V-flag : V ← "0"	-00
10	EOR1 M.bit	AB	3	5	Bit exclusive-OR C-flag : $C \leftarrow (C) \oplus (M.bit)$	C
11	EOR1B M.bit	AB	3	5	Bit exclusive-OR C-flag and NOT : C \leftarrow (C) \oplus ~(M .bit)	C
12	LDC M.bit	СВ	3	4	Load C-flag : C ← (M .bit)	C
13	LDCB M.bit	СВ	3	4	Load C-flag with NOT : $C \leftarrow \sim (M \cdot bit)$	C
14	NOT1 M.bit	4B	3	5	Bit complement : (M .bit) ← ~(M .bit)	

15	OR1 M.bit	6B	3	5	Bit OR C-flag : $C \leftarrow (C) \lor (M .bit)$	C
16	OR1B M.bit	6B	3	5	Bit OR C-flag and NOT : $C \leftarrow (C) \lor \sim (M.bit)$	C
17	SET1 dp.bit	x1	2	4	Set bit : (M.bit) ← "1"	
18	SETA1 A.bit	0B	2	2	Set A bit ∶ (A.bit) ← "1"	
19	SETC	A0	1	2	Set C-flag ∶ C ← "1"	1
20	SETG	C0	1	2	Set G-flag ∶ G ← "1"	1
21	STC M.bit	EB	3	6	Store C-flag : (M .bit) ← C	
22	TCLR1 !abs	5C	3	6	Test and clear bits with A : A - (M) , (M) ← (M) ∧ ~(A)	NZ-
23	TSET1 !abs	3C	3	6	Test and set bits with A: A-(M), (M)← (M)∨(A)	NZ-

Branch / Jump Operation

No.	Mnemonic	Op Code	Byte No	Cycle No	Operation	Flag NVGBHIZC
1	BBC A.bit,rel	y2	2	4/6	Branch if bit clear :	
2	BBC dp.bit,rel	у3	3	5/7	if (bit) = 0, then $pc \leftarrow (pc) + rel$	
3	BBS A.bit,rel	x2	2	4/6	Branch if bit set :	
4	BBS dp.bit,rel	х3	3	5/7	if (bit) = 1, then $pc \leftarrow (pc) + rel$	
5	BCC rel	50	2	2/4	Branch if carry bit clear if $(C) = 0$, then $pc \leftarrow (pc) + rel$	
6	BCS rel	D0	2	2/4	Branch if carry bit set if (C) = 1, then $pc \leftarrow (pc) + rel$	
7	BEQ rel	F0	2	2/4	Branch if equal if $(Z) = 1$, then $pc \leftarrow (pc) + rel$	
8	BMI rel	90	2	2/4	Branch if minus if $(N) = 1$, then $pc \leftarrow (pc) + rel$	
9	BNE rel	70	2	2/4	Branch if not equal if $(Z) = 0$, then $pc \leftarrow (pc) + rel$	
10	BPL rel	10	2	2/4	Branch if plus if $(N) = 0$, then $pc \leftarrow (pc) + rel$	
11	BRA rel	2F	2	4	Branch always pc ← (pc) + rel	
12	BVC rel	30	2	2/4	Branch if overflow bit clear if $(V) = 0$, then $pc \leftarrow (pc) + rel$	
13	BVS rel	В0	2	2/4	Branch if overflow bit set if (V) = 1 , then pc ← (pc) + rel	
14	CALL !abs	3B	3	8	Subroutine call	
15	CALL [dp]	5F	2	8	$\begin{split} & \text{M(sp)} \leftarrow (\text{ pc}_{\text{H}} \text{), sp} \leftarrow \text{sp - 1, M(sp)} \leftarrow (\text{pc}_{\text{L}}), \text{ sp } \leftarrow \text{sp - 1,} \\ & \text{if !abs, pc} \leftarrow \text{abs ; if [dp], pc}_{\text{L}} \leftarrow (\text{ dp), pc}_{\text{H}} \leftarrow (\text{ dp+1) .} \end{split}$	
16	CBNE dp,rel	FD	3	5/7	Compare and branch if not equal :	
17	CBNE dp+X,rel	8D	3	6/8	if (A) \neq (M), then pc \leftarrow (pc) + rel.	
18	DBNE dp,rel	AC	3	5/7	Decrement and branch if not equal :	
19	DBNE Y,rel	7B	2	4/6	if (M) \neq 0, then pc \leftarrow (pc) + rel.	
20	JMP !abs	1B	3	3		
21	JMP [!abs]	1F	3	5	Unconditional jump pc ← jump address	
22	JMP [dp]	3F	2	4	F Jame addition	
23	PCALL upage	4F	2	6	$\label{eq:Upage} \begin{split} & \text{U-page call} \\ & \text{M(sp)} \leftarrow \!\! (\text{ pc}_{\text{H}} \text{), sp} \leftarrow \!\! \text{sp} - 1, \text{M(sp)} \leftarrow \!\! (\text{ pc}_{\text{L}} \text{),} \\ & \text{sp} \leftarrow \text{sp} - 1, \text{pc}_{\text{L}} \leftarrow \!\! (\text{ upage }), \text{ pc}_{\text{H}} \leftarrow "\text{0FF}_{\text{H}}". \end{split}$	
24	TCALL n	nA	1	8	Table call : (sp) \leftarrow (pc _H), sp \leftarrow sp - 1, M(sp) \leftarrow (pc _L),sp \leftarrow sp - 1, pc _L \leftarrow (Table vector L), pc _H \leftarrow (Table vector H)	

Control Operation & Etc.

No.	Mnemonic	Op Code	Byte No	Cycle No	Operation	Flag NVGBHIZC
1	BRK	0F	1	8	$\begin{split} & \text{Software interrupt: B} \leftarrow \text{"1", M(sp)} \leftarrow (\text{pc}_{\text{H}}), \text{ sp} \leftarrow \text{sp-1}, \\ & \text{M(s)} \leftarrow (\text{pc}_{\text{L}}), \text{ sp} \leftarrow \text{sp-1}, \text{M(sp)} \leftarrow (\text{PSW}), \text{ sp} \leftarrow \text{ sp-1}, \\ & \text{1,} \\ & \text{pc}_{\text{L}} \leftarrow (\text{ 0FFDE}_{\text{H}}), \text{ pc}_{\text{H}} \leftarrow (\text{ 0FFDF}_{\text{H}}). \end{split}$	1-0
2	DI	60	1	3	Disable all interrupts ∶ I ← "0"	0
3	El	E0	1	3	Enable all interrupt ∶ I ← "1"	1
4	NOP	FF	1	2	No operation	
5	POP A	0D	1	4	$sp \leftarrow sp + 1, A \leftarrow M(sp)$	
6	POP X	2D	1	4	$sp \leftarrow sp + 1, X \leftarrow M(sp)$	
7	POP Y	4D	1	4	$sp \leftarrow sp + 1, Y \leftarrow M(sp)$	
8	POP PSW	6D	1	4	$sp \leftarrow sp + 1$, $PSW \leftarrow M(sp)$	restored
9	PUSH A	0E	1	4	$M(sp) \leftarrow A, sp \leftarrow sp - 1$	
10	PUSH X	2E	1	4	$M(sp) \leftarrow X, sp \leftarrow sp - 1$	
11	PUSH Y	4E	1	4	$M(sp) \leftarrow Y, sp \leftarrow sp - 1$	
12	PUSH PSW	6E	1	4	M(sp) ← PSW , sp ← sp - 1	
13	RET	6F	1	5	Return from subroutine $sp \leftarrow sp +1, pc_L \leftarrow M(sp), sp \leftarrow sp +1, pc_H \leftarrow M(sp)$	
14	RETI	7F	1	6	Return from interrupt $sp \leftarrow sp +1$, $PSW \leftarrow M(sp)$, $sp \leftarrow sp +1$, $pc_L \leftarrow M(sp)$, $sp \leftarrow sp +1$, $pc_H \leftarrow M(sp)$	restored
15	STOP	EF	1	3	Stop mode (halt CPU, stop oscillator)	

xii FEB. 2005 Ver 1.04

C. SOFTWARE EXAMPLE

```
GMS81C7216/7016 (GMS800 Series) Demonstration Program
; Title:
                     MagnaChip Semiconductor Ltd.
   Company:
   Contents: LCD DISPLAY & DUAL THERMOMETER
; ****** DEFINE
                     I/O PORT & FUNCTION REGISTER ADDRESS *******
R0
           EQU
                       0C0H
                                       ;port R0 register
                       0C1H
                                       ;port R1 register
R1
           EOU
R2
           EQU
                       0C2H
                                       ;port R2 register
RЗ
                       0C3H
                                       ;port R3 register
           EQU
                       0C4H
                                       ;port R4 register
R4
           EOU
R5
           EQU
                       0C5H
                                       ;port R5 register
                                       ;port R0 data I/O direction register
;port R1 data I/O direction register
R0DD
           EQU
                       0C8H
R1DD
           EQU
                       0C9H
R2DD
           EQU
                       0CAH
                                       ;port R2 data I/O direction register
R3DD
                       ОСВН
                                       ;port R3 data I/O direction register
           EQU
                                       ;port R4 data I/O direction register ;port R5 data I/O direction register
R4DD
           EQU
                       0CCH
R5DD
           EOU
                      0CDH
R0PU
           EQU
                       0D0H
                                       ;port RO Pull-up selection register
                                       ;port R1 Pull-up selection register
R1PU
           EQU
                       0D1H
           EQU
                                       ;port R2 Pull-up selection register
R3PU
                       0D3H
                                       ;port R3 Pull-up selection register
           EQU
RUCE
                                       ;port R0 Type selection register
;port R1 Type selection register
           EQU
                       OD4H
                       0D5H
R1CR
           EQU
                       0D6H
                                       ;port R2 Type selection register
R2CR
           EOU
                                       ;port R3 Type selection register
R3CR
           EQU
                      0D7H
TEDS
           EQU
                       0D8H
                                       ;External interrupt edge selection register
PMR
           EQU
                       0D9H
                                       ;Alternative port mode register
                                       ;int. enable register low;int. enable register high
TENT.
           EQU
                       ODAH
                       0 DBH
TENH
           EOU
                                       ;int. request flag register low
;int. request flag register high
                       0 DCH
IROL
           EOU
IRQH
           EQU
                       0 DDH
SLPR
           EQU
                       ODEH
                                       ;sleep mode register
WDTR
           EQU
                      0DFH
                                       ;Watchdog timer register
                                       ;Timer 0 mode register
TM0
           EOU
                       OEOH
                                       ;Timer 0 data register
TDR0
                       0E1H
           EQU
           EQU
                       0E2H
                                       ;Timer 1 mode register
TDR1
           EQU
                       0E3H
                                       ;Timer 1 data register
T1PPR
           EQU
                       0E3H
                                       ;PWM0 period register
T1PDR
           EQU
                       0E4H
                                       ;Timer 1 pulse duty register
                                       ;PWMO high register
;Timer 2 mode register
;Timer 2 data register
PWM0HR
                       OE5H
           EQU
                       0E6H
           EOU
TM2
                       0E7H
TDR2
           EQU
                       0E8H
                                       ;Timer 3 mode register
           EQU
TDR3
           EQU
                       0E9H
                                       ;Timer 3 data register
T3PPR
           EQU
                       0E9H
                                       ;PWM1 period register
                                       ;Timer 3 pulse duty register ;PWM1 high register
T3PDR
           EOU
                       OEAH
PWM1HR
                       0EBH
           EOU
                       0ECH
                                       ;ADC mode register
;ADC result data register
           EQU
ADCM
ADR
           EQU
                       0EDH
WTMR
           EQU
                       0EFH
                                       ;Watch timer mode register
KSMR
           EQU
                       OFOH
                                       ; Key scan mode register
                                       ;LCD mode register
;LCD port mode register
LCDM
           EQU
                       OF1H
           EQU
LCDPM
                       0F2H
           EQU
                       0F3H
                                       ; RAM paging register
BITR
                       0F4H
                                       ;Basic interval timer data register
           EQU
CKCTLR
           EQU
                       0F4H
                                       ;Clock control register
SCMR
           EQU
                       0F5H
                                       ;System clock mode register
                                       ;Power fail detector
PFDR
           EOU
                      0FBH
                                       ;buzzer data register
           EQU
                                       ;Serial mode register
                                       ;Serial data buffer register
SIOD
;******** MACRO DEFINITION *******
R SAVEMACRO
                                       ; Save Registers to Stacks
```

FEB. 2005 Ver 1.04 xiii


```
PUSH
         Α
       PUSH
                 X
PUSH
ENDM
R RSTRMACRO
                                 ;Restore Register from Stacks
POP
POP
         Χ
POP
ENDM
, ******** CONSTANT DEFINITION ********
             RAM
                       ALLOCATION
TEMP1
           DS
                  1
TEMP2
           DS
FLAG1
           DS
                  1
RPTEN
           EQU
                 1,FLAG1
                                       ; SET RPTEN (REPEAT KEY ENABLE) AFTER 1 SEC.
KEYONF
           EQU
                  2,FLAG1
                                       ; KEYSCAN
                                       ;AT ONCE, KEY VALID
;MODE 3 (PORT TOGGLE)
           EQU
                 3,FLAG1
TOGMO3
           EQU
                 4,FLAG1
DUAL T
          EQU
                 5,FLAG1
                                       ; INSIDE & OUTSIDE TEMP. DUAL DISPLAY
                                       ; INSIDE TEMP or OUTSIDE TEMP.
OUTSIDE
          EQU
                 6,FLAG1
FLAG2
           DS
F200MS
           EQU
                 0,FLAG2
F20MS
           EQU
                 1,FLAG2
F 1MIN
           EQU
                  2,FLAG2
                                       ;WTIMER
LPM
                                       ; LEFT TIME PM FLAG
; RIGHT TIME PM FLAG
           EQU
                 3,FLAG2
                 4,FLAG2
RPM
           EQU
STATUS
           DS
RPTKEY
           EQU
                  7,STATUS
F CLOCK
           EQU
                  6,STATUS
F ON
          EQU
                  0,STATUS
DISPSIGN
           DS
                  1
DISPRAM
           DS
                                        ; TEMP.
DISPRAM1
                  4
                                        ;LEFT TIME, RIGHT TIME
           DS
ONDO
           DS
                  2
LHOUR
           DS
                  1
                                        ;LEFT WATCH COUNT
TMINUTE
           DS
                  1
RHOUR
           DS
RMINUTE
                                        ; RIGHT WATCH COUNT BUF.
           DS
TIMESET
                                        ; WATCH SET BUFFER
           DS
TSFLAG
           DS
                                       ;TIME SET LEFT PM
;TIME SET RIGHT PM
;BLINK COUNTER 0~250 LOOP
{\tt TSLPM}
           EQU
                  0,TSFLAG
TSRPM
           EQU
                  1,TSFLAG
BLINKCNT
           DS
NEWKY
           DS
                  1
           DS
                  1
OLDKY
PORTDT
           DS
                  1
KEYNM
           DS
                  1
KEYDT
           DS
                  1
TOTLKY
           DS
CHATFL
           DS
R0BUF
                  1
DGTCNT
           DS
MODE
           DS
                  1
SUBMODE
           DS
                  1
BSCTIME
           DS
                  1
TEMPCNT
           DS
HZCNT
           DS
DMME
           DS
PERIOD
                 0,PWMF
          EQU
```

xiv FEB. 2005 Ver 1.04


```
;
                     OFFEOH
             ORG
                     NOT_USED
NOT_USED
                                                ; Timer-3
             DW
                                                ; Timer-2
             DW
                      WTIMER
                                                 ; Watch Timer
                     WTIMER
INT_AD
NOT_USED
NOT_USED
NOT_USED
NOT_USED
TIMER1
             DW
                                                 ; A/D CON.
                                                 ; Serial I/O
             DW
                                                ; Not used
; Not used
             DW
             DW
                                                ; Int.2
; Timer-1
             DW
             DW
             DW
                      TIMER0
                                                 ; Timer-0
             DW
                      INT1
                                                 ; Int.1
                     NOT USED; Watch Dog Timer
NOT USED; BIT
INT KEY ; Ke
RESET ; RE
             DM
                                                 ; Int.0
             DW
             DW
             DW
                                                 ; Key Scan(Only GMS81C7008/7016)
                                                ; Reset
MATN PROGRAM
                                     0C000H
                                                ;Program Start Address
                                                 ; 8K ROM VERSION
                     WDTR,#0
RESET:
             T.DM
             LDM
                     RPR,#1
             CLRG
             LDX
                      #0
RAMCLR:
             LDA
                      #0
                                                ; RAM Clear(!0000H->!00BFH)
                                                 ;M(X) <- A, then X <- X+1 ;X = \#0C0H ?
             STA
                      {X}+
             CMPX
                      #0C0H
             BNE
                      RAMCLR
             SETG
             LDX
RAMCLR1:
                      #0
                                                ;RAM Clear(!0100H->!011AH)
                                                 ;M(X) <- A, then X <- X+1 ;X = \#01BH ?
             STA
                      {X}+
             CMPX
                      #1RH
             BNE
                     RAMCLR1
             CLRG
             LDX
                      #OFFH
                                                 ;Stack Pointer Initial
             TXSP
                                                 ;SP. <- #0FFH
;******** USER RAM INITIALIZE *******
                     MODE,#4
             LDM
             LDM
                      SUBMODE, #1
             SET1
                                                ;KST PM 12:00 JUST NOON
             LDM
                      LHOUR, #12H
             {\tt LDM}
                      LMINUTE, #00H
                                                 ;UTC AM 03:00
             T.DM
                     RHOUR, #03H
                     RMINUTE, #00H
             T.DM
             SET1
                     OUTSIDE
             SET1
                     F ON
                                                 ; POWER ON
;******* PORT INITIALIZE *******
                                               ;SEG0~SEG23 are used
                      LCDPM,#0
             T.DM
                                                ;I/O Port Data Clea
;I/O Port Data Clear
                     R0,#0
R1,#0
R2,#0
             T<sub>1</sub>DM
             LDM
             LDM
             LDM
                      R3,#0
                     RODD,#11111_0001B
R1DD,#0000_0000B
R2DD,#0000_0000B
R3DD,#0000_0100B
R2PU,#0000_1111B
             T.DM
                                                ;R05,R06,R07: output for Keyscan
             T.DM
             T<sub>1</sub>DM
                                                 ;R20~R23: input for keyscan
             LDM
                                                 ;R20~R23 pull-up active
;***** CONTROL REGISTER INITIALIZE *****
                                               ;WAKE UP TIME = 0.0625 sec
;(1/32768)*8*256 = 0.0625sec
;8us x (249+1) = 2ms
;8BIT Timer,8us,Start Count-up
;2us x (249+1) = 500us
                     CKCTLR,#0
             T<sub>1</sub>DM
                     TDR0,#249
             LDM
                     TMO, #0000_1111B
TDR1, #249
             LDM
             LDM
                     TM1, #0000_1111B
TM3, #1010_1011B
                                               ;Timer1(8bit),32us,Start Count-up
             LDM
             LDM
```



```
T3PPR,#99
            T.DM
                   T3PDR, #50
            LDM
            T<sub>1</sub>DM
                    PWM1HR,#00H
            T<sub>1</sub>DM
                   PMR, #80H
            LDM
                    IRQH,#0
                                            ;Clear All Interrupts Requeat Flags
                   IRQL,#0

IRNL,#1111_1111B

IENH,#1111_1111B

IEDS,#0001_0101B

KSMR,#0000_0001B

WTMR,#48H
            LDM
            T.DM
                                           ; INT2, ADC, WT, T2, T3
                                            ;BIT, WDT, INTO, INT1, TO, T1
            T<sub>1</sub>DM
            T<sub>1</sub>DM
                                            ;External Int. Falling edge select ;R10 KEY INTERRUPT
            LDM
                                            ; ENABLE WT COUNTER, 2Hz, SELECT SUBCLOCK
            LDM
            LDM
                    LCDM, #70H
                                            ;CLK=fsub/64, 1/4duty, internal Bias
            LDM
                    SCMR,#0
                                            ;1/2, MAIN OSC.
            ΕT
                                            ; Enable Interrupts
            BBC
LOOP:
                   KEYONF, EXE1
                                            ; TEST IF KEY IS PRESSED
            CALL
                   KEYDECODE
            CLR1
                   KEYONF
                                             ; CLEAR KEY FLAG
EXE1:
            BBC
                   F20MS, NEXT1
            CLR1
                  F20MS
            ;****EVERY 20MS****
            CALL
                    MODEEXE
                                            ; SETTING DISPLAY MEMORY
            CALL
                    MODE1EXE
                                            ; DURING CLOCK,
            CALL
                   MODE3EXE
            CALL
                    LCDDGT
                                            ;7-Segments Display
                                            ;Dot Display ;ADC execution
            CALL
                   LCDDOT
            CALL
                    ADCEXE
            CALL
                   LKEYSCAN
NEXT1:
                   F200MS, ELOOP
            BBC
            CLR1 F200MS
            ;
;****EVERY 200MS****
            CALL WIND
ELOOP:
                   F ON, EXE2
                   R\overline{0}.7
                                            ; FOR WAKE-UP BY NEXT KEY
            CLR1
                   R0.6
                                            FOR WAKE-UP BY NEXT KEY
                                            ; FOR WAKE-UP BY NEXT KEY
; FOR WAKE-UP BY NEXT KEY
            CLR1
                    R0.5
            CL<sub>R</sub>1
                   R0.4
            STOP
            NOP
            NOP
                   [F_1MIN]
F_1MIN
            ΙF
             CLR1 F_IMIN MODEEXE
                                            ;7-Segments Display
              CALL
                     LCDDOT
                                            ; Dot Display
            ENDIF
            CALL LKEYSCAN
EXE2:
            JMP
                       LOOP
              TIMERO, INTERRUPT ROUTINE (2ms)
TIMER0:
            R SAVE
                                            ;Save Registers to Stacks
            CLRG
                     MAKE10MS
                                            ;SET every 10ms
            CALL
            R RSTR
                                            ;Restore Registers from Stacks
 *****************
             TIMER1
                           **********
TIMER1:
            R SAVE
            CLRG
            R_RSTR
```

xvi FEB. 2005 Ver 1.04


```
RETT
WATCH TIMER 4Hz
WTIMER:
       R SAVE
       CLRG
       NOT1
           R0.0
       INC
           HZCNT
       LDA
           HZCNT
           #120
WT5
       CMP
       BNE
       LDM
           HZCNT,#0
          F_1MIN
INC1MIN
       SET1
       CALL
      R RSTR
WT5:
      RETI
*******************
INT_KEY:
       R SAVE
       C\overline{L}RG
       BBS
           CHATFL.7, IK8
           F_ON, IK8
#3
       BBS
       LDX
       {\tt LDM}
           KSMR,#0
                          ; MAKE R10 TO BE NORMAL INPUT
       LDY
WW:
                          :24ms wait
           #8
WW2:
       LDA
       DEC
WW3:
           Α
       BNE
           ww3
       BNE
           WW2
       LDA
           R1
                          :READ R10
       ROR
           A
IK8
       BCS
       DEC
           SCMR,#0
                         ; MAIN OSC.
       LDM
       SET1
SET1
           F_ON
CHATFL.7
       LDM
           OLDKY, #0CH
IK8:
       LDM
           KSMR,#1
       R_RSTR
       RĒTI
R SAVE
       C\overline{L}RG
       R RSTR
       RETT
TNT1:
      CLRG
       RETI
       ADC INTERRUPT
INT_AD:
      RETI
            *************
```

FEB. 2005 Ver 1.04 xvii


```
Subject: LCDDGT
DGTCNT (DIGIT COUNTER)
  Entry:
               X (START ADDRESS)
             Output SEG_PORT (SEG0~SEG23)
Output COM_PORT (COM0~COM3)
   Output:
; EXAMPLE)
   DGTCNT=9
   X=LMINUTE
                        LMINUTE+1
                                         LMINUTE
LCDDGT: LDM
                 DGTCNT,#9
                 #DISPRAM
           LDX
GOLCD:
            LDA
                   {X}
            PUSH
                [DGTCNT.0]
                                           ; WHEN DIGIT IS EVEN NUMBER,
                ĀND
                      #0F0H
                                           ; WHEN DIGIT IS ODD NUMBER,
                XCN
                       T.CDDSP
                                           :HIGHER 4 NIBBLE IS DISPLAYED
                CALL
                POP
            else
                AND
                        #0FH
                                           ;LOWER 4 NIBBLE IS DISPLAYED
                CALL
                       LCDDSP
                POP
                       Х
                INC
                       X
            endif
                   DGTCNT
            DEC
            BPL
                   GOLCD
            RET
,;******** ONE DIGIT DISPLAY *******
LCDDSP:
           TAY
            ;***** ZERO SURPRESS TO BLANK *****
                                           ;IF A=0 THEN SURPRESS
            BNE
                   GOCONT
                   DGTCNT
            T<sub>1</sub>DA
            CMP
                   #9
            BEQ
                   BLNK
            CMP
            BEQ
                   BLNK
            CMP
                   #3
            BEQ
                   BLNK
                   GOCONT
            BRÃ
BLNK:
            LDY
                   #OAH
GOCONT:
            LDA
                   !FONT+Y
                                            ;LOAD FONT DATA
                                            ;STORE 7-SEG FONT
;SHIFT COUNTER INITIALIZE
;GET OFFSET LCD ADDRESS FOR DGTCNT
            STA
                   TEMP0
            LDM
                   TEMP2,#7
            T.DY
                   DGTCNT
            LDA
                   #14
            MUL
            TAY
DPL1:
            LDA
                   !FONTD0+Y
                                            ;GET LCD RAM ADDRESS
                                            ;STORE LCD RAM ADDRESS
;INCREMENT POINTER
            TAX
            INC
                                            ;GET BIT POSITION
;STORE BIT POSITION
            LDA
                   !FONTD0+Y
            STA
                   TEMP1
            ROR
                   TEMP0
            BCS
            LDA
                   #OFFH
                                            ;CLEAR BIT DISPLAY RAM
            ROL
                   TEMP1
            DEC
            BPL
                   $-3
            SETG
            AND
                   {X}
            BRA
                   DPĹ5
DPL3:
            LDA
                   #00H
                                            ;SET BIT DISPLAY RAM
            ROL
                   TEMP1
            DEC
            BPL
                   $-3
            SETG
            OR
                   {X}
DPL5:
            STA
                   (X)
```

xviii FEB. 2005 Ver 1.04


```
CLRG
                       INC
                                     TEMP2, DPL1
                       DBNE
                                   13H, 1H, 13H, 2H, 13H, 0H, 13H, 3H, 0CH, 3H, 0CH, 2H, 0CH, 0H

12H, 1H, 12H, 2H, 12H, 0H, 12H, 3H, 05H, 3H, 05H, 2H, 05H, 0H

06H, 1H, 06H, 2H, 06H, 0H, 06H, 3H, 01H, 3H, 01H, 2H, 01H, 0H

80H, 0H, 01H, 1H, 01H, 1H, 80H, 0H, 80H, 0H, 80H, 0H, 80H, 0H

02H, 1H, 02H, 2H, 02H, 0H, 02H, 3H, 15H, 3H, 15H, 2H, 15H, 0H

09H, 1H, 15H, 1H, 09H, 0H, 09H, 3H, 16H, 0H, 16H, 1H, 09H, 2H

14H, 1H, 14H, 2H, 14H, 0H, 14H, 3H, 00H, 3H, 00H, 2H, 00H, 0H
FONTD0
                       DB
                                                                                                                                            ; RMINUTE 0
                                                                                                                                            ; RMINUTE1
FONTD1
                       DB
                                                                                                                                            ;RHOURO
FONTD2
                       DB
                                                                                                                                            ;RHOUR1
FONTD3
                       DB
FONTD4
                                                                                                                                            ;LMINUTEO
                       DB
FONTD5
                                                                                                                                            ;LMINUTE1
FONTD6
                       DB
                                                                                                                                            ; LHOURO
                                   80H, 0H, 08H, 2H, 08H, 2H, 80H, 0H, 80H, 0H, 80H, 0H, 80H, 0H
0BH, 2H, 0BH, 0H, 0BH, 3H, 0BH, 1H, 17H, 1H, 17H, 0H, 17H, 3H
0FH, 2H, 0FH, 0H, 0FH, 3H, 0FH, 1H, 10H, 1H, 10H, 0H, 10H, 3H
FONTD7
                       DB
                                                                                                                                            ; LHOUR1
FONTD8
                       DB
                                                                                                                                            ;ONDO0
FONTD9
                             7-SEGMENT PATTERN DATA
                                     _a_
f | g |b
|---|
e |__|c
;
                 Segment:
                                                 hgfe dcba
                                                                                            To be displayed Digit Number
                                                0011 1111B
0000_0110B
0101_1011B
0100_1111B
0110_0110B
0110_110B
0111_1101B
0000_0111B
0111_111B
0110_1111B
0110_1111B
0100_000B
0100_000B
FONT
                                                                                                   0
                             DB
                             DB
                             DB
                             DB
                             DB
                                                                                                   5
                             DB
                             DB
                                                                                                   6
7
                             DB
                                                                                                   8
                                                                                                         "8"
                             DB
                                                                                                         "9"
                             DB
                             DB
                                                                                                         "BLANK"
                                                                                                         "BAR"
                             DB
_LCOLON
                      EQU
EQU
                                     2,116H
2,10EH
2,107H
RCOLON
_ONDO
                       EQU
                                     0,111H
_RAM
                       EQU
                                     1,10EH
-RPM
-LAM
                                     0,10EH
                       EQU
                                     1,108H
3,108H
                       EQU
                      EQU
EQU
_LPM
OUTSIDE
INSIDE
S1
SNOW
                                     1,104H
                       EQU
                                     0,107H
                       EQU
                                     2,10AH
                       EQU
                                     3,10AH
 SAVE
                       EQU
                                     3,104H
LCDDOT:
                       SETC
                                    _LCOLON
_S1
_ONDO
_C
                       STC
                       STC
                       STC
                       STC
                                     F_ON
SAVE
                       LDCB
                       STC
                       LDCB
                                     DUAL T
                                     _RCOLON
                       LDC
                                         LPM
                                         _LPM
LPM
                       STC
                       LDCB
                                         _LAM
                                       [DUAL_T]==0
RPM
                           ldc
                                                                                  : AM. PM SETTING
                                              RPM
                           stc
                           ldcb
                                             RPM
                                             _RAM
                           stc
                       ELSE
                           LDCB
                                         DUAL_T
                                                                                  ;TURN OFF THE AM, PM
                                         _RPM
                           STC
```

FEB. 2005 Ver 1.04 xix


```
STC
                    RAM
           ENDIF
           LDC
                   OUTSIDE
           STC
                     OUTSIDE
           LDCB
                    OUTSIDE
                    _INSIDE
           RET
; DESCRIPTION: EVERY 20MS
,
; **********************************
             F [OUTSIDE]
LDX #0
MODEEXE:
           ΙF
           ELSE
            LDX
                   #1
           ENDIF
           LDA
                  ONDO+X
                                        ; COPY ONDO DATA TO DISPRAM
           STA
                  DISPRAM
           LDA
                  SIGN+X
           STA
                 DISPSIGN
             F [DISPSIGN.0]
IF [DISPRAM] < #10
LDA #0B0H
                                         ; IF MINUS ONDO, THEN "-" DISPLAY
           ΙF
               OR
                      DISPRAM
               STA
                      DISPRAM
               CLRC
                      _SNOW
               STC
             ELSE
               SETC
                      _SNOW
               STC
             ENDIF
           ELSE
             CLRC
                    _SNOW
             STC
           ENDIF
                                         ; MOVE TIME BUF. TO DISP BUF.
MX1:
                  LHOUR+X
           LDA
           STA
                  DISPRAM1+X
           DEC
           BPT.
                  MX1
                  DUAL_T,MX2
#0AAH
                                         ; IF SINGLE TEMP. MODE, SKIP ; MAKE ERASE DISP BUF. WITCH
           BBC
           LDA
                  DISPRAM1+2
                                         ; WILL BE DISPLAYED TEMP.
            F [OUTSIDE]
LDX #1
                                         ;IF DUAL TEMP. MODE ;IF MAIN=OUSIDE, THEN SELECT INSIDE
           ΙF
           ELSE
             LDX
                   #0
                                         ; IF MAIN=INSIDE, THEN SELECT OUTSIDE
           ENDIF
           LDA
                  ONDO+X
           STA
                  DISPRAM1+3
                                         ;GET BITO OF SIGN
           LDA
                SIGN+X
                                         ;COPY SIGN TO CARRY
           ROR
             F C
IF [DISPRAM1+3] < #10
                                         ; IF MINUS ONDO, THEN "-" DISPLAY
               LDA
                                         ;EXE) BB-4
                       DISPRAM1+3
               OR
                      DISPRAM1+3
               STA
             ELSE
               LDM
                      DISPRAM1+2, #0ABH ; EXE) B-14
             ENDIF
           ELSE
                  [DISPRAM1+3] < #10
             ΙF
               LDA
                      #0A0H
                                         ;EXE) BB-4
                      DISPRAM1+3
               OR
               STA
                      DISPRAM1+3
             ENDIF
```

xx FEB. 2005 Ver 1.04

STA

R2

```
ENDIF
MX2:
        RET
; Subject: MODE 1 EXECUTION
; DESCRIPTION: CLOCK SET
,
;*******************
MODE1EXE: LDA
                MODE
                #OFOH
          AND
          CMP
                #10H
                                   ;IF MODE=1x
          BNE
                мвз
          LDX
                TIMESET+X
                                    ;TIMESET BUF. COPIED TO DISP BUF.
MB1:
          LDA
          STA
                DISPRAM1+X
                                    ;4BYTE & 2 BIT
          DEC
          BPL
                MB1
          LDC
                TSLPM
          STC
                LPM
          LDC
                TSRPM
          STC
                RPM
          LDA
                MODE
          CMP
                #10H
                                    ;TEST IF LEFT TIME SET MODE ?
          BEQ
                MO10
          CMP
                #11H
          BEQ
                MO11
                                    ;TEST IF RIGHT TIME SET MODE ?
          BRA
                MB3
MO10:
          T<sub>1</sub>DA
                BLINKCNT
          CMP
                #125
                                    ; IF LESS THAN 124, OFF
          BCS
          LDA
                #OAAH
          STA
                DISPRAM1
          STA
                DISPRAM1+1
MB3:
          RET
MO11:
          LDA
                BLINKCNT
          CMP
                #125
                                   ; IF LESS THAN 124, OFF
          BCS
                мвз
          LDA
                #OAAH
                DISPRAM1+2
          STA
          STA
                DISPRAM1+3
          BRA
                MB3
, ****************
  ; DESCRIPTION: All pin goes low and high
; repeatly every 20ms, rectangle wave output
MODE3EXE: LDA
                MODE
          CMP
                #3
                MO2
          BNE
                SUBMODE
          T<sub>1</sub>DA
                                    ;BECAUSE INITIAL NO.=1
          DEC
          ROL
                                    ; EIGHT TIMES
                Α
          ROL
          ROL
                TOGMO3
          NOT1
BBC
                TOGMO3,MO1
          CLRC
                                    ; ADD OFFSET
          ADC
MO1:
          TAY
          LDA
                !PPORT+Y
          AND
                #0001_1111B
                ROBUF
          OR
          STA
                R0BUF
          STA
                R0
          LDA
                !PPORT+1+Y
          STA
                R1
          LDA
                !PPORT+2+Y
```

FEB. 2005 Ver 1.04 xxi


```
!PPORT+3+Y
          LDA
          STA
                R3
MO2:
          RET
PPORT
                 00н,00н,00н,00н
          DB
          DB
                 00Н,00Н,00Н,00Н
                OFFH, OFFH, OFFH, OFFH
          DB
                OFFH, OFFH, OFFH, OFFH
          DB
                 00Н,00Н,00Н,00Н
          DB
                OFFH, OFFH, OFFH, OFFH
          DB
                 00н,00н,00н,00н
          DB
                OFFH, 00H, 0FFH, 00H
          DB
          DB
                00H, 0FFH, 00H, 0FFH
                00н,00н,00н,00н
          DB
          DB
                 00H, 0FFH, 00H, 0FFH
          DB
                OFFH, 00H, 0FFH, 00H
                 55H,55H,55H,55H
          DB
                OAAH, OAAH, OAAH
          DB
 **********
  MAKE10MS: SETC
          LDA
                  #0
          ADC
                  BSCTIME
          DAA
          STA
                  BSCTIME
                  $+4
F200MS
#0FH
          BNE
                                      ;SET F200MS EVERY 200ms
          SET1
          AND
          BNE
          SET1
                  F20MS
                                      ;SET F20MS EVERY 20ms
          INC
                  BLINKCNT
                                      ; USED IN MODEO (CLOCK SET)
          LDA
                  BLINKCNT
          CMP
                  #250
          BNE
                  MZ1
          LDM
                  BLINKCNT, #0
MZ1:
          RET
It is called in main routine every 20ms
ADCNT
          DS
                 2
ADR AVR
          DS
ADT\overline{T}L
          DS
                 4
ADFLAG
          DS
          EQU
                 0,ADFLAG
AD CH
SIGN
          DS
DIVISOR
          EQU
                 250
                :ADR_AVR: :ADR_AVR:
                [AD\_CH] == 0
\overline{A}DCM, #52H
ADCEXE:
                                     ;AD START CH4
;SET TO 0 INDEX POINTER
            LDM
            LDX
                  #0
          ELSE
            LDM
                  ADCM, #56H
                                      ; AD START CH5
            LDX
                                      ;SET TO 1 INDEX POINTER
                  #1
          ENDIF
                 #20
                                      ; WAIT ADC END
          T-DY
ADWATT:
          DEC
                 ADCM.0,GOGET
          BBS
          CMPY
                 #0
          BNE
                 ADWAIT
```

xxii FEB. 2005 Ver 1.04


```
GOGET:
                CLRC
                                                             :UP8
                                                                         T<sub>i</sub>O8
                                                             ;ADTTL2|ADTTL0 = CH4 DATA
                           ADR
                LDA
                                                             ; ADTTL3 | ADTTL1 = CH5 DATA
                ADC
                           ADTTL+X
                           ADTTL+X
                STA
                           #0
                           ADTTL+2+X
                ADC
                STA
                           ADTTI+2+X
                 INC
                           ADCNT+X
                LDA
                           ADCNT+X
                     A == #DIVISOR
                                                             ;GET AVERAGE VALUE
                 ΙF
                    LDA
                               #0
                              ADCNT+X
                    STA
                    TIDY
                              ADTTL+2+X
                    LDA
                              ADTTL+X
                    PUSH
                    LDX
                               #DIVISOR
                                                             ; DIVIDE BY DIVISOR
                    DIV
                    POP
                    STA
                              ADR_AVR+X
                                                             :CLEAR SUM BUF.
                    T.DA
                               # 0
                              ADTTL+X
                    STA
                              ADTTL+2+X
                    STA
                    LDA
                              ADR AVR+X
                    IF
LDA
                              A < #65
#65
                                                             ; IGNORE BELOW 65
                    ENDIF
                               A > #240
                                                             :MAX. 240
                    ΤF
                    ENDIF
                    CMP
                               #181
                                                             ; MAKE SIGN
                    ROL
                               SIGN+X
                                                             ; COPY TO MINUS OR PLUS
                    SETC
                    SBC
                               #65
                    TAY
                    LDA
                               !ADTABLE1+Y
                    STA
                              ONDO+X
                ENDIF
                NOT1
                           AD CH
ADCQUIT:
                           ADTABLE
                DB
                DB
                DB
                DB
                DB
                 DB
                DB
                           23H, 22H, 22H, 22H, 21H, 21H, 20H, 20H, 20H, 20H ; 121~130 129->+20'C
                DB
                           19H,19H,18H,18H,17H,17H,16H,16H,15H,15H;131~140
                DB
                           15H, 14H, 14H, 14H, 13H, 13H, 13H, 12H, 12H, 12H; 141~150
                           11H,11H,11H,10H,10H,10H,09H,09H,09H,08H;151~160 154->+10'C 08H,07H,07H,07H,06H,05H,05H,04H,04H,04H;161~170 03H,03H,02H,02H,01H,01H,00H,00H,00H,01H;171~180 178-> 0'C
                DB
                DB
                DB
                           01H, 02H, 02H, 03H, 03H, 04H, 04H, 05H, 05H, 06H ;181~190
                DB
                DE
                           06H,07H,07H,08H,08H,09H,09H,10H,10H,11H;191~200
                                                                                                      199->-10'C
                DB
                           11H, 12H, 12H, 13H, 13H, 14H, 15H, 15H, 16H, 17H ;201~210
                           17H,18H,18H,19H,19H,20H,20H,21H,21H,22H;211~220 217->-20'C 23H,23H,24H,24H,25H,25H,26H,27H,28H,29H;221~230 30H,31H,32H,33H,34H,35H,36H,37H,38H,39H;231~240 231->-30'C
                DB
                DB
                DB
                DB
                           40H,41H,42H
ADTABLE1
                                                    50H, 50H, 50H, 49H, 49H, 48H; 65~ 70
                                                                                                        65->+50'C
                DP
                           48H, 47H, 47H, 46H, 46H, 45H, 45H, 44H, 44H, 43H; 71~ 80
                           43H, 42H, 41H, 40H, 39H, 38H, 37H, 36H, 35H, 34H ; 81~ 90 83->+40'C 35H, 35H, 34H, 34H, 33H, 33H, 32H, 31H, 31H ; 91~100 30H, 30H, 29H, 29H, 28H, 28H, 27H, 27H, 26H, 26H ; 101~110 105->+30'C 26H, 25H, 25H, 25H, 24H, 24H, 24H, 23H, 23H, 23H ; 111~120
                DB
                DE
                DB
                DB
                           22H, 22H, 22H, 21H, 21H, 21H, 20H, 20H, 20H, 20H; 121~130
                                                                                                      129->+20'C
                DB
                           19H, 18H, 18H, 17H, 17H, 17H, 16H, 16H, 16H; 131~140
                           19H,18H,18H,17H,17H,17H,16H,16H,16H;13H~14U

15H,15H,15H,14H,14H,14H,13H,13H,13H,12H;141~150

12H,11H,11H,10H,10H,09H,09H,09H,09H,08H;151~160

07H,07H,06H,06H,05H,05H,04H,04H,04H,03H;161~170

03H,03H,02H,02H,02H,01H,01H,01H,00H,00H;171~180

178-> 0'C

01H,01h,02H,02H,03H,03H,04H,04H,05H,05H;181~190

06H,06H,07H,07H,08H,08H,09H,09H,10H,10H;191~200

199->-10'C
                DP
                DB
                DB
                DB
                DE
                 DB
                DB
                           11H, 11H, 12H, 12H, 13H, 13H, 14H, 15H, 15H, 16H ;201~210
                DB
                           16H, 16H, 17H, 18H, 18H, 19H, 19H, 20H, 20H, 21H; 211~220 217->-20'C
```

FEB. 2005 Ver 1.04 xxiii


```
21H, 22H, 23H, 23H, 24H, 24H, 25H, 25H, 26H, 27H ;221~230
28H, 29H, 30H, 31H, 32H, 33H, 34H, 35H, 36H, 37H ;231~240 231->-30'C
            DB
            DB
            DB
                     38H, 39H, 40H
, *********************************
 #1000_0000B
#0100_0000B
#0000_0001B
REPEAT
            EQU
CLOCK
            EQU
PWRON
KEYDECODE: LDA
                     KEYDT
            LDY
                     #3
            MUL
            TAY
            LDA
                     !KEY+Y
            STA
                     TEMP0
            LDA
                     !KEY+1+Y
            STA
LDA
                     TEMP1
!KEY+2+Y
            STA
                     TEMP2
            CALL
                     CONDICHK
            BCC
            JMP
                     [TEMP0]
KEY:
            DW
                     NOKEY
                                               ; 0
            DB
                     NOKEY
            DW
                                               ; 1
            DB
            DW
                     NOKEY
                                               ;2
            DB
            DW
                     NOKEY
                                              ;3
            DB
                     0
                     NOKEY
            DW
                                               : 4
            DB
            DW
                     NOKEY
                                               ; 5
            DB
            DW
                     NOKEY
                                               ;6
            DB
                     0
                     DOWNKEY
            DW
                                               ;7
                     PWRON+REPEAT
            DB
            DW
                     NOKEY
                                               ;8
            DB
            DW
                     DUALKEY
                                               ;9
            DB
                     PWRON
            DM
                     SWAPKEY
                                               ; A
                     PWRON
            DB
            DW
                     NOKEY
                                               ;B
            DB
            DW
                     POWERKEY
                                               ; C
            DB
                     PWRON
                     CLOCKKEY
PWRON+CLOCK
            DW
                                               ;D
            DB
                     HOURKEY
            DW
                                               ; E
            DB
                     PWRON+REPEAT+CLOCK
            DW
                     MINUTEKEY
                                               ; F
            DB
                     PWRON+REPEAT+CLOCK
            DW
                     NOKEY
                                               ;10
            DB
                     UPKEY
            DW
                                               ;11
                     PWRON+REPEAT
            DB
                     NOKEY
                                               ;12
            DW
            DB
QUIT:
NOKEY:
            RET
CONDICHK:
            LDA
                     TEMP2
                     STATUS
            OR
            SBC
                     TEMP2
            BEQ
                     CDC9
            BCS
                     CDC10
CDC9:
            SETC
                                               ; PASS
            RET
CDC10:
            CLRC
                                               ;SKIP
```

xxiv FEB. 2005 Ver 1.04


```
DISPLAY SWAP KEY (TEMP. DISPLAY SWAP)
SWAPKEY:
        NOT1
             OUTSIDE
        RET
DUAL KEY
DUALKEY: NOT1
             DUAL_T
        RET
POWERKEY: CLR1 F_ON IF F_ON]
         IF
ELSE
         LDM
               SCMR, #2
          CLR1
               DUAL_T
MODE,#0
          LDM
         SET1
               F20MS
         ENDIF
         RET
; **********************************
CLOCKKEY: SET1 F CLOCK
             BLINKCNT,#0
         LDM
                                ; 10->11
; 11->00
; ETC. -> 10
         LDA
             MODE
         CMP
              #10H
         BNE
         LDM
              MODE, #11H
              QUIT
#11H
         BRA
CT<sub>1</sub>1:
         CMP
         BNE
              CT<sub>1</sub>2
         LDM
              MODE,#0
             F_CLOCK
SETTO CNT
         CLR1
         CALL
         LDC
              TSLPM
         STC
              LPM
         LDC
STC
              TSRPM
              RPM
              HZCNT, #0
         LDM
         CLR1 F_1MIN
BRA CLQ
CL2:
         LDM
              MODE, #10H
             DUAL_T
CNTTO_SET
         CLR1
         CALL
         LDC
              LPM
         STC
              TSLPM
         LDC
              RPM
         STC
              TSRPM
CLO:
         RET
SETTO_CNT: LDX
         LDA
              TIMESET+X
CL11:
         STA
              LHOUR+X
         DEC
              CT-11
         BPL
         RET
CNTTO SET: LDX
         LDA
              LHOUR+X
CL3:
         STA
              TIMESET+X
         DEC
         BPL
              CL3
         RET
HOURKEY: LDA MODE
```

FEB. 2005 Ver 1.04 xxv

CMP


```
#OFOH
           AND
           CMP
                  #10H
           BNE
                 HO1
                 BLINKCNT, #125
           LDM
           LDA
           \mathtt{CMP}
                  #10H
           BNE
                 HO2
                                         ; IF MODE=10H, THEN LEFT TIME SET ; INC. LEFT HOUR 1UP
           SETC
                  #0
           LDA
                 TIMESET
           ADC
           DAA
           ΙF
                 A==#12H
             NOT1 TSLPM
                                          ; ADJUST AM, PM FLAG
           ENDIF
                A==#13H
           ΙF
             LDA #1
           ENDIF
           STA
                 TIMESET
HO1:
           RET
HO2:
           CMP
                 #11H
           BNE
                 HO1
           SETC
LDA
                                         ; INC. RIGHT HOUR 1UP
                  #0
           ADC
                 TIMESET+2
           DAA
            F A==#12H
NOT1 TSRPM
           ΙF
                                         ; ADJUST AM, PM FLAG
           ENDIF
           IF A==#13H
LDA #1
           ENDIF
           STA
                 TIMESET+2
                 HO1
MINUTEKEY: LDA
                 MODE
                 #OFOH
           AND
           CMP
                 #10H
           BNE
           {\tt LDM}
                 BLINKCNT, #125
                 #3
MODE
           LDX
           LDA
           CMP
                  #10H
           BNE
                 MT1
           LDX
MT1:
           SETC
           LDA
                  #0
                 TIMESET+X
           ADC
           DAA
CMP
                  #60H
           BNE
                 MT2
           LDA
MT2:
           STA
                  TIMESET+X
MT3:
           RET
UPKEY:
           BBS
                   PERIOD, PRU
           LDA
                  PWM1HR
                  #0000_0011B
#3
           AND
           CMP
           BNE
                  UPK1
           LDA
                  T3PDR
           CMP
                   #OFFH
           BNE
                  UPK1
UPK0:
           RET
           INC
                  T3PDR
UPK1:
                  UPK0
           BNE
                   PWM1HR
           INC
PRU:
DOWNKEY:
           BBS
                  PERIOD, PRD
           LDA
                  PWM1HR
           AND
                   #0000 0011B
```

xxvi FEB. 2005 Ver 1.04


```
BNE
                  DNK1
           LDA
                  T3PDR
           CMP
           BEQ
                  UPK0
DNK1:
           DEC
                  T3PDR
           LDA
                  T3PDR
                  #OFFH
           CMP
           BNE
                  DNK2
                  PWM1HR
           DEC
DNK2:
PRD:
PWMMODE:
 ************
             PLUS KEY
; When MODE=3, PRESS PULS KEY, SUBMODE IS INCRESED ; When MODE=3, PRESS MINUS KEY, SUBMODE IS DECRESED
; STROBE OUT: R05,R06,R07
; READ PORT : R20,R21,R22,R23
KEYONF, KS7
LKEYSCAN: BBS
                  KEYNM, #1
           T<sub>1</sub>DM
           LDM
                  TOTLKY, #0
           LDM
                  NEWKY, #0
                                         ; INITIALIZE STROBE LINE
KS1:
           CMPY
           BNE
CLR1
                  $+4
                  R0.4
                                         ;OUTPUT STROBE SIGNAL
           CMPY
                  #2
           BNE
           CLR1
                  R0.5
                                         ;OUTPUT STROBE SIGNAL
           CMPY
                  #1
           BNE
CLR1
                  $+4
                  R0.6
                                         ;OUTPUT STROBE SIGNAL
           CMPY
                  #0
           BNE
                  $+4
           CLR1
                  R0.7
                                         ;OUTPUT STROBE SIGNAL
           NOP
           NOP
                  R2
           T.DA
                  PORTDT
           STA
                                         ; READ KEY IN PORT
           AND
                  #OFH
           CMP
                                         ; IF KEY IS PRESSED ?
           BNE
                  KS2
                                         ;KEYNM + 4 -> KEYNM
           CLRC
           LDA
                  KEYNM
           ADC
                  KEYNM
           STA
                  KS5
           BRA
KS2:
           LDX
                  #3
                                         ; INITIALIZE SHIFT COUNTER
           ROR
BCS
                  PORTDT
KS3:
                  KS4
           INC
                  TOTLKY
                                         ; IF TOTLKY IS ABOVE 2, THEN QUIT
           LDA
                  TOTLKY
           BEQ
                  KS7
           LDA
                  KEYNM
                                         ;KEYNM -> NEWKY
                  NEWKY
           STA
KS4:
           INC
                  KEYNM
           DEC
                  KS3
           BPL
KS5:
           SET1
                  R0.4
           SET1
                  R0.5
```

FEB. 2005 Ver 1.04 xxvii


```
R0.6
           SET1
           SET1
DEC
                 R0.7
                                        ;TEST NEXT LINE
           BPL
                  KS1
           LDA
                  NEWKY
           CMP
                                        ; WHEN NO KEY IS PRESSED,
           BNE
                  KS8
                                        ; INITIALIZE NEWKY, OLDKY, CHATFL
KS6:
           LDA
                  NEWKY
           STA
                  OLDKY
                  CHATFL, #0
           LDM
                  RPTKEY
           CLR1
           CLR1
                  ACTKEY
           CLR1
                  RPTEN
KS7:
           RET
                  NEWKY
KS8:
           LDA
           CMP
                  OLDKY
           BNE
                  KS6
           BBS
                  CHATFL.7, KS10
           LDA
                  CHATFL
           AND
                  #0111 1111B
           CMP
                  #5
                  KS9
NEWKY
           BCC
LDA
           STA
                  KEYDT
           SET1
                  ACTKEY
KS81:
           LDM
                  CHATFL, #80H
                                      ;SET1 CHATFL.7 & SET TO 0
           SET1
                  KEYONF
           BRA
                  KS7
KS9:
                  CHATFL
           TNC
                  KS7
           BRA
KS10:
           LDA
                  CHATFL
                                        ; REPEAT KEY
                  #0111_1111B
RPTEN,KS11
           AND
           BBS
           CMP
                  #25
           BCC
                  KS9
           SET1
                  RPTEN
           BRA
                  KS81
KS11:
           CMP
           BCC
                  KS9
           BBC
                  ACTKEY, KS7
           SET1
                  RPTKEY
                  KS81
           BRA
INC1MIN:
           LDX
                  #LMINUTE
           CALL
                 MIN1UP
           LDX
                  #RMINUTE
           CALL
                 MIN1UP
           RET
MIN1UP:
           SETC
                  #0
                                        ; LMINUTE <- LMINUTE + 1
           T.DA
           ADC
                  { X }
           DAA
           ΙF
               A ==#60H
            SETC
            LDA
                   #0
           ENDIF
                  {X}
INC1
           STA
           BCC
           DEC
                  X
           LDA
                 #0
           ADC
                  {X}
           DAA
            F A==#12H
IF X==#LHOUR
NOT1 LPM
           ΙF
             ELSE
              NOT1 RPM
            ENDIF
          ENDIF
IF A==#13H
LDA #1
           STA
                {X}
INC1:
           RET
```

xxviii FEB. 2005 Ver 1.04


```
WIND:
                  TEMPCNT
           LDA
           CLRC
           STC
STC
                  10DH.0
                  10DH.1
           STC
                  10DH.2
           STC
                  10DH.3
           CMP
                  #0
                  LLL3
           BEQ
           CMP
BEQ
                  #1
LLL2
           CMP
                  #2
           BEQ
                  LLL1
           CMP
                  LLLO
           BEQ
                 #4
LLL1
           {\tt CMP}
           BEQ
CMP
                  #5
           BEQ
                 LLL2
           CMP
                  LLL3
           BEQ
                  #7
LLL4
10DH.1
10DH.2
           \mathtt{CMP}
           BEQ
STC
STC
STC
LLL0:
LLL1:
           STC
STC
                  10DH.0
           STC 111H.1
INC TEMPCNT
IF [TEMPCNT]==#8
LDM TEMPCNT,#0
LLL4:
           ENDIF
NOT_USED: nop
                                       ;Discard Unexpected Interrupts
           reti
           END
                                       ;Notice Program End
```

FEB. 2005 Ver 1.04 xxix