TOSHIBA 2SK2614

TOSHIBA FIELD EFFECT TRANSISTOR SILICON N CHANNEL MOS TYPE ($L^2-\pi$ -MOS V)

2 S K 2 6 1 4

HIGH SPEED, HIGH CURRENT SWITCHING APPLICATIONS CHOPPER REGULATOR, DC-DC CONVERTER AND MOTOR DRIVE **APPLICATIONS**

4 V Gate Drive

Low Drain-Source ON Resistance : $R_{DS(ON)} = 0.032 \Omega$ (Typ.)

High Forward Transfer Admittance : $|Y_{fs}| = 8 S$ (Typ.)

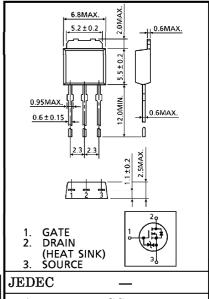
: $I_{DSS} = 100 \,\mu\text{A}$ (Max.) Low Leakage Current

 $(V_{DS} = 50 V)$

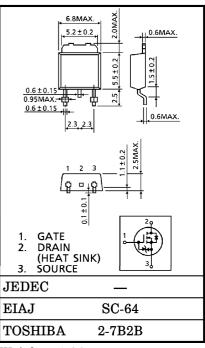
: $V_{th} = 0.8 \sim 2.0 \text{ V}$ Enhancement-Mode

 $(V_{DS} = 10 \text{ V}, I_{D} = 1 \text{ mA})$

MAXIMUM RATINGS (Ta = 25°C)


CHARACTERIST	SYMBOL	RATING	UNIT				
Drain-Source Voltage	$ m V_{DSS}$	50	V				
Drain-Gate Voltage (RGS	${ m v_{DGR}}$	50	V				
Gate-Source Voltage	v_{GSS}	±20	V				
Drain Current	DC	${ m I}_{ m D}$	20	A			
	Pulse	$I_{ m DP}$	50				
Drain Power Dissipation	$P_{\mathbf{D}}$	40	W				
Channel Temperature	$\mathrm{T_{ch}}$	150	°C				
Storage Temperature Range		$\mathrm{T_{stg}}$	-55~150	°C			

THERMAL CHARACTERISTICS


	SYMBOL		
Thermal Resistance, Channel to Case	R _{th (ch-c)}	3.125	°C/W
Thermal Resistance, Channel to Ambient	R _{th (ch-a)}		°C/W

This transistor is an electrostatic sensitive device. Please handle with caution.

INDUSTRIAL APPLICATIONS Unit in mm

JEDEC	_	
EIAJ	SC-64	
TOSHIBA	2-7B1B	

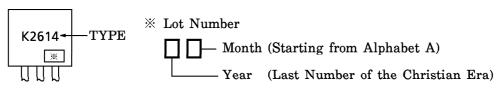
Weight: 0.36 g

961001EAA2

- TOSHIBA is continually working to improve the quality and the reliability of its products. Nevertheless, semiconductor devices in general can malfunction or fail due to their inherent electrical sensitivity and vulnerability to physical stress. It is the responsibility of the buyer, when utilizing TOSHIBA products, to observe standards of safety, and to avoid situations in which a malfunction or failure of a TOSHIBA product could cause loss of human life, bodily injury or damage to property. In developing your designs, please ensure that TOSHIBA products are used within specified operating ranges as set forth in the most recent products specifications. Also, please keep in mind the precautions and conditions set forth in the TOSHIBA Semiconductor Reliability Handbook.

 The information contained herein is presented only as a guide for the applications of our products. No responsibility is assumed by TOSHIBA CORPORATION for any infringements of intellectual property or other rights of the third parties which may result from its use. No license is granted by implication or otherwise under any intellectual property or other rights of TOSHIBA CORPORATION or others.

 The information contained herein is subject to change without notice.


ELECTRICAL CHARACTERISTICS (Ta = 25°C)

	HARACTERISTICS	(14 - 25 C)					
CHARA	CTERISTIC	SYMBOL	TEST CONDITION	MIN.	TYP.	MAX.	UNIT
Gate Leakage	e Current	$I_{ m GSS}$	$V_{GS} = \pm 16 V, V_{DS} = 0 V$	<u> </u>	_	±10	μ A
Drain Cut-off	f Current	$I_{ m DSS}$	$V_{DS} = 50 \text{ V}, V_{GS} = 0 \text{ V}$	_	_	100	μ A
Drain-Source Voltage	Breakdown	V (BR) DSS	$I_{\mathrm{D}} = 10 \mathrm{mA}, \; \mathrm{V}_{\mathrm{GS}} = 0 \mathrm{V}$	50	_	_	V
Gate Thresho	old Voltage	$V_{ m th}$	$V_{\mathrm{DS}} = 10 \mathrm{V}, \mathrm{I_D} = 1 \mathrm{mA}$	0.8	_	2.0	V
Drain-Source	ON Resistance	R _{DS} (ON)	$V_{GS} = 4 \text{ V}, I_D = 5 \text{ A}$ $V_{GS} = 10 \text{ V}, I_D = 10 \text{ A}$	_	0.055	0.08	Ω
Forward Trai Admittance	nsfer	Y _{fs}	$V_{DS} = 10 \text{ V}, I_{D} = 10 \text{ A}$	7	13	_	s
Input Capaci	tance	C_{iss}		_	900	_	
Reverse Transfer Capacitance		C _{rss}	$egin{aligned} { m V}_{ m DS} &= 10 { m V}, \; { m V}_{ m GS} &= 0 { m V}, \ { m f} &= 1 { m MHz} \end{aligned}$	_	130	_	pF
Output Capacitance		C_{oss}		_	370	_	
Switching Time Fall	Rise Time	t _r	V _{GS} $_{0\text{ V}}^{10\text{ V}}$ $_{\text{P1}}^{\text{I}_{D} = 10\text{ A}}$ $_{\text{Vout}}^{\text{V}_{out}}$	_	15	_	
	Turn-on Time	t _{on}	$\begin{array}{c c} & & & \\ & & & &$	_	25	_	ns
	Fall Time	tf	$\begin{array}{c c} & & \downarrow \\ & & \downarrow \\ & & V_{DD} = 30 \text{ V} \end{array}$	_	30	_	lis
	Turn-off Time	t _{off}	$V_{\mathrm{IN}}: t_r, \; t_f < 5 \; \mathrm{ns}, \ \mathrm{Duty} \leq 1\%, \; t_W = 10 \; \mu \mathrm{s}$	_	100	_	
Total Gate Charge (Gate- Source Plus Gate-Drain)		$\mathbf{Q}_{\mathbf{g}}$	$V_{DD} = 40 \text{ V}, V_{GS} = 10 \text{ V},$	_	25	_	
Gate-Source Charge		Q_{gs}	$I_D = 20 \text{ A}$	_	19	_	nC
Gate-Drain ("Miller") Charge		$\mathbf{Q}_{\mathbf{gd}}$		_	6	_	

SOURCE-DRAIN DIODE RATINGS AND CHARACTERISTICS (Ta = 25°C)

CHARACTERISTIC	SYMBOL	TEST CONDITION	MIN.	TYP.	MAX.	UNIT
Continuous Drain Reverse Current	$I_{ m DR}$	_	_	_	20	A
Pulse Drain Reverse Current	$I_{ m DRP}$	_	_		50	A
Diode Forward Voltage	${ m v_{DSF}}$	$I_{DR} = 20 \text{ A}, V_{GS} = 0 \text{ V}$	_	_	-1.7	V
Reverse Recovery Time	t_{rr}	$I_{DR} = 20 \text{ A}, V_{GS} = 0 \text{ V}$		60	_	ns
Reverse Recovery Charge	$\mathrm{Q_{rr}}$	$dI_{DR}/dt = 50 A/\mu s$	_	45		μ C

MARKING

