$\begin{array}{l} \label{eq:mos} MEMORY\\ {\tt cmos}\\ {\tt 2\times512}\ {\tt K}\times16\ {\tt BIT}\ /\ {\tt 2\times256}\ {\tt K}\times32\ {\tt BIT}\\ {\tt SINGLE}\ {\tt DATA}\ {\tt RATE}\ {\tt I/F}\ {\tt FCRAM}^{\rm TM} \end{array}$

Consumer/Embedded Application Specific Memory for SiP

MB81ES171625/173225-12/-15

DESCRIPTION

The Fujitsu MB81ES171625/173225 is a Fast Cycle Random Access Memory (FCRAM*) containing 16,777,216 bit memory cells accessible in a 2×512K×16 bit / 2×256K×32 bit format. The MB81ES171625/173225 features a fully synchronous operation referenced to a positive edge clock same as that of SDRAM operation, whereby all operations are synchronized at a clock input which enables high performance and simple user interface coexistence.

The MB81ES171625/173225 is utilized using a Fujitsu advanced FCRAM core technology and designed for low power consumption and low voltage operation than regular synchronous DRAM (SDRAM).

The MB81ES171625/173225 is dedicated for SiP (System in a Package), and ideally suited for various embedded/ consumer applications including digital AVs, and image processing where a large band width and low power consumption memory is needed.

*: FCRAM is a trademark of Fujitsu Limited, Japan.

PRODUCT LINEUP

Parameter		MB81ES171	625/173225
Parameter		-12	-15
Clock Frequency (Max)	85 MHz	66.7 MHz	
Rurat Mada Cuala Tima (Min)	CL = 1	23.4 ns	30 ns
Burst Mode Cycle Time (Min)	CL = 2	11.7 ns	15 ns
Access Time From Clock (Max)	CL = 1	21.9 ns	27 ns
Access Time From Clock (Max)	CL = 2	10.2 ns	12 ns
XRAS Cycle Time (Min)		75 ns	75 ns
Operating Current (Max) (IDD1)		30 mA	30 mA
Power Down Mode Current (Max) (IDD	2P)	1 mA	1 mA
Self-refresh Current (Max) (IDD6)		5 mA	5 mA

■ FEATURES

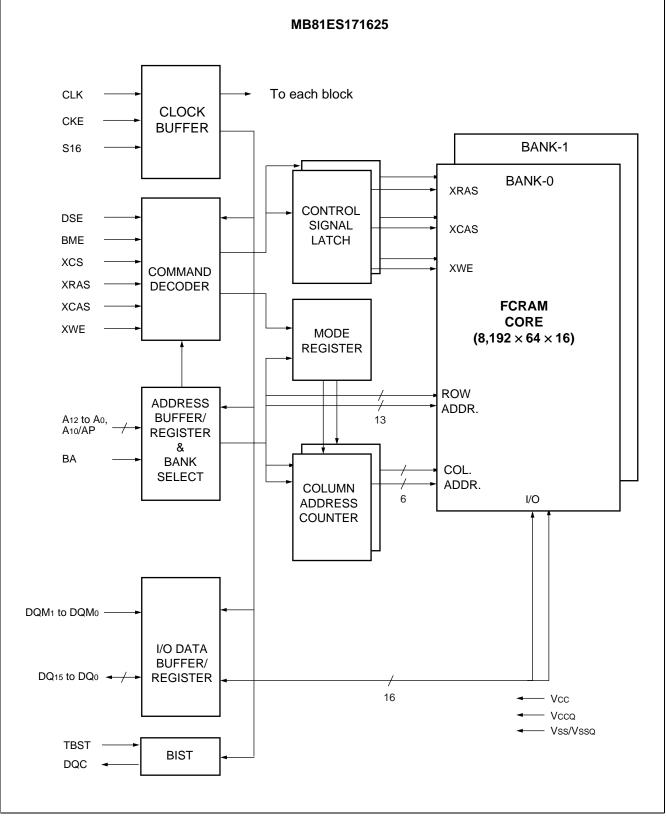
- FCRAM core with Single Data Rate SDRAM interface
- + 512 K word $\,\times$ 16 bit $\,\times$ 2 bank or 256 K word $\,\times$ 32 bit \times 2 bank organization
- Single +1.8 V Supply ±0.15 V tolerance
- CMOS I/O interface
- Programmable burst type, burst length, and CAS latency Burst type : Sequential Mode, Interleave Mode Burst length : 1, 2, 4, 8, full column (64 : ×16 bit, 32 : ×32 bit) CAS latency MB81ES171625/173225-12
 - CL = 1 (Min tck = 23.4 ns, Max 42.7 MHz)
 - CL = 2 (Min tск = 11.7 ns, Max 85 MHz)
- 2 K refresh cycles every 16 ms
- Auto- and Self-refresh
- CKE power down mode
- Output Enable and Input Data Mask
- Burst Stop command at full column burst
- Burst read/write
- 85 MHz/66.7 MHz Clock frequency

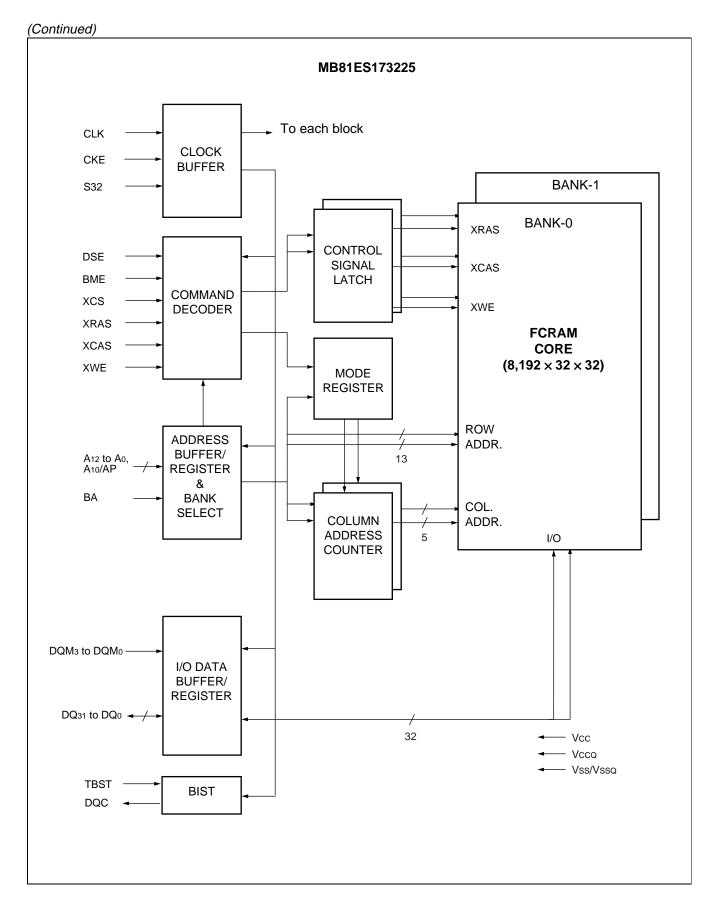
■ PAD LAYOUT

MB81ES171625	
Pg	PAD No.84 DSE TBST DQC

MB81ES173225
Main No.34 Pad No.34

■ PAD DESCRIPTIONS


• MB81ES171625


Symbol		Function
Vdd, Vddq	Supply Voltage	
Vss, Vssq	Ground	
DQ ₁₅ to DQ ₀	Data I/O	
DQM ₁ to DQM ₀	DQ MASK	
XWE	Write Enable	
XCAS	Column Address Strobe	
XRAS	Row Address Strobe	
XCS	Chip Select	
BA	Bank Select	
AP	Auto Precharge Enable	
A ₁₂ A ₀	Address Input	• Row : A_{12} to A_0 • Column : A_5 to A_0
CKE	Clock Enable	
CLK	Clock Input	
TBST	BIST Control	
BME	Burn In Enable	
DSE	Disable	
DQC	BIST Output	
S16	× 16 Select	

• MB81ES173225

Symbol		Function
Vdd, Vddq	Supply Voltage	
Vss, Vssq	Ground	
DQ ₃₁ to DQ ₀	Data I/O	
DQM ₃ to DQM ₀	DQ MASK	
XWE	Write Enable	
XCAS	Column Address Strobe	
XRAS	Row Address Strobe	
XCS	Chip Select	
BA	Bank Select	
AP	Auto Precharge Enable	
A12 to A0	Address Input	• Row : A12 to A0 • Column : A4 to A0
CKE	Clock Enable	
CLK	Clock Input	
TBST	BIST Control	
BME	Burn In Enable	
DSE	Disable	
DQC	BIST Output	
S32	× 32 Select	

■ BLOCK DIAGRAM

■ FUNCTIONAL TRUTH TABLE

1. Command Truth Table

Function		Com-	Cł	٢E	xcs	YDAS	XCAS	XWE	ВА	A 10	A 12 to	A 5	A ₄ to
Function		mand	n-1	n-1 n		ANAS			DA	(AP)	A ₆	Π3	A ₀
Device Deselect*1		DESL	Н	Х	Н	Х	Х	Х	Х	Х	Х	Х	Х
No Operation*1		NOP	Н	Х	L	Н	Н	Н	Х	Х	Х	Х	Х
Burst Stop*2		BST	Н	Х	L	Н	Н	L	Х	Х	Х	Х	Х
Read* ³	X16	READ	Н	Х	L	Н	L	Н	V	L	Х	V	V
Reau *	X32	READ	Н	Х	L	Н	L	Н	V	L	Х	Х	V
Read with Auto-pre-	X16	READA	Н	Х	L	Н	L	Н	V	Н	Х	V	V
charge*3	X32	READA	Н	Х	L	Н	L	Н	V	Н	Х	Х	V
VV/rita*3	X16	WRIT	Н	Х	L	Н	L	L	V	L	Х	V	V
Write ^{*3}	X32	WKII	Н	Х	L	Н	L	L	V	L	Х	Х	V
Write with Auto-pre-	X16	WRITA	Н	Х	L	Н	L	L	V	Н	Х	V	V
charge*3	X32	WRITA	Н	Х	L	Н	L	L	V	Н	Х	Х	V
Bank Active*4		ACTV	Н	Х	L	L	Н	Н	V	V	V	V	V
Precharge Single Bank*5		PRE	Н	Х	L	L	Н	L	V	L	Х	Х	Х
Precharge All Banks*5		PALL	Н	Х	L	L	Н	L	Х	Н	Х	Х	Х
Mode Register Set*5,	*6	MRS	Н	Х	L	L	L	L	L	L	V	V	V

V = Valid, L = Logic Low, H = Logic High, X = either L or H.

n =State at current clock cycle, n-1 = state at 1 clock cycle before n.

*1: NOP and DESL commands have the same effect on the part. At DESL command (XCS = "H"), all input signal are ignored, but hold the internal state. NOP command (XCS = "L", XRAS = XCAS = XWE = "H") is no effect on device operation and the internal state continue.

*2: BST command is effective on every Burst Length. (BL = 1, 2, 4, 8, full column)

*3: READ, READA, WRIT and WRITA commands should be issued only after the corresponding bank has been activated (ACTV command).

Refer to "■ STATE DIAGRAM (Simplified for Single BANK Operation State Diagram)."

- *4 ACTV command should be issued only after the corresponding bank has been precharged (PRE or PALL command) .
- *5: Required after power up. Refer to "17. Power-Up Initialization" in "■ FUNCTIONAL DESCRIPTION."
- *6: MRS command should be issued only after all banks have been precharged (PRE or PALL command) and DQ is in High-Z. Refer to "■ STATE DIAGRAM (Simplified for Single BANK Operation State Diagram)."
- Notes: All commands assumes no CSUS command on previous rising edge of clock.
 - All commands are assumed to be valid state transitions.
 - All inputs are latched on the rising edge of the clock.
 - TBST, BME and DSE should be held Low.
 - \bullet S16 should be held V_IH, and S32 should be held VIL.

2. DQM Truth Table

Function	Command	Cł	ΚE	DQM	
T unction	Command	n-1	n	DQIW	
Data Write/Output Enable	ENBL	Н	Х	L	
Data Mask/Output Disable	MASK	Н	Х	Н	

V = Valid, L = Logic Low, H = Logic High, X = either L or H.

n =State at current clock cycle, n-1 = state at 1 clock cycle before n.

Notes: • MB81ES171625; DQM₀ and DQM₁ controls DQ₇ to DQ₀ and DQ₁₅ to DQ₈, respectively.

- MB81ES173225; DQM₀, DQM₁, DQM₂ and DQM₃ controls DQ₇ to DQ₀, DQ₁₅ to DQ₈, DQ₂₃ to DQ₁₆, and DQ₃₁ to DQ₂₄, respectively.
- TBST, BME and DSE should be held Low.
- S16 should be held V_IH, and S32 should be held V_L.
- All commands assumes no CSUS command on previous rising edge of clock.
- All commands are assumed to be valid state transitions.
- All inputs are latched on the rising edge of the clock.

3. CKE Truth Table

Current State	Function	Com-	Cł	٢E	VCS	XRAS	VCAS		ВА	A 10	A ₁₂ to
Current State	Function	mand	n-1	n	103	лказ	ACAS	VVV E	DA	(AP)	Ao
Bank Active	Clock Suspend Mode Entry *1	CSUS	Н	L	Х	Х	Х	Х	Х	Х	Х
Any (Except Idle)	Clock Suspend Continue *1		L	L	Х	Х	Х	Х	Х	Х	Х
Clock Suspend	Clock Suspend Mode Exit		L	Н	Х	Х	Х	Х	Х	Х	Х
Idle	Auto-refresh Command *2	REF	Н	Н	L	L	L	Н	Х	Х	Х
Idle	Self-refresh Entry *2, *3	SELF	Н	L	L	L	L	Н	Х	Х	Х
Self Refresh	Self-refresh Exit *4	SELFX	L	Н	L	Н	Н	Н	Х	Х	Х
Sell Kellesh		SELFA	L	Н	Н	Х	Х	Х	Х	Х	Х
Idle	Power Down Entry *3	PD	Н	L	L	Н	Н	Н	Х	Х	Х
luie		FD	Н	L	Н	Х	Х	Х	Х	Х	Х
Power Down	Power Down Exit		L	Н	L	Н	Н	Н	Х	Х	Х
			L	Н	Н	Х	Х	Х	Х	Х	Х

V = Valid, L = Logic Low, H = Logic High, X = either L or H.

n =State at current clock cycle, n-1 = state at 1 clock cycle before n.

*1: CSUS command requires that at least one bank is active. Refer to "■ STATE DIAGRAM (Simplified for Single BANK Operation State Diagram)."

- *2: REF and SELF commands should be issued only after all banks have been precharged (PRE or PALL command). Refer to "■ STATE DIAGRAM (Simplified for Single BANK Operation State Diagram)."
- *3: SELF and PD commands should be issued only after the last read data have been appeared on DQ.
- *4: CKE should be held High during tREFC.

Notes: • TBST, BME and DSE should be held Low.

- S16 should be held V $_{\rm H},$ and S32 should be held V $_{\rm L}.$
- All commands assumes no CSUS command on previous rising edge of clock.
- All commands are assumed to be valid state transitions.
- All inputs are latched on the rising edge of the clock.

-	H L	Х	V				
			Х	Х	Х	DESL	NOD
		Н	Н	Н	Х	NOP	NOP
	L	Н	Н	L	Х	BST	NOP*1
	L	Н	L	Н	BA, CA, AP	READ/READA	
	L	Н	L	L	BA, CA, AP	WRIT/WRITA	Illegal*2
Idle	L	L	Н	Н	BA, RA	ACTV	Bank Active after tRCD
	L	L	Н	L	BA, AP	PRE	NOP
	L	L	Н	L	AP	PALL	NOP*1
	L	L	L	Н	Х	REF/SELF	Auto-refresh or Self-reresh*3, *5
	L	L	L	L	MODE	MRS	Mode Register Set (Idle after t _{RSC}) * ^{3, *6}
	Н	Х	Х	Х	Х	DESL	
	L	Н	Н	Н	Х	NOP	NOP
	L	Н	Н	L	Х	BST	
	L	Н	L	Н	BA, CA, AP	READ/READA	Begin Read; Determine AP
Bank Astivo	L	Н	L	L	BA, CA, AP	WRIT/WRITA	Begin Write; Determine AP
Bank Active	L	L	Н	Н	BA, RA	ACTV	Illegal*2
	L	L	Н	L	BA, AP	PRE	Precharge
	L	L	Н	L	AP	PALL	Precharge*1
	L	L	L	Н	Х	REF/SELF	
	L	L	L	L	MODE	MRS	Illegal
	Н	Х	Х	Х	Х	DESL	NOP (Continue Burst to End \rightarrow
	L	Н	Н	Н	Х	NOP	Bank Active)
	L	Н	Н	L	Х	BST	Burst Stop \rightarrow Bank Active
	L	Н	L	н	BA, CA, AP	READ/READA	Terminate Burst, NewRead; Determine AP
Deed	L	Н	L	L	BA, CA, AP	WRIT/WRITA	Terminate Burst, Start Write; Determine AP*4
Read —	L	L	Н	Н	BA, RA	ACTV	Illegal*2
	L	L	Н	L	BA, AP	PRE	Terminate Burst, Precharge \rightarrow Idle
	L	L	Н	L	AP	PALL	Terminate Burst, Precharge \rightarrow Idle ^{*1}
	L	L	L	Н	Х	REF/SELF	Illegal
	L	L	L	L	MODE	MRS	ilicyal

4. Operation Command Table (Applicable to single bank)

Current State	xcs	XRAS	XCAS	XWE	Addr	Command	Function	
	Н	Х	Х	Х	Х	DESL	NOP (Continue Burst to End \rightarrow Bank	
	L	Н	Н	Н	Х	NOP	Active)	
	L	Н	Н	L	Х	BST	Burst Stop \rightarrow Bank Active	
	L	Н	L	Н	BA, CA, AP	READ/READA	Terminate Burst, Start Read; Determine AP* ⁴	
Write	L	Н	L	L	BA, CA, AP	WRIT/WRITA	Terminate Burst, New Write; Determine AP	
	L	L	Н	Н	BA, RA	ACTV	Illegal*2	
	L	L	Н	L	BA, AP	PRE	Terminate Burst, Precharge \rightarrow Idle	
	L	L	Н	L	AP	PALL	Terminate Burst, Precharge \rightarrow Idle ^{*1}	
	L	L	L	Н	Х	REF/SELF	lllegel	
	L	L	L	L	MODE	MRS	Illegal	
	Н	Х	Х	Х	Х	DESL	NOP (Continue Burst to End $ ightarrow$	
	L	Н	Н	Н	Х	NOP	$Precharge \to Idle)$	
	L	Н	Н	L	Х	BST	Illegal	
	L	Н	L	Н	BA, CA, AP	READ/READA		
Read with Auto-	L	Н	L	L	BA, CA, AP	WRIT/WRITA	- Illegal* ²	
precharge	L	L	Н	Н	BA, RA	ACTV		
	L	L	Н	L	BA, AP	PRE		
	L	L	Н	L	AP	PALL		
	L	L	L	Н	Х	REF/SELF	Illegal	
	L	L	L	L	MODE	MRS		
	Н	Х	Х	Х	Х	DESL	NOP (Continue Burst to End $ ightarrow$	
	L	Н	Н	Н	Х	NOP	$Precharge \to Idle)$	
	L	Н	Н	L	Х	BST	Illegal	
	L	Н	L	Н	BA, CA, AP	READ/READA		
Write with	L	Н	L	L	BA, CA, AP	WRIT/WRITA	llleggal*2	
Auto- precharge	L	L	Н	Н	BA, RA	ACTV	Illegal*2	
	L	L	Н	L	BA, AP	PRE]	
	L	L	Н	L	AP	PALL		
	L	L	L	Н	Х	REF/SELF	Illegal	
	L	L	L	L	MODE	MRS		

Current State	xcs	XRAS	XCAS	XWE	Addr	Command	Function
	Н	Х	Х	Х	Х	DESL	
-	L	Н	Н	Н	Х	NOP	NOP (Idle after trp)
	L	Н	Н	L	Х	BST	
	L	Н	L	Н	BA, CA, AP	READ/READA	
Precharging	L	Н	L	L	BA, CA, AP	WRIT/WRITA	Illegal* ²
Frecharging	L	L	Н	Н	BA, RA	ACTV	
	L	L	Н	L	BA, AP	PRE	NOP*7
	L	L	Н	L	AP	PALL	NOP*1
	L	L	L	Н	Х	REF/SELF	Illegal
	L	L	L	L	MODE	MRS	liegai
	Н	Х	Х	Х	Х	DESL	NOP (Bank Active after trcd)
	L	Н	Н	Н	Х	NOP	NOF (Bank Active after trob)
	L	Н	Н	L	Х	BST	NOP (Bank Active after tRCD) *1
	L	Н	L	Н	BA, CA, AP	READ/READA	
Bank	L	Н	L	L	BA, CA, AP	WRIT/WRITA	- Illegal*2
Activating	L	L	Н	Н	BA, RA	ACTV	illegal -
	L	L	Н	L	BA, AP	PRE	
	L	L	Н	L	AP	PALL	
	L	L	L	Н	Х	REF/SELF	Illegal
	L	L	L	L	MODE	MRS	
	Н	Х	Х	Х	Х	DESL	NOP (Idle after tREFC)
	L	Н	Н	Н	Х	NOP	
	L	Н	Н	L	Х	BST	
Refreshing	L	Н	L	Х	Х	READ/READA/ WRIT/WRITA	
	L	L	Н	Х	Х	ACTV/ PRE/PALL	Illegal
	L	L	L	Х	Х	REF/SELF/ MRS	Continued

(Continued)

Current State	XCS	XRAS	XCAS	XWE	Addr	Command	Function
	Н	Х	Х	Х	Х	DESL	NOP (Idle after trsc)
	L	Н	Н	Η	Х	NOP	
Mode	L	Н	Н	L	Х	BST	
Register Setting	L	Н	L	Х	Х	READ/READA/ WRIT/WRITA	Illegal
	L	L	х	Х	Х	ACTV/PRE/ PALL/REF/SELF/ MRS	

ABBREVIATIONS :

V = Valid, L = Logic Low, H = Logic High, X = either L or H.

n = State at current clock cycle, n-1 = state at 1 clock before n.

RA = Row Address BA = Bank Address

CA = Column Address AP = Auto Precharge

*1: Entry may affect other bank.

*2: Illegal to the bank in specified state; entry may be legal to the bank specified by BA, depending on the state of that bank.

*3: Illegal if any bank is not idle.

- *4: Must satisfy bus contention, bus turn around, and/or write recovery requirements. Refer to "11. READ Interrupted by WRITE (Example @ CL = 2, BL = 4)" and "12. WRITE to READ Timing (Example @ CL = 1, BL = 4)" in "■ TIMING DIAGRAMS."
- *5: SELF command should be issued only after the last read data has been appeared on DQ.
- *6: MRS command should be issued only when all DQ are in High-Z.

*7: NOP in precharging or idle state. PRE may affect to the bank specified by BA and AP.

Notes: • TBST,BME and DSE should be held Low.

- \bullet S16 should be held V_IH, and S32 should be held V_L.
- All entries in OPERATION COMMAND TABLE assume that the CKE was High during the proceeding clock cycle and the current clock cycle.
- Illegal means that the device operation and/or data-integrity are not guaranteed. If used, power up sequence will be asserted after power shut down.
- All commands assume no CSUS command on previous rising edge of clock.
- All commands are assumed to be valid state transitions.
- All inputs are latched on the rising edge of the clock.

5. Command Truth Table for CKE

Current State	CKE (n-1)	CKE (n)	xcs	XRAS	XCAS	XWE	Addr	Function	
	Н	Х	Х	Х	Х	Х	Х	Invalid	
	L	Н	Н	Х	Х	Х	Х	Exit Self-refresh	
•	L	Н	L	Н	Н	Н	Х	(Self-refresh Recovery \rightarrow Idle after treff)	
Self- refresh	L	Н	L	Н	Н	L	Х		
	L	Н	L	Н	L	Х	Х	Illegal	
	L	Н	L	L	Х	Х	Х		
	L	L	Х	Х	Х	Х	Х	Maintain Self-refresh	
	L	Х	Х	Х	Х	Х	Х	Invalid	
	Н	Н	Н	Х	Х	Х	Х	_ Idle after tREFC	
Self-	Н	H	L	Н	Н	Н	Х		
refresh	Н	H	L	Н	Н	L	Х		
Recovery	Н	H	L	Н	L	Х	Х	Illegal	
	Н	H	L	L	Х	Х	Х		
	Н	L	Х	Х	Х	Х	Х	Illegal*1	
	Н	Х	Х	Х	Х	Х	Х	Invalid	
	L	Н	Н	Х	Х	Х	Х	$-$ Exit Power Down Mode \rightarrow Idle	
Dawar	L	Н	L	Н	Н	Н	Х		
Power Down	L	L	Х	Х	Х	Х	Х	NOP (Maintain Power Down Mode)	
	L	Н	L	L	Х	Х	Х		
	L	Н	L	Н	L	Х	Х	Illegal	
	L	Н	L	Н	Н	L	Х		
	Н	Н	Н	Х	Х	Х	V		
	Н	Н	L	Н	Х	Х	V	Refer to "Operation Command Table".	
	Н	Н	L	L	Н	Х	V		
	Н	Н	L	L	L	Н	Х	Auto-refresh	
	Н	Н	L	L	L	L	V	Refer to "Operation Command Table".	
All	Н	L	Н	Х	Х	Х	Х	– Power Down	
Banks	Н	L	L	Н	Н	Н	Х		
Idle	Н	L	L	Н	Н	L	Х		
	Н	L	L	Н	L	Х	Х	Illegal	
	Н	L	L	L	Н	Х	Х		
	Н	L	L	L	L	Н	Х	Self-refresh*2	
	Н	L	L	L	L	L	Х	Illegal	
	L	Х	Х	Х	Х	Х	Х	Invalid	

(Continued)

Current State	CKE (n-1)	CKE (n)	xcs	XRAS	XCAS	XWE	Addr	Function
	Н	Н	Х	х	х	х	х	Refer to "Operation Command Table".
Bank Active Bank Activating Read/Write	Н	L	х	х	х	х	Х	Begin Clock Suspend next cycle
	L	х	х	х	х	х	Х	Invalid
	Н	Х	Х	Х	Х	Х	Х	
Clock Suspend	L	Н	Х	Х	Х	Х	Х	Exit Clock Suspend next cycle
Cuopona	L	L	Х	Х	Х	Х	Х	Maintain Clock Suspend
Any State	L	Х	Х	Х	Х	Х	Х	Invalid
Other Than	Н	Н	Х	Х	Х	Х	Х	Refer to "Operation Command Table".
Listed Above	Н	L	Х	Х	Х	Х	Х	Illegal

V = Valid, L = Logic Low, H = Logic High, X = either L or H.

n =State at current clock cycle, n-1 = state at 1 clock cycle before n.

*1: CKE should be held High for tREFC period.

*2: SELF command should be issued only after the last data has been appeared on DQ.

- Notes: TBST, BME and DSE should be held Low.
 - S16 should be held VIH, and S32 should be held VIL.
 - All entries in "5. Command Truth Table for CKE" are specified at CKE (n) state and CKE input from CKE (n–1) to CKE (n) state must satisfy the corresponding setup and hold time for CKE.

■ FUNCTIONAL DESCRIPTION

1. SDR I/F FCRAM Basic Function

Three major differences between SDR I/F FCRAMs and conventional DRAMs are : a synchronized operation, a burst mode, and a mode register.

The **synchronized operation** is the fundamental difference. SDR I/F FCRAM uses a clock input for synchronization, while DRAM is basically asynchronous memory although it has been using two clocks, XRAS and XCAS. Each operation of DRAM is determined by their timing phase differences while each operation of the SDR I/F FCRAM is determined by commands and all operations are referenced to a rising edge of a clock.

The **burst mode** is a very high speed access mode utilizing an internal column address generator. Once a column address for the first access is set, following addresses are automatically generated by the internal column address counter.

The **mode register** is to configure SDR I/F FCRAM operation and function into desired system conditions. "■ MODE REGISTER TABLE" shows how the SDR I/F FCRAM can be configured for system requirements by mode register programming.

The program to the mode resister should be excuted after all banks are precharged.

2. FCRAM[™]

MB81ES171625/173225 utilizes FCRAM core technology. The FCRAM is an acronym for Fast Cycle Random Access Memory and provides very fast random cycle time, low latency and low power consumption than regular DRAMs.

3. Clock (CLK) Input and Clock Enable (CKE)

All input and output signals of the SDR I/F FCRAM use register type buffers. CLK is used as a trigger for the register and internal burst counter increment. All inputs are latched by a rising edge of CLK. All outputs are validated by a rising edge of CLK. CKE is a high active clock enable signal. CKE controls the internal clock generator. CKE is latched by a rising edge of clock. CKE should become High level on the previous clock cycle when a basic command is issued. When CKE = Low is latched at a clock input during active cycle, the next clock will be internally masked. During idle state (all banks have been precharged), the Power Down mode (standby) is entered with CKE = Low and this will make extremely low standby current.

4. Chip Select (XCS)

XCS enables all command inputs, XRAS, XCAS, XWE and address inputs. When XCS is High, command signals are negated but internal operations such as a burst cycle will not be suspended. If such a control isn't needed, XCS can be tied to ground level.

5. Command Input (XRAS, XCAS and XWE)

Unlike a conventional DRAM, XRAS, XCAS, and XWE do not directly imply SDR I/F FCRAM operations, such as Row address strobe by XRAS. Instead, each combination of XRAS, XCAS, and XWE input in conjunction with XCS input at the rising edge of the CLK determines SDR I/F FCRAM operations. Refer to "■ FUNCTIONAL TRUTH TABLE."

6. Address Input (A12 to A0)

Address input selects an arbitrary location of each memory cell matrix, 524,288 (×16 bit) or 262,144 (×32 bit). A total of 19(× 16 bit) or 18 (× 32 bit) address input signals are required to decode 13 bit Row addresses and 6 bit (×16 bit) or 5 bit (×32 bit) Column addresses matrix. The SDR I/F FCRAM adopts an address multiplexer in order to reduce the pin count of the address line. At a Bank Active command (ACTV), 13 bit Row addresses are initially latched and the remainder of 6 bit (× 16 bit) or 5 bit (× 32 bit) Column addresses are then latched by a Column address strobe command of either a Read command (READ or READA) or a Write command (WRIT or WRITA). A10 selects READ or READA, WRIT or WRITA and PRE or PALL.

7. Bank Select (BA)

This SDR I/F FCRAM has two banks.

Bank selection by BA occurs at Bank Active command (ACTV) followed by read (READ or READA), write (WRIT or WRITA), and precharge commands (PRE or PALL).

8. Data Inputs and Ooutputs (DQ15 to DQ0/DQ31 to DQ0)

Input data is latched and written into the memory at the clock following the write command input. Data output is obtained by the following conditions followed by a read command input :

 t_{RAC} ; from the bank active command when t_{RCD} (Min) is satisfied. (This parameter is reference only.) t_{CAC} ; from the read command when t_{RCD} is greater than t_{RCD} (Min) at CL = 1. t_{AC} ; from the rising edge of the clock after t_{RAC} and t_{CAC} .

The polarity of the output data is identical to that of input data. Data is valid between access time (determined by the three conditions above) and the next positive clock edge (t_{OH}).

Refer to "■ AC CHARACTERISTICS".

9. Data I/O Mask (DQM1, DQM0/DQM3 to DQM0)

DQM is an active high enable input and has an output disable and input mask function. During burst cycle and when DQM = High is latched by a clock, input is masked at the same clock and output will be masked at the CL later while internal burst counter will increment by one or will go to the next stage depending on the burst type.

10. Burst Mode Operation

The burst mode provides faster memory access. The burst mode is implemented by keeping the same Row address and by automatically generating column address. Access time and cycle time of Burst mode is specified as t_{CAC}/t_{AC} and t_{CK} , respectively. The internal column address counter operation is determined by a mode register which defines burst type and the burst count length of 1, 2, 4, 8 bits of boundary or full column. In order to terminate or move from the current burst mode to the next stage while the remaining burst count is more than 1, the following combinations will be required :

(1) Burst Type

The burst type can be selected either sequential or interleave mode. The sequential mode is an incremental decoding scheme within a boundary address to be determined by count length, it assigns +1 to the previous (or initial) address until reaching the end of boundary address and then wraps around to the least significant address (= 0). The interleave mode is a scrambled decoding scheme for A₀ through A₂. If the first access of column address is even (0), the next address will be odd (1), or vice-versa.

Current Stage	Next Stage	Γ	Method (Assert the following command)
Burst Read	Burst Read		Read Command
Durat Dood	Durat Write	1st Step	Mask Command (Normally 3 clock cycles)
Burst Read	Burst Write	2nd Step	Write Command after & OWD
Burst Write	Burst Write		Write Command
Burst Write	Burst Read		Read Command
Burst Read	Precharge		Precharge Command
Burst Write	Precharge		Precharge Command

(2) Burst Mode Termination and Method of Next Stage Set

Burst		ting Co Addres		Sequential Mode	Interleave Mode
Length	A 2	A 1	A ₀		
2	Х	Х	0	0 - 1	0 – 1
Z	Х	Х	1	1 – 0	1 – 0
	Х	0	0	0-1-2-3	0-1-2-3
4	Х	0	1	1-2-3-0	1-0-3-2
4	Х	1	0	2-3-0-1	2-3-0-1
	Х	1	1	3-0-1-2	3-2-1-0
	0	0	0	0 - 1 - 2 - 3 - 4 - 5 - 6 - 7	0 - 1 - 2 - 3 - 4 - 5 - 6 - 7
	0	0	1	1 - 2 - 3 - 4 - 5 - 6 - 7 - 0	1 - 0 - 3 - 2 - 5 - 4 - 7 - 6
	0	1	0	2 - 3 - 4 - 5 - 6 - 7 - 0 - 1	2 - 3 - 0 - 1 - 6 - 7 - 4 - 5
8	0	1	1	3 - 4 - 5 - 6 - 7 - 0 - 1 - 2	3 - 2 - 1 - 0 - 7 - 6 - 5 - 4
0	1	0	0	4-5-6-7-0-1-2-3	4-5-6-7-0-1-2-3
	1	0	1	5 - 6 - 7 - 0 - 1 - 2 - 3 - 4	5 - 4 - 7 - 6 - 1 - 0 - 3 - 2
	1	1	0	6-7-0-1-2-3-4-5	6 - 7 - 4 - 5 - 2 - 3 - 0 - 1
	1	1	1	7 - 0 - 1 - 2 - 3 - 4 - 5 - 6	7 - 6 - 5 - 4 - 3 - 2 - 1 - 0

(3) Counter Operation of Sequential Mode and Interleave Mode

11. Full Column Burst and Burst Stop Command (BST)

The full column burst is an option of burst length and available only at sequential mode of burst type. This full column burst mode is repeatedly access to the same row. If burst mode reaches the end of column address, then it wraps around to the first column address (= 0) and continues to count until interrupted by the new read (READ) /write (WRIT), precharge (PRE), or burst stop (BST) commands. The selection of Auto-precharge option is illegal during the full column burst operation.

BST command is applicable to terminate the burst operation. If BST command is asserted during the burst mode, its operation is terminated immediately and the internal state moves to Bank Active.

When a read mode is interrupted by BST command, the output will be in High-Z.

For the detailed rule, please refer to "8. READ Interrupted by Burst Stop (Example @ BL = Full Column) " in "■ TIMING DIAGRAMS."

When a write mode is interrupted by BST command, the data to be applied at the same time with BST command will be ignored.

12. Precharge and Precharge Option (PRE, PALL)

The SDR I/F FCRAM memory core is the same as a conventional DRAM's, requiring precharge and refresh operations. Precharge rewrites the bit line and reset the internal Row address line and is executed by the Precharge command (PRE). With the Precharge command, SDR I/F FCRAM will automatically be in standby state after precharge time (t_{RP}).

The precharged bank is selected by combination of AP and BA when the Precharge command is asserted. If AP = High, all banks are precharged regardless of BA (PALL). If AP = Low, a bank to be selected by BA is precharged (PRE).

The auto-precharge enters precharge mode at the end of burst mode of read or write without the Precharge command assertion.

This auto precharge is entered by AP = High when a read or write command is asserted. Refer to "■ FUNC-TIONAL TRUTH TABLE."

13. Auto-Refresh (REF)

The Auto-refresh uses the internal refresh address counter. SDR I/F FCRAM Auto-refresh command (REF) generates the Precharge command internally. All banks of SDR I/F FCRAM should be precharged prior to the Auto-refresh command. The Auto-refresh command should also be asserted every 7.8 μ s or a total 2048 refresh commands within a 16 ms period.

14. Self-Refresh Entry (SELF)

The Self-refresh function provides automatic refresh by an internal timer as well as the Auto-refresh and will continue the refresh function until cancelled by SELFX.

The Self-refresh is entered by applying an Auto-refresh command in conjunction with CKE = Low (SELF). Once SDR I/F FCRAM enters the self-refresh mode, all inputs except for CKE will be "don't care" (either logic high or low level state) and outputs will be in a High-Z state. During a self-refresh mode, CKE = Low should be maintained. SELF command should be issued only after the last read data has been appeared on DQ.

Note : When the burst refresh method is used, a total of 2048 auto-refresh commands must be asserted within 1 ms prior to the self-refresh mode entry.

15. Self-Refresh Exit (SELFX)

To exit the Self-refresh mode, apply minimum ts₁ after CKE brought high, and then the No operation command (NOP) or the Deselect command (DESL) should be asserted within one tREFC period. CKE should be held High within one tREFC period after ts₁. Refer to "16. Self-Refresh Entry and Exit Timing" in "■ TIMING DIAGRAMS" for the detail.

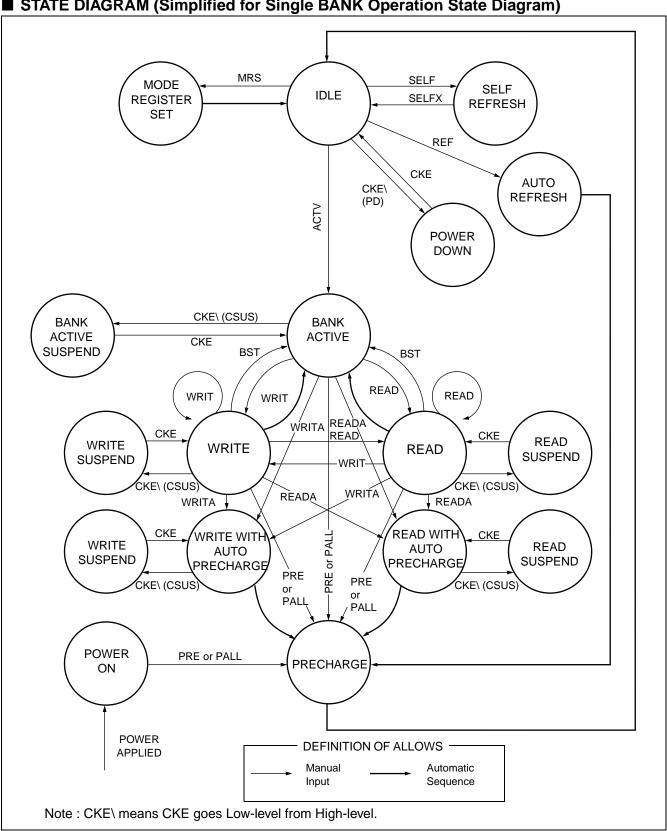
It is recommended to assert an Auto-refresh command just after tREFC period to avoid the violation of refresh period.

Note : When the burst refresh method is used, a total of 2048 auto-refresh commands must be asserted within 1 ms after the Self-refresh exit.

16. Mode Register Set (MRS)

The mode register of the SDR I/F FCRAM provides a variety of operations. The register consists of 3 operation fields; Burst Length, Burst Type, and CAS latency. Refer to "■ MODE REGISTER TABLE."

The mode register can be programmed by the Mode Register Set command (MRS). Each field is set by the address line. Once a mode register is programmed, the contents of the register will be held until re-programmed by another MRS command (or part loses power). MRS command should be issued only when DQ is in High-Z.


The condition of the mode register is undefined after the power-up stage. It is required to set each field after initialization of the SDR I/F FCRAM. Refer to "17. Power-Up Initialization".

17. Power-Up Initialization

SDR I/F FCRAM internal condition after power-up will be undefined. It is required to follow the following Power On Sequence to execute read or write operation.

- 1. Apply the power and start the clock. Attempt to maintain either the NOP or DESL command at the input.
- 2. Maintain stable power, stable clock, and NOP condition for a minimum of 500 μ s.
- 3. Precharge all banks by the Precharge (PRE) or Precharge All command (PALL) .
- 4. Assert minimum of 2 Auto-refresh commands (REF) .
- 5. Program the mode register by the Mode Register Set command (MRS).

In addition, it is recommended that DQM and CKE track V_{DD} to insure that output is High-Z state. The Mode Register Set command (MRS) can be set before 2 Auto-refresh commands (REF). It is possible to execute 5 before 4.

BANK OPERATION COMMAND TABLE

• Minimun Clock Latency or Delay Time for Single Bank Operation

Second command (same bank) First command		ACTV	READ	READA		WRITA	PRE	PALL	REF	SELF	BST
MRS	trsc	trsc					t RSC	trsc	t RSC	trsc	trsc
ACTV			trcd	trcd	trcd	trcd	t ras	tras			1
READ			1	1	*4 1	*4 1	*3 1	*3 1			1
READA	*1, *2 BL + t _{RP}	*1 BL + t _{RP}					*3 BL + t _{RP}	*3 BL + t _{RP}	*1 BL + t _{RP}	*1 BL + t _{RP}	*1 BL + t _{RP}
WRIT			twr	t wr	1	1	*3 t dpl	*3 t dpl			1
WRITA	*1, *2 BL-1 + tdal	*1 BL-1 + tdal					*3 BL-1 + tdal	*3 BL-1 + tdal	*1 BL-1 + tdal	*1 BL-1 + tdal	*1 BL-1 + tdal
PRE	*1, *2 t RP	trp					1	*3 1	*1 trp	*1, *5 t RP	1
PALL	*2 trp	trp					1	1	trp	*5 t RP	1
REF	t REFC	t REFC					t refc				
SELFX	t refc	t REFC					t refc				

*1: Assume all banks are in idle state.

*2: Assume output is in High-Z state.

*3: Assume tRAS (Min) is satisfied.

*4: Assume no I/O conflict.

*5: Assume the last data have been appeared on DQ.

Illegal Command.

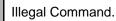
Second command (other bank) First	MRS	ACTV	*4 READ	*4 READA	*4 WRIT	*4 WRITA	PRE	PALL	REF	SELF	BST
command											
MRS	trsc	trsc					trsc	trsc	trsc	trsc	trsc
ACTV		*1 t rrd	*6 1	*6 1	*6 1	*6 1	*5, *6 1	*6 t ras			1
READ		*1, *3 1	1	1	*8 1	*8 1	*5 1	*5 1			1
READA	*1, *2 BL + t _{RP}	*1, *3 1	*5 1	*5 1	*5, *8 1	*5, *8 1	*5 1	*5 BL + t _{RP}	*1 BL + t _{RP}	*1 BL + t _{RP}	*1 BL + t _{RP}
WRIT		*1, *3 1	1	1	1	1	*5 1	*5 t dpl			1
WRITA	*1, *2 BL-1 + tdal	*1, *3 1	*5 1	*5 1	*5 1	*5 1	*5 1	*5 BL-1 + tdal	*1 BL-1 + tdal	*1 BL-1 + tdal	*1 BL-1 + tdal
PRE	*1, *2 t RP	*1, *3 1	*6 1	*6 1	*6 1	*6 1	*5, *6 1	*6 1	*1 t RP	*1, *7 t RP	1
PALL	*2 t RP	t RP					1	1	t RP	*7 t RP	1
REF	t REFC	t REFC					t REFC	t REFC	t REFC	t REFC	trefc
SELFX	t REFC	t REFC					t REFC	t REFC	t REFC	t REFC	trefc

Minimum Clock Latency or Delay Time for Multi Bank Operation

*1: Assume all banks are in idle state.

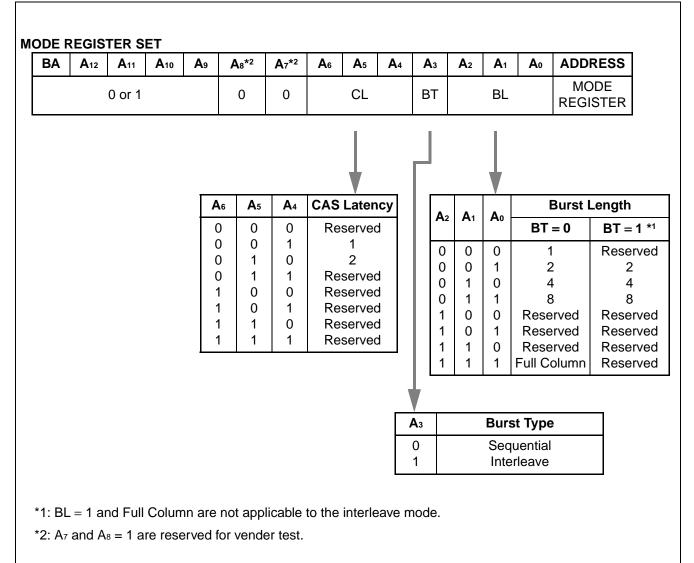
*2: Assume output is in High-Z state.

*3: trrd (Min) of other bank (the second command will be asserted) is satisfied.


*4: Assume other bank is in active, read or write state.

*5: Assume tRAS (Min) is satisfied.

*6: Assume other banks are not in READA/WRITA state.


*7: Assume the last data have been appeared on DQ.

*8: Assume no I/O conflict.

22

MODE REGISTER TABLE

ABSOLUTE MAXIMUM RATINGS

Parameter	Symbol	Ra	Unit	
Falameter	Symbol	Min	Max	Onit
Voltage of Vcc Supply Relative to Vss	Vdd, Vddq	-0.5	+3.0	V
Voltage at Any Pin Relative to Vss	Vin, Vout	-0.5	+3.0	V
Short Circuit Output Current	Ιουτ	-13	+13	mA
Storage Temperature	Тѕтс	-55	+125	°C

WARNING: Semiconductor devices can be permanently damaged by application of stress (voltage, current, temperature, etc.) in excess of absolute maximum ratings. Do not exceed these ratings.

■ RECOMMENDED OPERATING CONDITIONS

		(Referenced to						
Parameter	Symbol		Value					
Falameter	Symbol	Min	Тур	Max	Unit			
Supply Voltage*1	Vdd, Vddq	1.65	1.8	1.95	V			
Supply voltage	Vss, Vssq	0	0	0	V			
Input High Voltage*2	Vih	VDDQ-0.4		$V_{DDQ} + 0.3$	V			
Input Low Voltage*3	VIL	-0.3		0.4	V			
Ambient Temperature	TA	0		+70	°C			
Junction Temperature*4	Tj	0	—	+100	°C			

*1 : All voltages are referenced to Vss.

*3 : Undershoot limit: V_L (Min) *2 : Overshoot limit: VIH (Max) = Vss -1.5 V for pulse width ≤ 5 ns = 3.0 V for pulse width \leq 5 ns acceptable, pulse width measured at 50% of acceptable, pulse width measured at 50% of pulse amplitude. pulse amplitude. 3.0 V Pulse width \leq 5 ns Vін 50% of pulse amplitude VIL (Max) Ин VIL 50% of pulse amplitude VIH (Min) Pulse width \leq 5 ns VIL -1.5 V

*4 : The maximum junction temperature of FCRAM (Tj) should not be more than +100 °C. Tj is represented by the power consumption of FCRAM (P_{FCRAM}) and Logic LSI(P_D), the thermal resistance of the package(θja), and the maximum ambient temperature of the SiP(T_Amax).

$$\begin{split} \text{Tjmax[}^{\circ}\text{C}] &= \text{T}_{\text{A}}\text{max[}^{\circ}\text{C}] + \theta ja[\,^{\circ}\text{C}/\text{W}] \, \times \, \Sigma \, \text{Pmax[W]} \\ \Sigma \, \text{Pmax[W]} &= \text{P}_{\text{FCRAM}} + \text{P}_{\text{D}} \end{split}$$

WARNING: The recommended operating conditions are required in order to ensure the normal operation of the semiconductor device. All of the device's electrical characteristics are warranted when the device is operated within these ranges.

Always use semiconductor devices within their recommended operating condition ranges. Operation outside these ranges may adversely affect reliability and could result in device failure.

No warranty is made with respect to uses, operating conditions, or combinations not represented on the data sheet. Users considering application outside the listed conditions are advised to contact their FUJITSU representatives beforehand.

■ CAPACITANCE

 $(f = 1 \text{ MHz}, T_A = +25 \ ^{\circ}\text{C})$

Parameter	Symbol		Unit		
Faiametei	Symbol	Min	Тур	Max	Onit
Input Capacitance, Except for CLK	CIN1	2.0	—	5.0	pF
Input Capacitance for CLK	CIN2	2.0		5.0	pF
I/O Capacitance	Cı/o	2.0		5.0	pF

■ DC CHARACTERISTICS

(At recommended operating conditions unless otherwise noted.)

Demonster	0	O and little a	Val	ue	
Parameter	Symbol	Condition	Min	Max	- Unit
Output High Voltage	Voh(DC)	Іон = −2 mA	VDDQ-0.2		V
Output Low Voltage	Vol(DC)	lo∟ = 2 mA		0.2	V
Input Leakage Current (Any Input)	lu	$0 V \le V_{IN} \le V_{DDQ};$ All other pins not under test = $0 V$	-5	5	μΑ
Output Leakage Current	Ilo	$0 V \le V_{IN} \le V_{DDQ};$ Data out disabled	-5	5	μΑ
Average Power Supply Current (Operating Current)	Idd1	$\begin{array}{l} Burst \ Length = 1, \\ t_{RC} = Min \ for \ BL = 1, \\ t_{CK} = Min, \\ One \ bank \ active, \\ Output \ pin \ open, \\ Addresses \ changed \ up \ to \\ one \ time \ during \ t_{CK} \ (Min) \ , \\ 0 \ V \leq V_{IN} \leq V_{IL} \ Max, \\ V_{IH} \ Min \leq V_{IN} \leq V_{DDQ} \end{array}$		30	mA
Power Supply Current	Idd2p	$\label{eq:cke} \begin{array}{l} CKE = 0 \ V, \\ All \ banks \ idle, \ t_{CK} = Min, \\ Power \ down \ mode, \\ V_{IL} = 0 \ V, \\ V_{IH} = V_{DDQ} \end{array}$		1	mA
(Precharge Standby Current)	Idd2ps	$\label{eq:cke} \begin{array}{l} CKE = 0 \ V, \ All \ banks \ idle, \\ CLK = V_{DDQ} \ or \ 0 \ V, \\ Power \ down \ mode, \\ V_{IL} = 0 \ V, \\ V_{IH} = V_{DDQ} \end{array}$	_	1	mA
Power Supply Current (Precharge Standby Current)	Idd2n	$\label{eq:cke} \begin{array}{l} CKE = V_{DDQ} , All banks idle, \\ t_{CK} = Min, \\ NOP command only, \\ Input signals (except to \\ CMD) are changed one \\ time during 30 ns, \\ V_{IL} = 0 V, \\ V_{IH} = V_{DDQ} \end{array}$		4	mA
	Idd2ns	$\label{eq:cke} \begin{split} CKE &= V_{DDQ},\\ All \ banks \ idle,\\ CLK &= V_{DDQ} \ or \ 0 \ V,\\ Input \ signal \ are \ stable,\\ V_{IL} &= 0 \ V,\\ V_{IH} &= V_{DDQ} \end{split}$		1	mA

(Continued)

Paramet	or	Symbol	Condition	Va	lue	Unit
Paramet	er	Symbol	Condition	Min	Max	
		Idd3p	$\begin{array}{l} CKE = 0 \ V , \\ Any \ bank \ active , \\ tck = Min , \\ V_{IL} = 0 \ V , \\ V_{IH} = V_{DDQ} \end{array}$		1	mA
		Idd3ps	CKE = 0 V, Any bank active, $CLK = V_{DDQ} \text{ or } 0 V,$ $V_{IL} = 0 V,$ $V_{IH} = V_{DDQ}$	_	1	mA
Power Supply Current (Active Standby Current)	MB81ES171625/ 173225-12	IDD3N	$CKE = V_{DDQ}$, Any bank active, $t_{CK} = Min$, NOP command only, Input signals (except to	_	13	mA
	MB81ES171625/ 173225-15	- IDD3N	CMD) are changed one time during 30 ns, $V_{IL} = 0 V$, $V_{IH} = V_{DDQ}$	_	10	mA
		Idd3ns	$\begin{array}{l} CKE = V_{DDQ},\\ Any \ bank \ active,\\ CLK = V_{DDQ} \ or \ 0 \ V,\\ Input \ signals \ are \ stable,\\ V_{IL} = 0 \ V,\\ V_{IH} = V_{DDQ} \end{array}$		1	mA
Average Power Supply Current	MB81ES171625/ 173225-12	DD4	tcκ = Min, Burst Length = 4, Output pin open, All-banks active,		51	mA
(Burst mode Current)	MB81ES171625/ 173225-15	1004	Gapless data, $0 V \le V_{IN} \le V_{IL} Max$, $V_{IH} Min \le V_{IN} \le V_{DDQ}$	_	40	mA
Average Power Supply C (Auto Refresh Current)	urrent	IDD5	Auto-refresh; tck = Min, trefc = Min, $0 V \le V_{IN} \le V_{IL} Max,$ VIH Min $\le V_{IN} \le V_{DDQ}$		73	mA
Average Power Supply C (Self Refresh Current)	urrent	IDD6	Self-refresh; $CLK = V_{DDQ} \text{ or } 0 \text{ V},$ CKE = 0 V, $0 \text{ V} \le \text{V}_{IN} \le \text{V}_{IL} \text{ Max},$ $\text{V}_{IH} \text{ Min} \le \text{V}_{IN} \le \text{V}_{DDQ}$		5	mA

Notes: • All voltages are referenced to Vss, Vssq.

• DC characteristics are measured after following "17. Power-Up Initialization" procedure in ■FUNCTIONAL DESCRIPTION.

• IDD depends on output termination, load conditions, clock rate, number of address and/or command change within certain period. The specified values are obtained with the output open.

AC CHARACTERISTICS

(1) Basic AC Characteristics

Parameter			MB				
		Symbol	-12		-15		Unit
			Min	Max	Min	Max	
Clock Period	CL = 1	tск1	23.4	1000	30	- 1000	ns
	CL = 2	tск2	11.7		15		ns
Clock High Time *1		tсн	4.5	—	6	—	ns
Clock Low Time *1		tc∟	4.5		6		ns
Input Setup Time *1		tsi	3		3		ns
Input Hold Time *1		tнı	2		2		ns
XRAS Access Time *2		t RAC		51.9		57	ns
XCAS Access Time *1, *3		tcac		21.9		27	ns
Access Time from Clock	CL = 1	t _{AC1}		21.9		27	ns
(tcκ = Min) *1, *3, *4	CL = 2	t _{AC2}		10.2		12	ns
Output in Low-Z *1		t∟z	0		0		ns
Output in High-Z *1, *5	CL = 1	tHZ1	2.5	10	2.5	10	ns
	CL = 2	t _{HZ2}	2.5	10	2.5	10	ns
Output Hold Time *1, *3		tон	2.5		2.5		ns
Time between Auto-Refresh command interval *2		trefi		7.8		7.8	μs
Time between Refresh		t REF		16	_	16	ms
Transition Time		t⊤	0.5	5	0.5	5	ns

(At recommended operating conditions unless otherwise noted.)

*1: If input signal transition time (tr) is longer than 1 ns; [(tr / 2) -0.5] ns should be added to t_{CAC} (Max), t_{AC} (Max), t_{HZ} (Max), and t_{SI} (Min) spec values, [(tr / 2) -0.5] ns should be subtracted from t_{LZ} (Min), t_{HZ} (Min), and t_{OH} (Min) spec values, and (tr -1.0) ns should be added to t_{CH} (Min), t_{CL} (Min), t_{SI} (Min), and t_{HI} (Min) spec values.

*2: This value is for reference only.

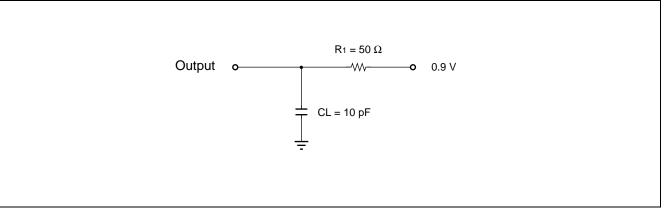
- *3: Measured under AC test load circuit shown in "(5) Measurement Condition of AC Characteristics (Load Circuit)".
- *4: tac also specifies the access time at burst mode except for first access at CL = 1.
- *5: Specified where output buffer is no longer driven.
- Notes: AC characteristics are measured after following "17. Power-Up Initialization" procedure in ■FUNCTIONAL DESCRIPTION.
 - AC characteristics assume t_T = 1 ns ,10 pF of capacitive and 50 Ω of terminated load.
 - Refer to " (5) Measurement Condition of AC Characteristics (Load Circuit) ".
 - 0.9 V is the reference level for measuring timing of input/output signals.
 - Transition times are measured between V_{IH} (Min) and V_{IL} (Max). Refer to "(6) Set up, Hold and Delay Time".

	Symbol	MB				
Parameter		-12		-15		Unit
		Min	Max	Min	Max	
XRAS Cycle Time *	t _{RC}	75		75		ns
XRAS Precharge Time	t _{RP}	30		30	—	ns
XRAS Active Time	tras	45	110000	45	110000	ns
XRAS to XCAS Delay Time	trcd	30		30		ns
Write Recovery Time	twr	11.7		15		ns
XRAS to XRAS Bank Active Delay Time	t RRD	11.7		15	—	ns
Data-in to Precharge Lead Time	t DPL	11.7		15	—	ns
Data-in to Active/ Refresh Command Period	t dal	1cyc+ trp		1cyc+trp	—	ns
Refresh Cycle Time	t REFC	75		75	—	ns
Mode Resister Set Cycle Time	trsc	45		45	—	ns

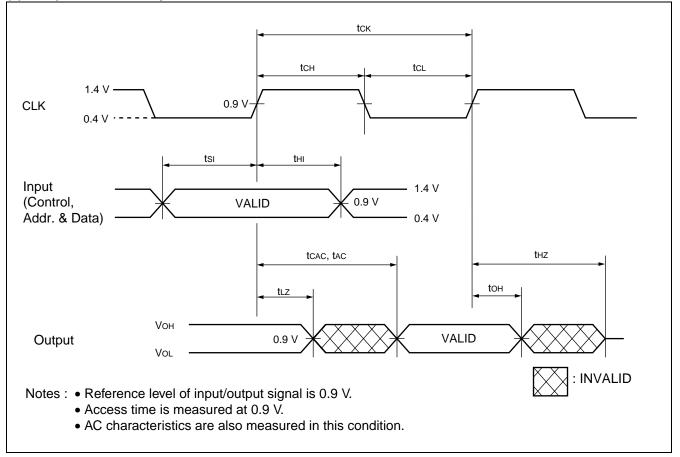
(2) Base Values for Clock Count/Latency

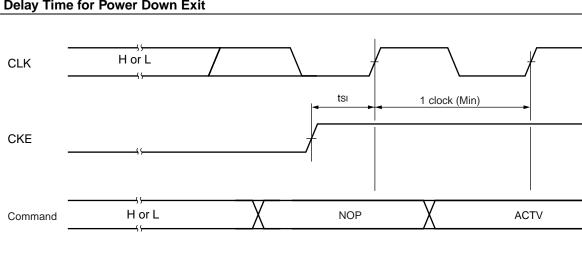
*: trc (Min) is not sum of tras (Min) and trp (Min). Actual clock count of trc (ℓ rc) must satisfy trc (Min), tras (Min) and trp (Min).

(3) Clock Count Formula

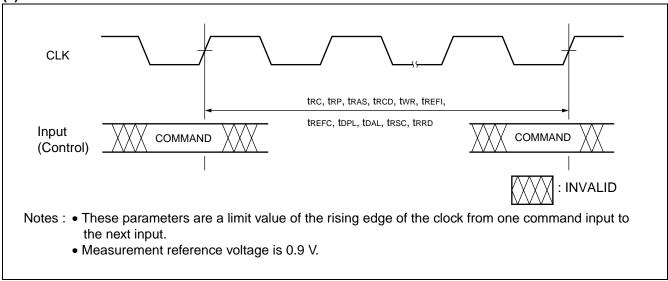

 $Clock \ge \frac{Base Value}{Clock Period}$ (Round up to a whole number)

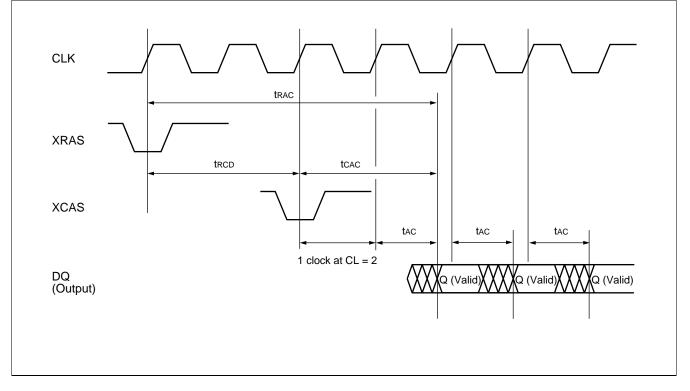
Note: All base values are measured from the clock edge at the command input to the clock edge for the next command input. All clock counts are calculated by a simple formula : clock count equals base value divided by clock period (round up to a whole number).


(4) Latency - Fixed Values


(The latency values on these parameters are fixed regardless of clock period.)							
Parameter		Symbol	MB81ES171	Unit			
		Symbol	-12	-15	Unit		
CKE to Clock Disable		ℓ cke	1	1	cycle		
DQM to Output in High-Z	CL = 1	ℓ DQZ1	1	1	cycle		
	CL = 2	ℓ dqz2	2	2	cycle		
DQM to Input Data Delay		l dqd	0	0	cycle		
Last Output to Write Command Delay		ℓ owd	2	2	cycle		
Write Command to Input Data Delay		ℓ dwd	0	0	cycle		
Procharge to Output in High 7 Delay	CL = 1	ℓ ROH1	1	1	cycle		
Precharge to Output in High-Z Delay	CL = 2	ℓ ROH2	2	2	cycle		
Burst Stop Command to Output in High-Z Delay	CL = 1	ℓ BSH1	1	1	cycle		
	CL = 2	ℓ BSH2	2	2	cycle		
XCAS to XCAS Delay (Min)		ℓ ccd	1	1	cycle		
XCAS Bank Delay (Min)		ℓ cbd	1	1	cycle		

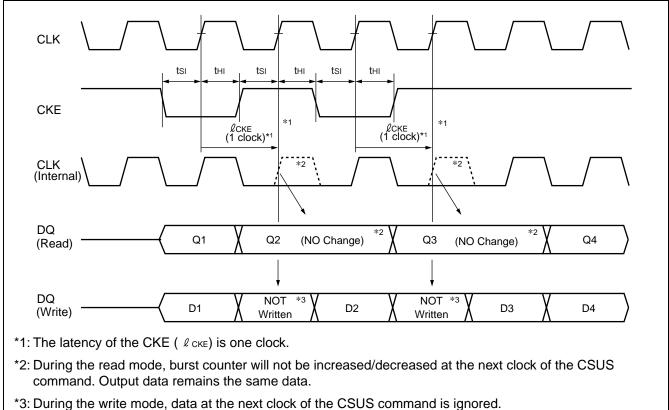
(5) Measurement Condition of AC Characteristics (Load Circuit)


(6) Setup, Hold and Delay Time

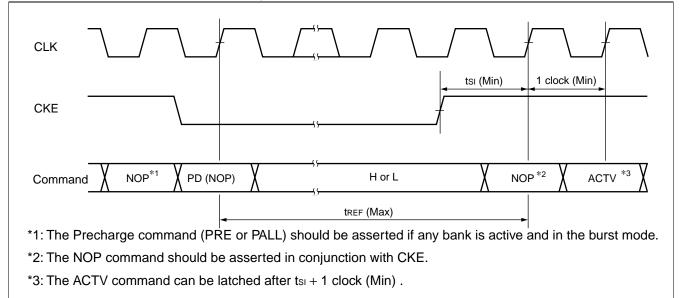


(7) Delay Time for Power Down Exit

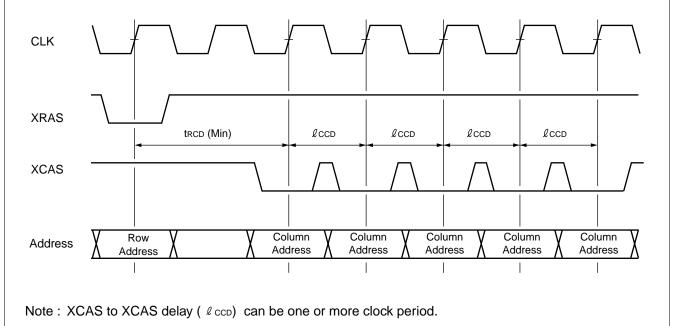
(8) Pulse Width

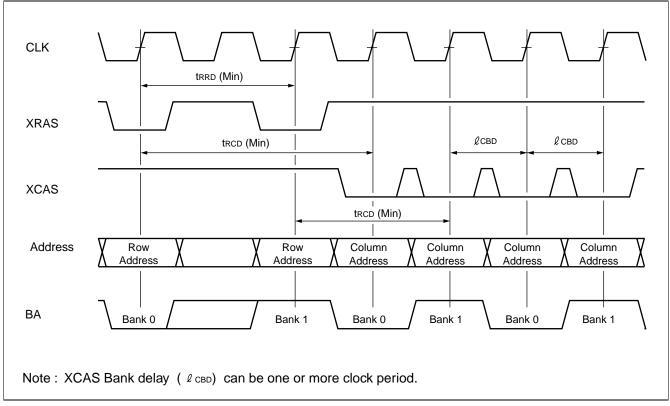


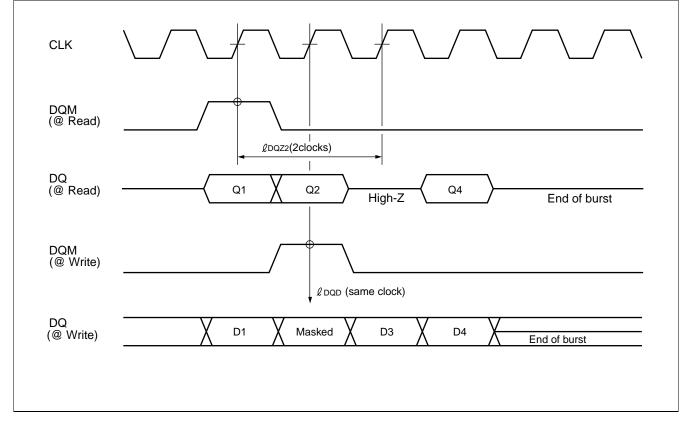
(9) Access Time

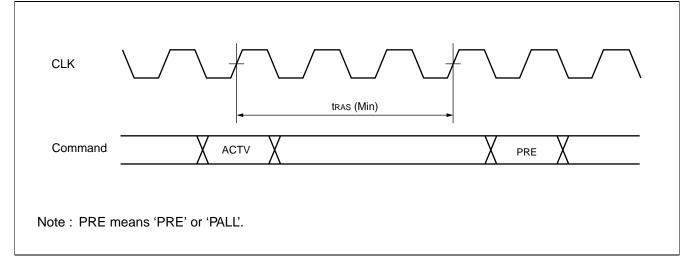


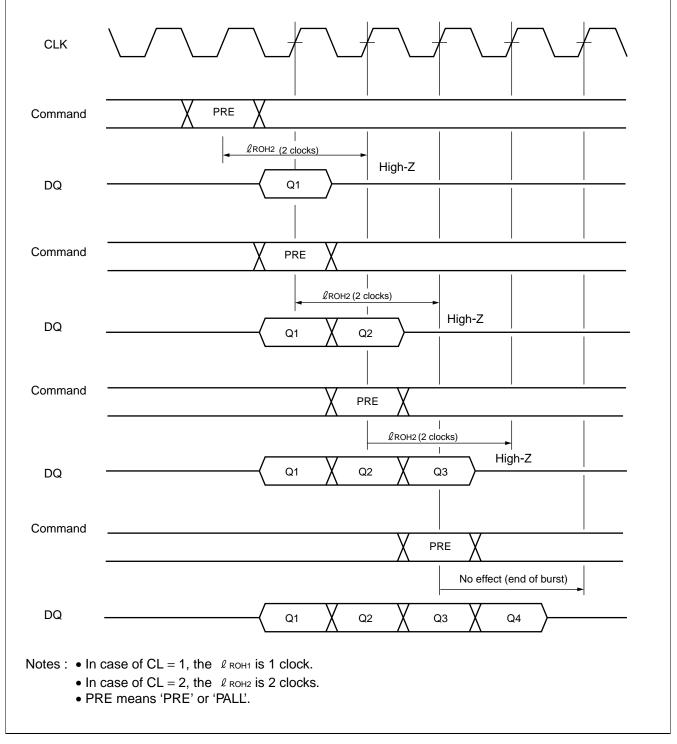
■ TIMING DIAGRAMS

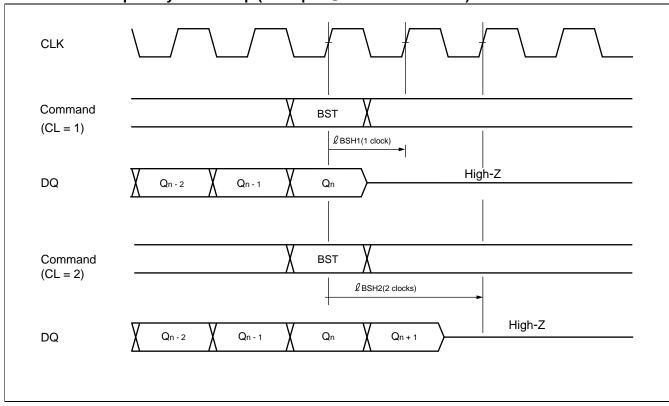

1. Clock Enable - READ and WRITE Suspend (@ BL = 4)


2. Clock Enable - Power Down Entry and Exit

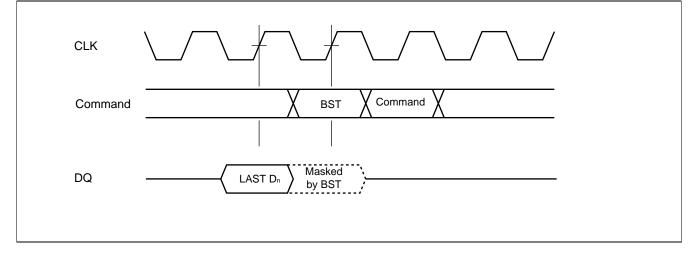


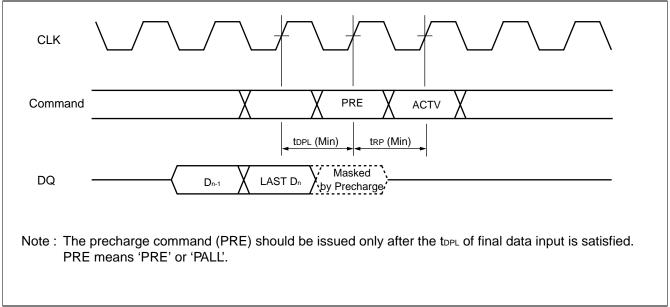

4. Different Bank Address Input Delay



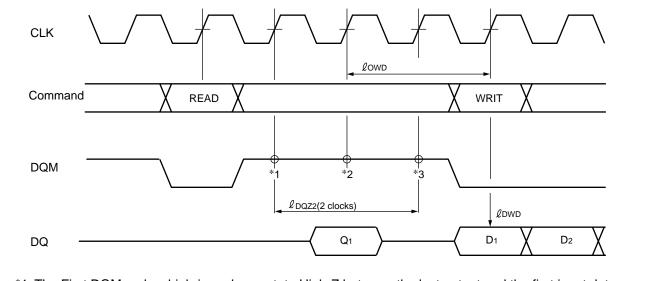


6. Precharge Timing (Applied to the Same Bank)

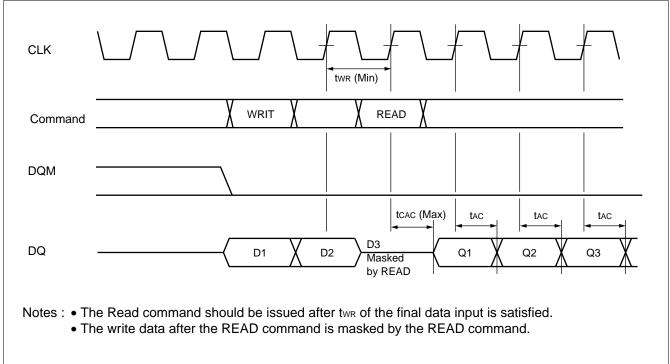




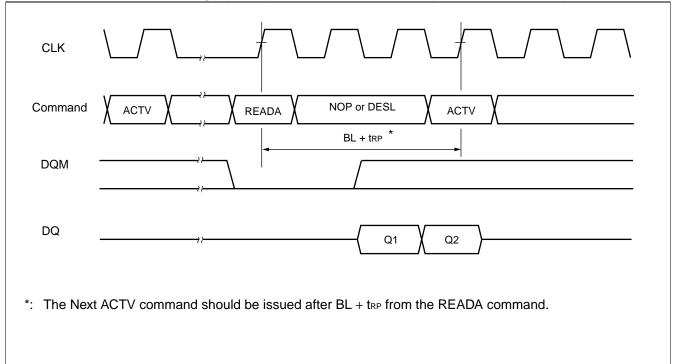
8. READ Interrupted by Burst Stop (Example @ BL = Full Column)


9. WRITE Interrupted by Burst Stop (Example @ BL = 2)

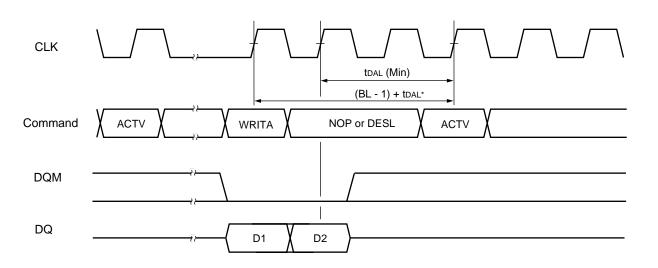
10. WRITE Interrupted by Precharge


11. READ Interrupted by WRITE (Example @ CL = 2, BL = 4)

*1: The First DQM makes high-impedance state High-Z between the last output and the first input data.

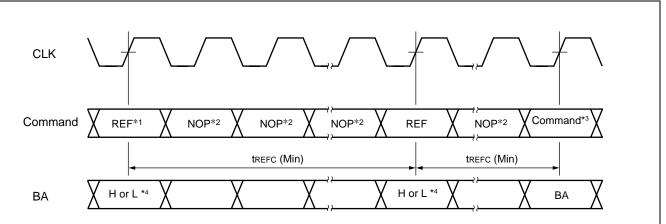

*2: The Second DQM makes internal output data mask to avoid bus contention.

*3: The Third DQM in illustrated above also makes internal output data mask. If burst read ends (the final data output) at or after the second clock of burst write, this third DQM is required to avoid internal bus contention.



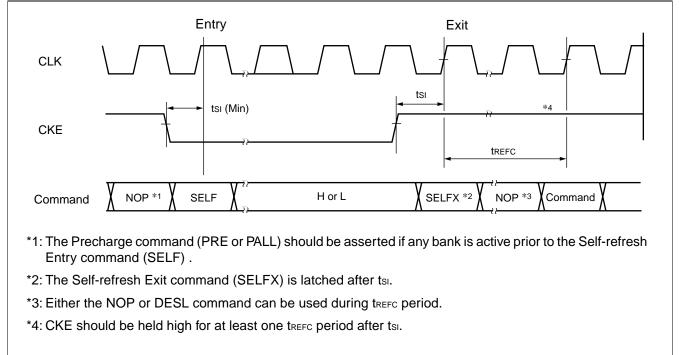
12. WRITE to READ Timing (Example @ CL = 1, BL = 4)

13. READ with Auto-Precharge (Example @ CL = 2, BL = 2 Applied to same bank)

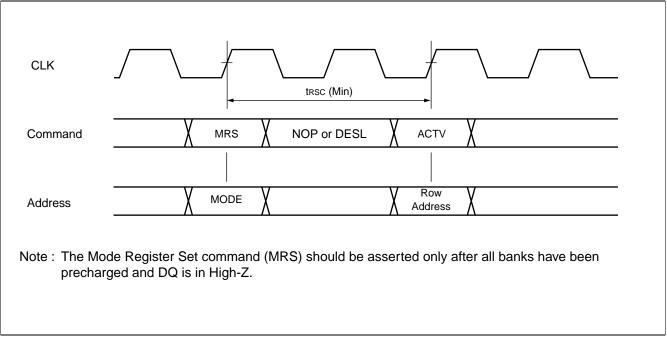


*: The Next command should be issued after $(BL - 1) + t_{DAL}$ from the WRITA command.

Notes: • If the final data is masked by DQM, the precharge does not start at the clock of the final data input. • Once the auto precharge command is asserted, no new command within the same bank can be issued.


• The Auto-precharge command can not be invoked at full column burst operation.

15. Auto-Refresh Timing



- *1: All banks should be precharged prior to the first Auto-refresh command (REF) .
- *2: Either the NOP or DESL command should be asserted within tREFC period while Auto-refresh mode.
- *3: Any activation command such as the ACTV or MRS commands other than the REF command should be asserted after tREFC from the last REF command.
- *4: Bank select is ignored at REF command. The refresh address and bank select are selected by the internal refresh counter.

16. Self-Refresh Entry and Exit Timing

17. Mode Register Set Timing

■ ORDERING INFORMATION

Part number	Configuration	Shipping form	Remarks
MB81ES171625-12WFKT	512 K word \times 16 bit \times 2 bank	Wafer	
MB81ES171625-15WFKT	512 K word \times 16 bit \times 2 bank	Wafer	
MB81ES173225-12WFKT	256 K word \times 32 bit \times 2 bank	Wafer	
MB81ES173225-15WFKT	256 K word \times 32 bit \times 2 bank	Wafer	

FUJITSU LIMITED

All Rights Reserved.

The contents of this document are subject to change without notice. Customers are advised to consult with FUJITSU sales representatives before ordering.

The information, such as descriptions of function and application circuit examples, in this document are presented solely for the purpose of reference to show examples of operations and uses of Fujitsu semiconductor device; Fujitsu does not warrant proper operation of the device with respect to use based on such information. When you develop equipment incorporating the device based on such information, you must assume any responsibility arising out of such use of the information. Fujitsu assumes no liability for any damages whatsoever arising out of the use of the information.

Any information in this document, including descriptions of function and schematic diagrams, shall not be construed as license of the use or exercise of any intellectual property right, such as patent right or copyright, or any other right of Fujitsu or any third party or does Fujitsu warrant non-infringement of any third-party's intellectual property right or other right by using such information. Fujitsu assumes no liability for any infringement of the intellectual property rights or other rights of third parties which would result from the use of information contained herein.

The products described in this document are designed, developed and manufactured as contemplated for general use, including without limitation, ordinary industrial use, general office use, personal use, and household use, but are not designed, developed and manufactured as contemplated (1) for use accompanying fatal risks or dangers that, unless extremely high safety is secured, could have a serious effect to the public, and could lead directly to death, personal injury, severe physical damage or other loss (i.e., nuclear reaction control in nuclear facility, aircraft flight control, air traffic control, mass transport control, medical life support system, missile launch control in weapon system), or (2) for use requiring extremely high reliability (i.e., submersible repeater and artificial satellite).

Please note that Fujitsu will not be liable against you and/or any third party for any claims or damages arising in connection with above-mentioned uses of the products.

Any semiconductor devices have an inherent chance of failure. You must protect against injury, damage or loss from such failures by incorporating safety design measures into your facility and equipment such as redundancy, fire protection, and prevention of over-current levels and other abnormal operating conditions.

If any products described in this document represent goods or technologies subject to certain restrictions on export under the Foreign Exchange and Foreign Trade Law of Japan, the prior authorization by Japanese government will be required for export of those products from Japan.

F0306 © FUJITSU LIMITED Printed in Japan