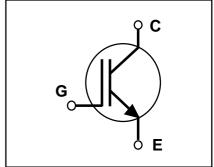

SGH23N60UF


FEATURES

- * High Speed Switching
- * Low Saturation Voltage
 - : V_{CE}(sat) = 1.95 V (@ Ic=12A)
- * High Input Impedance

APPLICATIONS

- * AC & DC Motor controls
- * General Purpose Inverters
- * Robotics, Servo Controls
- * Power Supply
- * Lamp Ballast

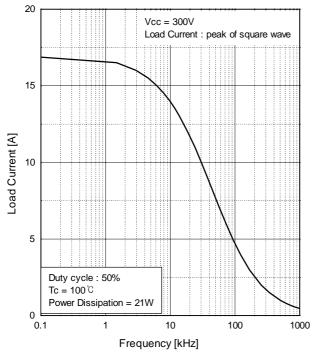
ABSOLUTE MAXIMUM RATINGS

Symbol	Characteristics	Rating	Units
V _{CES}	Collector-Emitter Voltage	600	V
V_{GES}	Gate-Emitter Voltage	±20	V
I _C	Collector Current @ Tc = 25°C	23	Α
	Collector Current @ Tc = 100°C	12	Α
I _{CM (1)}	Pulsed Collector Current	92	Α
P _C	Maximum Power Dissipation @Tc = 25°C	100	W
	Maximum Power Dissipation @Tc = 100°C	40	W
Tj	Operating Junction Temperature	-55 ~ 150	°C
Tstg	Storage Temperature Range -55 ~ 150		°C
TL	Maximum Lead Temp. For Soldering 300 °C		°C
	Purposes, 1/8" from case for 5 seconds		

Notes:(1) Repetitive rating: Pulse width limited by max. junction temperature

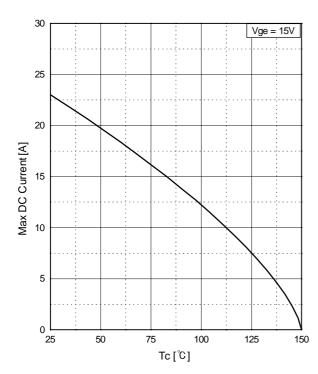
ELECTRICAL CHARACTERISTICS

(Tc=25°C,Unless Otherwise Specified)


Symbol	Characteristics	Test Conditions	Min	Тур	Max	Units
BV _{CES}	C - E Breakdown Voltage	V _{GE} = 0V , I _C = 250uA	600	-	-	V
$\Delta V_{\text{CES}/}$	Temperature Coeff. of	$V_{GE} = 0V$, $I_C = 1mA$	-	0.6	-	V/°C
ΔT_J	Breakdown Voltage					
$V_{GE(th)}$	G - E threshold voltage	$I_C = 12\text{mA}$, $V_{CE} = V_{GE}$	4.0	5.5	7.5	V
I _{CES}	Collector cutoff Current	$V_{CE} = V_{CES}$, $V_{GE} = 0V$	-	-	250	uA
I _{GES}	G - E leakage Current	$V_{GE} = V_{GES}$, $V_{CE} = 0V$	-	-	100	nA
V _{CE} (sat)	Collector to Emitter	Ic=12A, V _{GE} = 15V	-	1.95	2.6	٧
	saturation voltage	Ic=23A, V _{GE} = 15V	-	2.6	-	٧
Cies	Input capacitance	V _{GE} = 0V , f = 1MHz	-	720	-	pF
Coes	Output capacitance	V _{CE} = 30V	-	65	-	pF
Cres	Reverse transfer capacitance		-	26	-	pF
td(on)	Turn on delay time	V _{CC} = 300V , I _C = 12A	-	12	-	ns
tr	Turn on rise time	V _{GE} = 15V	-	20	-	ns
td(off)	Turn off delay time	$R_{G} = 23\Omega$	-	55	85	ns
tf	Turn off fall time	Inductive Load	-	100	220	ns
Eon	Turn on Switching Loss		-	0.11	-	mJ
Eoff	Turn off Switching Loss		-	0.19	-	mJ
Ets	Total Switching Loss]	-	0.3	0.5	mJ
Qg	Total Gate Charge	Vcc = 300V	-	48	72	nC
Qge	Gate-Emitter Charge	V _{GE} = 15V	-	11	16	nC
Qgc	Gate-Collector Charge	Ic = 12A	-	14	21	nC
Le	Internal Emitter Inductance	Measured 5mm from PKG	-	7.5	-	nH

THERMAL RESISTANCE

Symbol	Characteristics	Min	Тур	Max	Units
R _θ JC	Junction-to-Case	-	-	1.2	°C/W
R _e JA	Junction-to-Case	-	-	40	°C/W
R _θ CS	Case-to-Sink	-	0.24	-	°C/W


100
80
Tc = 25°C

Tc = 100°C

40
20
0 2 4 6 8 10

Fig.1 Typical Load Current vs. Frequency

Fig.2 Typical Output Characteristics

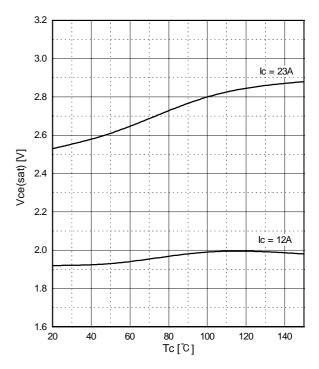


Fig.4 Collector to Emitter Voltage vs. Case Temperature

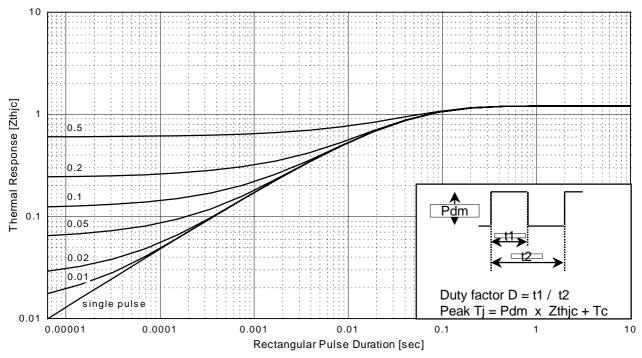


Fig.5 Maximum Effective Transient Thermal Impedance, Junction to Case

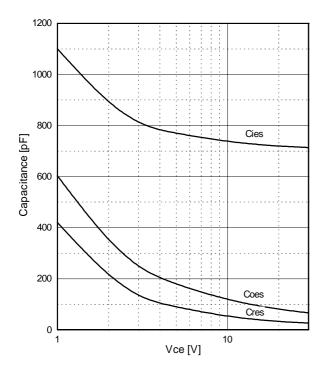


Fig.6 Typical Capacitance vs.
Collector to Emitter Voltage

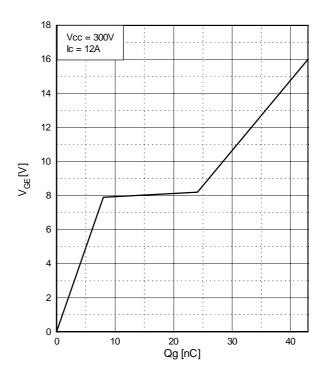


Fig.7 Typical Gate Charge vs. Gate to Emitter Voltage

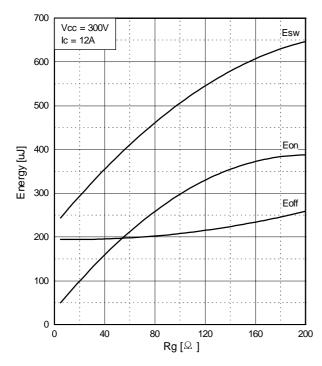


Fig.8 Typical Switching Loss vs. Gate Resistance

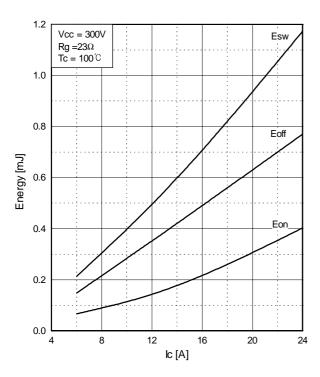


Fig.10 Typical Switching loss vs.
Collector to Emitter Current

Fig.9 Typical Switching Loss vs. Case Temperature

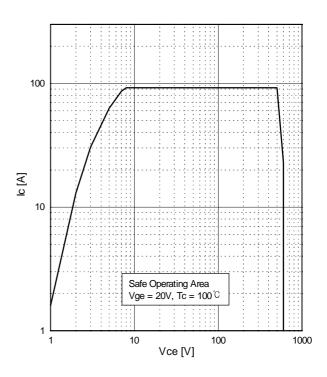


Fig.11 Turn-off SOA

TRADEMARKS

The following are registered and unregistered trademarks Fairchild Semiconductor owns or is authorized to use and is not intended to be an exhaustive list of all such trademarks.

ACEXTMISOPI ANAR™ $\mathsf{CoolFET}^\mathsf{TM}$ MICROWIRETM CROSSVOLT™ **POPTM** E2CMOS™ PowerTrench™ QSTM FACT™ $QuietSeries^{TM}\\$ FACT Quiet Series™ FAST® SuperSOTTM-3 FASTr™ SuperSOTTM-6 GTO^TM SuperSOTTM-8 HiSeC™ TinyLogicTM

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVER ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION.

As used herein:

- 1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or © whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in significant injury to the user.
- 2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

LIFE SUPPORT POLICY

Definition of Terms

Datasheet Identification	Product Status	Definition
Advance Information	Formative or In Design	This datasheet contains the design specifications for product development. Specifications may change in any manner without notice.
Preliminary	First Production	This datasheet contains preliminary data, and supplementary data will be published at a later data. Fairchild Semiconductor reserves the right to make changes at any time without notices in order to improve design.
No Identification Needed	Full Production	This datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.
Obsolete	Not In Production	This datasheet contains specifications on a product that has been discontinued by Fairchild semiconductor. The datasheet is printed for reference information only.