agere

PSC1534 Lithium-Ion Linear Battery Charger

Features

- Low external component count and small footprint
- Charge termination indication and manual shutdown using PROG pin
- Programmable charge current: 200 mA to 800 mA
- 4.1 V or 4.2 V preset voltages
- Automatic trickle charging at IPROG/10 for heavily discharged batteries requires no additional external components
- Very low quiescent battery current during shutdown and standby (charger removed)
- Charger undervoltage lockout and battery overvoltage lockout
- Overcurrent/overtemperature protection
- Low-profile (1 mm) SOT-23 package

Applications

 Any application that requires a compact, low-cost solution for Li-lon battery charging

Typical Application

Figure 1. 500 mA Li-Ion Battery Charger

Description

The PSC1534 is a constant-current/constant-voltage Li-lon battery charger controller that is functionally equivalent and performance equivalent to the LTC^{\otimes} 1734. As an enhancement, the PSC1534 also includes automatic detection and trickle charging of deeply discharged batteries (VBAT <2.42 V).

The PSC1534 allows charge current programming using a single external resistor, RPROG. The voltage on the PROG pin is proportional to the charging current at the ISENSE pin, allowing the user to use an external A/D to monitor charging progress. A low battery drain (BAT pin) manual shutdown state can be forced by floating the PROG pin. When the input supply (VIN) is removed, the PSC1534 enters a very lowcurrent sleep mode, during which BAT input supply current is <1 μ A.

Figure 2. PROG Pin Indicates Charge Status

Block Diagram

Pin Information

Table 1. Pin Descriptions

Pin Number	Signal Name	Туре	Description
1	ISENSE	Output	Charging current sense node. Supplies a monitored and controlled current from VCC to the PNP emitter.
2	GND	GND	Ground reference for all internal circuits. Kelvin connects battery ground to GND to minimize battery top-off voltage error.
3	Vcc	Supply	Positive input supply for all internal circuits and external charging current (PNP emitter). The internal charging current control loop monitors and controls the current flow between VCC and ISENSE. Bypass this pin to GND with a 1 μ F to 10 μ F tantalum capacitor.
4	PROG	I/O	Charge current programming pin. Use an external resistor, RPROG, to set current-mode charging current. ICHRG = 1.5 V/RPROG. If the voltage on PROG exceeds 2.15 V, the PSC1534 enters manual shutdown mode. This pin can be monitored by an external A/D converter.
5	BAT	I/O	Battery voltage sense input. Bypass this pin with a 10 μF tantalum capacitor close to BAT and GND.
6	DRIVE	Output	Output base driver for PNP transistor. This driver output is current limited and monitored by an internal thermal shutdown circuit that will disable the driver if high-current fault conditions occur.

Absolute Maximum Ratings

Stresses in excess of the absolute maximum ratings can cause permanent damage to the device. These are absolute stress ratings only. Functional operation of the device is not implied at these or any other conditions in excess of those given in the operational sections of the data sheet. Exposure to absolute maximum ratings for extended periods can adversely affect device reliability.

Table 1. Absolute Maximum Ratings*

Parameter	Value	Unit
Supply Voltage (VCC)	-0.3 to +6.5	V
Input Voltage (BAT, PROG)	-0.3 to (Vcc + 0.3)	V
Output Voltage (DRIVE)	-0.3 to (Vcc + 0.3)	V
Output Current (ISENSE)	-900	mA
Short-circuit Duration (DRIVE)	Indefinite	
Junction Temperature	125	°C
Operating Ambient Temperature Range [†]	-40 to +85	°C
Operating Junction Temperature [†]	100	°C
Storage Temperature Range	-65 to +150	°C
Lead Temperature (soldering, 10 s)	300	°C

* Absolute maximum ratings are those values beyond which the life of a device may be impaired.

† Some electrical characteristics are guaranteed by design and statistical process control.

Electrical Characteristics

In Table 2, specifications are at TA = 25 °C. VCC = 5 V, GND = 0 V, and VBAT = VFLOAT unless otherwise noted. **Bold** text highlights the specifications that apply over the -40 °C to +85 °C operating temperature range.

Table 2. Electrical Characteristics

Parameter	Conditions	Min	Тур	Max	Unit
Vcc Supply					
Operating Supply Range [*]	—	4.55	_	6.0	V
Quiescent Vcc Pin Supply Current	VBAT = 5 V, (forces IDRIVE = IBAT = 0), IPROG = 200 μ A, (7500 Ω from PROG to GND)	_	550	1150	μA
Vcc Pin Supply Current in Manual Shutdown	PROG pin open	—	350	900	μA
Battery Drain Current in Manual Shutdown [†]	PROG pin open	-2	0.2	2	μA
Battery Drain Current in Sleep Mode [‡]	Vcc = 0 V	-2	0.2	2	μΑ
Undervoltage Lockout Exit Threshold	Vcc increasing	4.45	4.56	4.68	V
Undervoltage Lockout Entry Threshold	Vcc decreasing	4.30	4.41	4.53	V
Undervoltage Lockout Hysteresis	Vcc decreasing	—	150		mV
	Charging Performance				
Output Float Voltage in Constant Voltage Mode	4.1 V version, IBAT = 10 mA, 4.55 V \leq VCC \leq 5.5 V, 4.2 V version, IBAT = 10 mA, 4.55 V \leq VCC \leq 5.5 V	4.059 4.158	4.10 4.20	4.141 4.242	>
Output Full-scale Current When Programmed for 200 mA in Constant Current Mode	RPROG = 7500 Ω, 4.55 V \leq VCC \leq 5.5 V, pass PNP beta > 50	155	200	240	mA
Output Full-scale Current When Programmed for 700 mA in Constant Current Mode	RPROG = 2143 Ω , 4.55 V \leq VCC \leq 5.5 V, pass PNP beta > 50	620	700	770	mA
Current Monitor Voltage on PROG Pin	BAT = 10% of BAT1, RPROG = 7500 Ω 4.55 V \leq VCC \leq 5.5 V, pass PNP beta > 50, 0 °C \leq TA \leq 85 °C	0.025	0.15	0.30	V
Current Monitor Voltage on PROG Pin	IBAT = 10% of IBAT2, RPROG = 2143Ω , $4.55 V \le VCC \le 5.5 V$, pass PNP beta > 50, $0 \degree C \le TA \le 85 \degree C$ VDRIVE = $3.5 V$	0.08	0.15	0.22	V
		50			шд

* When operating near minimum Vcc, a low Vce-sat PNP transistor is required.

† External PNP pass transistor has negligible Ib-c when the Vb-c = 0.8 V (VCC - VBAT = 5.0 - 4.2 = 0.8 V).

‡ External PNP pass transistor has negligible I_{b-e} when the $V_{b-e} = 4.2 \text{ V} (V_{BAT} - V_{CC} = 4.2 \text{ V})$.

Electrical Characteristics (continued)

Table 2. Electrical Characteristics (continued)

Parameter	Conditions	Min	Тур	Max	Unit	
Automatic Trickle Charging						
Trickle Charge Battery Voltage Entry Threshold	VBAT decreasing	2.32	2.42	2.52	V	
Trickle Charge Battery Voltage Exit Threshold	VBAT increasing	2.42	2.52	2.62	V	
Trickle Charge Battery Voltage Hysteresis	—	_	100	_	mV	
Trickle Charge—Charge Current	RPROG = 3000Ω ,	10	50	90	mA	
	$4.55 V \le VCC \le 5.5 V,$					
	pass PNP beta > 50					
Charger Manual Control						
Manual Shutdown Threshold	VPROG increasing	2.05	2.15	2.25	V	
Manual Shutdown Hysteresis	VPROG decreasing from VMSDT		90		mV	
Programming Pin Pull-up Current	Vprog = 2.5 V	-6	-3	-1.5	μA	
Protection						
Drive Output Short-circuit Current Limit	VDRIVE = VCC	35	65	130	mA	

† When operating near minimum Vcc, a low Vce-sat PNP transistor is required.

‡ External PNP pass transistor has negligible Ib-c when the Vb-c = 0.8 V (VCC - VBAT = 5.0-4.2 = 0.8 V).

§ External PNP pass transistor has negligible I_{b-e} when the $V_{b-e} = 4.2 \text{ V}$ (VBAT - VCC = 4.2 - 0 = 4.2 V).

Typical Performance Characteristics

Figure 5. Float Voltage vs. Temperature

Typical Performance Characteristics (continued)

Figure 7. IBAT1 vs. Temperature, RPROG = 7.5 k Ω

Figure 8. VPROG vs. IBAT1 (RPROG = 7.5 k Ω)

Figure 9. IPROG_PU vs. VCC

Figure 10. IBAT1 vs. Temperature, RPROG = 2 k Ω

Figure 11. VPROG vs. IBAT (RPROG = $2 \text{ k}\Omega$)

Figure 12. IPROG_PU vs. Temperature

systems

agere

Package Description

S6 Package, 6-Lead Plastic SOT-23

All dimensions are in millimeters.

Ordering Information

Table 3. Ordering Information

Device Version	Part Order Number	SOT-23-6 Package Marking
PSC1534-4.1	700045365	Аххх
PSC1534-4.2	700045383	Lxxx

LTC and *LT* are registered trademarks of Linear Technology Corporation.

For additional ir	nformation, contact your Agere Systems Account Manager or the following:
INTERNET:	http://www.agere.com
E-MAIL:	docmaster@agere.com
N. AMERICA:	Agere Systems Inc., Lehigh Valley Central Campus, Room 10A-301C, 1110 American Parkway NE, Allentown, PA 18109-9138
	1-800-372-2447, FAX 610-712-4106 (In CANADA: 1-800-553-2448, FAX 610-712-4106)
ASIA:	Agere Systems Hong Kong Ltd., Suites 3201 & 3210-12, 32/F, Tower 2, The Gateway, Harbour City, Kowloon
	Tel. (852) 3129-2000, FAX (852) 3129-2020
	CHINA: (86) 21-5047-1212 (Shanghai), (86) 755-25881122 (Shenzhen)
	JAPAN: (81) 3-5421-1600 (Tokyo), KOREA: (82) 2-767-1850 (Seoul), SINGAPORE: (65) 6778-8833, TAIWAN: (886) 2-2725-5858 (Taipei)
EUROPE:	Tel. (44) 7000 624624, FAX (44) 1344 488 045

Agere Systems Inc. reserves the right to make changes to the product(s) or information contained herein without notice. No liability is assumed as a result of their use or application. Agere, Agere Systems, and the Agere logo are trademarks of Agere Systems Inc.

Copyright © 2003 Agere Systems Inc. All Rights Reserved

April 2003 DS02-365MTD