DS07-12534-3E

8-bit Proprietary Microcontroller

CMOS

F²MC-8L MB89620R Series

MB89623R/625R/P625/W625/626R/627R/P627/W627/T627R MB89PV620

■ DESCRIPTION

The MB89620R series has been developed as a general-purpose version of the F²MC*-8L family consisting of proprietary 8-bit, single-chip microcontrollers.

In addition to the F²MC-8L CPU core which can operate at low voltage but at high speed, the microcontrollers contain a variety of peripheral functions such as timers, serial interfaces, an A/D converter, and an external interrupt.

The MB89620R series is applicable to a wide range of applications from consumer products to industrial equipment, including portable devices.

*: F2MC stands for FUJITSU Flexible Microcontroller.

■ FEATURES

Various package options
 Three types of QFP packages (1 mm, 0.65 mm, or 0.5 mm lead pitch)
 SDIP packages

High-speed processing at low voltage
 Minimum execution time: 0.4 μs/3.5 V, 0.8 μs/2.7 V

• F2MC-8L family CPU core

Instruction set optimized for controllers

Multiplication and division instructions 16-bit arithmetic operations Test and branch instructions

Bit manipulation instructions, etc.

Four types of timers

8-bit PWM timer (also usable as a reload timer)

8-bit pulse width count timer (Continuous measurement capable, applicable to remote control, etc.)

16-bit timer/counter

20-bit timebase timer

· Two serial interfaces

Switchable transfer direction allows communication with various equipment.

• 8-bit A/D converter

Sense mode function enabling comparison at 5 µs

Activation by an external input capable

(Continued)

(Continued)

- External interrupt: 4 channels

 Four channels are independent and capable of wake-up from low-power consumption modes (with an edge detection function).
- Low-power consumption modes
 Stop mode (Oscillation stops to minimize the current cunsumption.)
 Sleep mode (The CPU stops to reduce the current consumption to approx. 1/3 of normal.)
- Bus interface functions Including hold and ready functions

■ PACKAGE

To Top / Lineup / Index MB89620R Series

■ PRODUCT LINEUP

Part number Parameter	MB89623R	MB89625R	MB89626R	MB89627R	MB89T627R	MB89P625 MB89W625	MB89P627 MB89W627	MB89PV620	
Classification			ction product M products)	S	External ROM products	One-time F products/E products		Piggyback/ evaluation product for evaluation and development	
ROM size	8 K×8 bits (internal mask ROM)	16 K × 8 bits (internal mask ROM)	24 K × 8 bits (internal mask ROM)	32 K × 8 bits (internal mask ROM)	External ROM	16 K × 8 bits (internal PROM, programmable with general- purpose EPROM programmer)	32 K × 8 bits (internal PROM, programmable with general- purpose EPROM programmer)	32 K×8 bits (external ROM)	
RAM size	256×8 bits	512×8 bits	768×8 bits	1 K×8 bits	1 K×8 bits	512×8 bits	1 K×8 bits	1 K×8 bits	
CPU functions	Number of instructions: Instruction bit length: Instruction length: Data bit length: Minimum execution time: Interrupt processing time: 136 8 bits 1 to 3 bytes 1, 8, 16 bits 0.4 μs /10 MHz 1 to 3 bytes 1, 8, 16 bits 1, 8, 16 bits 1, 8, 16 bits 1, 8, 10 MHz								
Ports	I/O po Outpu			8 (All als 8 (4 port 8 (All als	so serve as p s also serve so serve as b	as periphera eripherals.) as periphera us control pi bus pins or p	ıls.) ns.)		
8-bit PWM timer	8-bit rel			led output ca operation (co			cle: 0.4 μs to 3 839 ms)	3.3 ms)	
8-bit pulse width count timer	8-bit re	eload timer o	peration (tog 8-bit pu	gled output o lse width me	apable, oper asurement o	ating clock c peration	e: 0.4 to 12.8 ycle: 0.4 to 1 from \downarrow to \downarrow c	2.8 μs)	
16-bit timer/ counter				peration (ope operation (Ri					
8-bit serial I/ O 1, 8-bit serial I/ O 2		8 bits LSB first/MSB first selectable One clock selectable from four transfer clocks (one external shift clock, three internal shift clocks: 0.8 μs, 3.2 μs, 12.8 μs)							
8-bit A/D converter		Continuous	A/D conve Sens	-bit resolutio rsion mode (e mode (con an external Reference v	conversion tive:	me: 18 μs) 5 μs) an internal ti	mer capable		

(Continued)

(Continued)

Part number Parameter	MB89623R	MB89625R	MB89626R	MB89627R	MB89T627R	MB89P625 MB89W625	MB89P627 MB89W627	MB89PV620	
External interrupt	4 independent channels (edge selection, interrupt vector, source flag) Rising edge/falling edge selectable Used also for wake-up from stop/sleep mode. (Edge detection is also permitted in stop mode.)								
Standby modes		Sleep mode, stop mode							
Process				CM	OS				
Operating voltage*	2.2 V to 6.0 V 2.7 V to 6.0 V								
EPROM for use		MBM27C256A-20TV MBM27C256A-20CZ							

^{*:} Varies with conditions such as the operating frequency. (See section "■ Electrical Characteristics.")

■ PACKAGE AND CORRESPONDING PRODUCTS

Package	MB89623R MB89625R	MB89626R MB89627R MB89T627R MB89P625	MB89P627	MB89W625 MB89W627	MB89PV620
DIP-64P-M01	0	0	0	×	×
FPT-64P-M03	0	×*	×*	×*	×*
FPT-64P-M06	0	0	0	×	×
FPT-64P-M09	0	0	×*	×*	×*
DIP-64C-A06	×	×	×	0	×
MQP-64C-P01	×	×	×	×	0
MDP-64C-P02	×	×	×	×	0

○: Available ×: Not available

Note: For more information about each package, see section "■ Package Dimensions."

^{*:} Lead pitch converter sockets (manufacturer: Sun Hayato Co., Ltd.) are available. 64SD-64QF2-8L: For conversion from DIP-64P-M01 or DIP-64C-A06 to FPT-64P-M03 64SD-64SQF-8L: For conversion from DIP-64P-M01 or DIP-64C-A06 to FPT-64P-M09 Inquiry: Sun Hayato Co., Ltd.: TEL (81)-3-3986-0403 FAX (81)-3-5396-9106

■ DIFFERENCES AMONG PRODUCTS

1. Memory Size

Before evaluating using the piggyback product, verify its differences from the product that will actually be used. Take particular care on the following points:

- On the MB89623R, the upper half of the register bank cannot be used.
- On the MB89P627, the program area starts from address 8007_H but on the MB89PV620 and MB89627R starts from 8000_H.

(On the MB89P627, addresses $8000_{\rm H}$ to $8006_{\rm H}$ comprise the option setting area, option settings can be read by reading these addresses. On the MB89PV620 and MB89627R, addresses $8000_{\rm H}$ to $8006_{\rm H}$ could also be used as a program ROM. However, do not use these addresses in order to maintain compatibility of the MB89P627.)

- The stack area, etc., is set at the upper limit of the RAM.
- · The external area is used.

2. Current Consumption

- In the case of the MB89PV620, add the current consumed by the EPROM which is connected to the top socket.
- When operated at low speed, the product with an OTPROM (one-time PROM) or an EPROM will consume more current than the product with a mask ROM.

However, the current consumption in sleep/stop modes is the same. (For more information, see section "Electrical Characteristics".)

3. Mask Options

Functions that can be selected as options and how to designate these options vary by the product.

Before using options check section "■ Mask Options."

Take particular care on the following points:

- A pull-up resistor cannot be set for P40 to P47 on the MB89P625, MB89W625, MB89P627, and MB89W627.
- A pull-up resistor is not selectable for P50 to P57 when the A/D converter is used.
- Options are fixed on the MB89PV620.

4. Differences between the MB89620 and MB89620R Series

· Memory access area

Memory access area of the following products is the same; both the MB89625 and MB89625R, and both the MB89627 and MB89627R.

The access area of the MB89623 and MB89626 is different from that of the MB89623R and MB89626R respectively when using in external bus mode. See below.

Address	Memory area					
Address	MB89623	MB89623R				
0000н to 007Fн	I/O area	I/O area				
0080н to 017Fн	RAM area	RAM area				
0180н to 027Fн		Access prohibited				
0280н to BFFFн	External area	External area				
C000н to DFFFн		Access prohibited				
E000н to FFFFн	ROM area	ROM area				

Address		Memory area					
Address	MB89626	MB89626R					
0000н to 007Fн	I/O area	I/O area					
0080н to 037Fн	RAM area	RAM area					
0380н to 047Fн		Access prohibited					
0480н to 7FFFн	External area	External area					
8000н to 9FFFн		Access prohibited					
A000н to FFFFн	ROM area	ROM area					

- Other specifications
 Both the MB89620R and MB89620 series is the same.
- Electrical specifications/electrical characteristics
 Electrical specifications of the MB89620R series are the same with that of the MB89620 series.

■ CORRESPONDENCE BETWEEN THE MB89620 AND MB89620R SERIES

- The MB89620R series is the reduction version of the MB89620 series.
- The MB89620 and MB89620R series consist of the following products:

MB89620 series	MB89623	MB89625	MB89626	MB896267	MB89P625	MB89P627	MB89PV620
MB89620R series	MB89623R	MB89625R	MB89626R	MB896267R	WID071 023	WID071 027	IVIDO71 VOZO

MB89620 series	MR80\N/625	MR80\N/627	MB89T627R
MB89620R series	WIDO7WOZJ	IVIDO 7 VVOZ 7	WIDO71027IX

■ PIN ASSIGNMENT

Pin assignment on package top (MB89PV620 only)

Pin no.	Pin name	Pin no.	Pin name	Pin no.	Pin name	Pin no.	Pin name
65	N.C.	73	A2	81	N.C.	89	ŌĒ
66	V _{PP}	74	A1	82	04	90	N.C.
67	A12	75	A0	83	O5	91	A11
68	A7	76	N.C.	84	O6	92	A9
69	A6	77	01	85	07	93	A8
70	A5	78	O2	86	O8	94	A13
71	A4	79	О3	87	CE	95	A14
72	A3	80	Vss	88	A10	96	Vcc

N.C.: Internally connected. Do not use.

■ PIN DESCRIPTION

Pin no.				Cinavit	
SH-DIP*1 MDIP*2	QFP1*3 MQFP*4	LQFP*5 QFP2*6	Pin name	Circuit type	Function
30	23	22	X0	А	Crystal oscillator pins
31	24	23	X1		
28	21	20	MOD0	В	Operating mode selection pins
29	22	21	MOD1		Connect directly to Vcc or Vss.
27	20	19	RST	С	Reset I/O pin This pin is an N-ch open-drain output type with a pull-up resistor, and a hysteresis input type. "L" is output from this pin by an internal reset source. The internal circuit is initialized by the input of "L".
56 to 49	49 to 42	48 to 41	P00/AD0 to P07/AD7	D	General-purpose I/O ports When an external bus is used, these ports function as multiplex pins of lower address output and data I/O.
48 to 41	41 to 34	40 to 33	P10/A08 to P17/A15	D	General-purpose I/O ports When an external bus is used, these ports function as upper address output.
40	33	32	P20/BUFC	F	General-purpose output-only port When an external bus is used, this port can also be used as a buffer control output by setting the BCTR.
39	32	31	P21/HAK	F	General-purpose output-only port When an external bus is used, this port can also be used as a hold acknowledge output by setting the BCTR.
38	31	30	P22/HRQ	D	General-purpose output-only port When an external bus is used, this port can also be used as a hold request input by setting the BCTR.
37	30	29	P23/RDY	D	General-purpose output-only port When an external bus is used, this port functions as a ready input.
36	29	28	P24/CLK	F	General-purpose output-only port When an external bus is used, this port functions as a clock output.
35	28	27	P25/WR	F	General-purpose output-only port When an external bus is used, this port functions as a write signal output.
34	27	26	P26/RD	F	General-purpose output-only port When an external bus is used, this port functions as a read signal output.
33	26	25	P27/ALE	F	General-purpose output-only port When an external bus is used, this port functions as an address latch signal output.

(Continued)

*1: DIP-64P-M01, DIP-64C-A06

*4: MQP-64C-P01

*5: FPT-64P-M03

*6: FPT-64P-M09

(Continued)

Pin no.			Cinavit		
SH-DIP*1 MDIP*2	QFP1*3 MQFP*4	LQFP*5 QFP2*6	Pin name	Circuit type	Function
58	51	50	P30/ADST	E	General-purpose I/O port Also serves as an A/D converter external activation. This port is a hysteresis input type.
59	52	51	P31/SCK1	E	General-purpose I/O port Also serves as the clock I/O for the 8-bit serial I/O 1. This port is a hysteresis input type.
60	53	52	P32/SO1	E	General-purpose I/O port Also serves as the data output for the 8-bit serial I/O 1. This port is a hysteresis input type.
61	54	53	P33/SI1	E	General-purpose I/O port Also serves as the data input for the 8-bit serial I/O 1. This port is a hysteresis input type.
62	55	54	P34/EC	E	General-purpose I/O port Also serves as the external clock input for the 16-bit timer/counter. This port is a hysteresis input type.
63	56	55	P35/PWC	E	General-purpose I/O port Also serves as the measured pulse input for the 8-bit pulse width count timer. This port is a hysteresis input type.
1	58	57	P36/WTO	E	General-purpose I/O port Also serves as the toggle output for the 8-bit pulse width count timer. This port is a hysteresis input type.
2	59	58	P37/PTO	E	General-purpose I/O port Also serves as the toggle output for the 8-bit PWM timer. This port is a hysteresis input type.
3 to 6	60 to 63	59 to 62	P40 to P43	G	N-ch open-drain I/O ports These ports are a hysteresis input type.
7	64	63	P44/BZ	G	N-ch open-drain I/O port Also serves as a buzzer output. This port is a hysteresis input type.
8	1	64	P45/SCK2	G	N-ch open-drain I/O port Also serves as the clock I/O for the 8-bit serial I/O 2. This port is a hysteresis input type.
9	2	1	P46/SO2	G	N-ch open-drain I/O port Also serves as the data output for the 8-bit serial I/O 2. This port is a hysteresis input type.
10	3	2	P47/SI2	G	N-ch open-drain I/O port Also serves as the data input for the 8-bit serial I/O 2. This port is a hysteresis input type.

(Continued)

*1: DIP-64P-M01, DIP-64C-A06

*2: MDP-64C-P02

*3: FPT-64P-M06

*4: MQP-64C-P01

*5: FPT-64P-M03

*6: FPT-64P-M09

To Top / Lineup / Index MB89620R Series

(Continued)

Pin no.			Circuit		
SH-DIP*1 MDIP*2	QFP1*3 MQFP*4	LQFP*5 QFP2*6	Pin name	Circuit type	Function
11 to 18	4 to 11	3 to 10	P50/AN0 to P57/AN7	Н	N-ch open-drain output-only ports Also serve as the analog input for the A/D converter.
22 to 25	15 to 18	14 to 17	P60/INT0 to P63/INT3	I	General-purpose input-only ports Also serve as an external interrupt input. These ports are a hysteresis input type.
26	19	18	P64	I	General-purpose input-only port This port is a hysteresis input type.
64	57	56	Vcc	_	Power supply pin
32, 57	25, 50	24, 49	Vss	_	Power supply (GND) pins
19	12	11	AVcc	_	A/D converter power supply pin
20	13	12	AVR	_	A/D converter reference voltage input pin
21	14	13	AVss	_	A/D converter power supply (GND) pin Use this pin at the same voltage as Vss.

*1: DIP-64P-M01, DIP-64C-A06

*2: MDP-64C-P02

*3: FPT-64P-M06

*4: MQP-64C-P01

*5: FPT-64P-M03

*6: FPT-64P-M09

• External EPROM pins (MB89PV620 only)

Pir	n no.	D:	1/0	Franction
MDIP*1	MQFP*2	Pin name	I/O	Function
65	66	V _{PP}	0	"H" level output pin
66 67 68 69 70 71 72 73 74	67 68 69 70 71 72 73 74 75	A12 A7 A6 A5 A4 A3 A2 A1 A0	0	Address output pins
75 76 77	77 78 79	O1 O2 O3	I	Data input pins
78	80	Vss	0	Power supply (GND) pin
79 80 81 82 83	82 83 84 85 86	O4 O5 O6 O7 O8	I	Data input pins
84	87	CE	0	ROM chip enable pin Outputs "H" during standby.
85	88	A10	0	Address output pin
86	89	ŌĒ	0	ROM output enable pin Outputs "L" at all times.
87 88 89	91 92 93	A11 A9 A8	0	Address output pins
90	94	A13	0	
91	95	A14	0	
92	96	Vcc	0	EPROM power supply pin
_	65 76 81 90	N.C.	_	Internally connected pins Be sure to leave them open.

To Top / Lineup / Index MB89620R Series

■ I/O CIRCUIT TYPE

Туре	Circuit	Remarks
A	X0 X1 X0 XI	At an oscillation feedback resistor of approximately 1 MΩ/5.0 V
В		
С	R P-ch	 At an output pull-up resistor (P-ch) of approximately 50 kΩ/5.0 V Hysteresis input
D	R P-ch	CMOS output CMOS input Pull-up resistor optional (except P22 and P23)
E	R P-ch	CMOS output Hysteresis input Pull-up resistor optional
F	P-ch N-ch	CMOS output

(Continued)

Туре	Circuit	Remarks
G	R N-ch	 N-ch open-drain output Hysteresis input Pull-up resistor optional (MB89623R, MB89625R, MB89626R, and MB89627R only)
Н	R N-ch Analog input	 N-ch open-drain output Analog input Pull-up resistor optional
I	R *	Hysteresis input Pull-up resistor optional

■ HANDLING DEVICES

1. Preventing Latchup

Latchup may occur on CMOS ICs if voltage higher than Vcc or lower than Vss is applied to input and output pins other than medium- and high-voltage pins or if higher than the voltage which shows on "1. Absolute Maximum Ratings" in section "■ Electrical Characteristics" is applied between Vcc and Vss.

When latchup occurs, power supply current increases rapidly and might thermally damage elements. When using, take great care not to exceed the absolute maximum ratings.

Also, take care to prevent the analog power supply (AVcc and AVR) and analog input from exceeding the digital power supply (Vcc) when the analog system power supply is turned on and off.

2. Treatment of Unused Input Pins

Leaving unused input pins open could cause malfunctions. They should be connected to a pull-up or pull-down resistor.

3. Treatment of Power Supply Pins on Microcontrollers with A/D and D/A Converters

Connect to be AVcc = DAVC = Vcc and AVss = AVR = Vss even if the A/D and D/A converters are not in use.

4. Treatment of N.C. Pins

Be sure to leave (internally connected) N.C. pins open.

5. Power Supply Voltage Fluctuations

Although Vcc power supply voltage is assured to operate within the rated range, a rapid fluctuation of the voltage could cause malfunctions, even if it occurs within the rated range. Stabilizing voltage supplied to the IC is therefore important. As stabilization guidelines, it is recommended to control power so that Vcc ripple fluctuations (P-P value) will be less than 10% of the standard Vcc value at the commercial frequency (50 to 60 Hz) and the transient fluctuation rate will be less than 0.1 V/ms at the time of a momentary fluctuation such as when power is switched.

6. Precautions when Using an External Clock

When an external clock is used, oscillation stabilization time is required even for power-on reset (optional) and wake-up from stop mode.

■ PROGRAMMING TO THE EPROM ON THE MB89P625

The MB89P625 is an OTPROM version of the MB89620R series.

1. Features

- 16-Kbyte PROM on chip
- Options can be set using the EPROM programmer.
- Equivalency to the MBM27C256A in EPROM mode (when programmed with the EPROM programmer)

2. Memory Space

Memory space in each mode such as 16-Kbyte PROM, option area is diagrammed below.

3. Programming to the EPROM

In EPROM mode, the MB89P625 functions equivalent to the MBM27C256A. This allows the PROM to be programmed with a general-purpose EPROM programmer (the electronic signature mode cannot be used) by using the dedicated socket adapter.

When the operating ROM area for a single chip is 16 Kbytes (C000_H to FFFF_H) the PROM can be programmed as follows:

· Programming procedure

- (1) Set the EPROM programmer to the MBM27C256A.
- (2) Load program data into the EPROM programmer at 4000_H to 7FFF_H (note that addresses C000_H to FFFF_H while operating as a single chip assign to 4000_H to 7FFF_H in EPROM mode).

 Load option data into addresses 3FF0_H to 3FF5_H of the EPROM programmer. (For information about each corresponding option, see "4. Setting OTPROM Options.")
- (3) Program to 3FF0H to 7FFFH with the EPROM programmer.

4. Setting OTPROM Options

The programming procedure is the same as that for the PROM. Options can be set by programming values at the addresses shown on the memory map.

The relationship between bits and options is shown on the following bit map:

• OTPROM option bit map (MB89P625)

Address	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
3FFОн	Vacancy Readable and writable	Reset pin output 1: Yes 0: No	Oscillation stabilizatio ntime 1: Crystal 0: Ceramic	Power-on reset 1: Yes 0: No				
3FF1н	P07	P06	P05	P04	P03	P02	P01	P00
	Pull-up	Pull-up	Pull-up	Pull-up	Pull-up	Pull-up	Pull-up	Pull-up
	1: No	1: No	1: No					
	0: Yes	0: Yes	0: Yes					
3FF2н	P17	P16	P15	P14	P13	P12	P11	P10
	Pull-up	Pull-up	Pull-up	Pull-up	Pull-up	Pull-up	Pull-up	Pull-up
	1: No	1: No	1: No					
	0: Yes	0: Yes	0: Yes					
3FF3н	P37	P36	P35	P34	P33	P32	P31	P30
	Pull-up	Pull-up	Pull-up	Pull-up	Pull-up	Pull-up	Pull-up	Pull-up
	1: No	1: No	1: No					
	0: Yes	0: Yes	0: Yes					
3FF4н	P57	P56	P55	P54	P53	P52	P51	P50
	Pull-up	Pull-up	Pull-up	Pull-up	Pull-up	Pull-up	Pull-up	Pull-up
	1: No	1: No	1: No					
	0: Yes	0: Yes	0: Yes					
3FF5н	Vacancy Readable and writable	Vacancy Readable and writable	Vacancy Readable and writable	P64 Pull-up 1: No 0: Yes	P63 Pull-up 1: No 0: Yes	P62 Pull-up 1: No 0: Yes	P61 Pull-up 1: No 0: Yes	P60 Pull-up 1: No 0: Yes

Note: Each bit is set to '1' as the initialized value, therefore the pull-up option is not selected.

■ PROGRAMMING TO THE EPROM ON THE MB89P627

The MB89P627 is an OTPROM version of the MB89620R series.

1. Features

- 32-Kbyte PROM on chip
- Options can be set using the EPROM programmer.
- Equivalency to the MBM27C256A in EPROM mode (when programmed with the EPROM programmer)

2. Memory Space

Memory space in each mode such as 32-Kbyte PROM, option area is diagrammed below.

3. Programming to the EPROM

In EPROM mode, the MB89P627 functions equivalent to the MBM27C256A. This allows the PROM to be programmed with a general-purpose EPROM programmer (the electronic signature mode cannot be used) by using the dedicated socket adapter.

When the operating ROM area for a single chip is 32 Kbytes (8007_H to FFFF_H) the PROM can be programmed as follows:

· Programming procedure

- (1) Set the EPROM programmer to the MBM27C256A.
- (2) Load program data into the EPROM programmer at 0007_H to 7FFF_H (note that addresses 8007_H to FFFF_H while operating as a single chip assign to 0007_H to 7FFF_H in EPROM mode). Load option data into addresses 0000_H to 0006_H of the EPROM programmer. (For information about each corresponding option, see "4. Setting OTPROM Options.")
- (3) Program to 0000H to 7FFFH with the EPROM programmer.

4. Setting OTPROM Options

The programming procedure is the same as that for the PROM. Options can be set by programming values at the addresses shown on the memory map.

The relationship between bits and options is shown on the following bit map:

• OTPROM option bit map (MB89P627)

Address	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
0000н	Vacancy Readable and writable	Reset pin output 1: Yes 0: No	Oscillation stabilizatio ntime 1: Crystal 0: Ceramic	Power-on reset 1: Yes 0: No				
0001н	P07	P06	P05	P04	P03	P02	P01	P00
	Pull-up	Pull-up	Pull-up	Pull-up	Pull-up	Pull-up	Pull-up	Pull-up
	1: No	1: No	1: No					
	0: Yes	0: Yes	0: Yes					
0002н	P17	P16	P15	P14	P13	P12	P11	P10
	Pull-up	Pull-up	Pull-up	Pull-up	Pull-up	Pull-up	Pull-up	Pull-up
	1: No	1: No	1: No					
	0: Yes	0: Yes	0: Yes					
0003н	P37	P36	P35	P34	P33	P32	P31	P30
	Pull-up	Pull-up	Pull-up	Pull-up	Pull-up	Pull-up	Pull-up	Pull-up
	1: No	1: No	1: No					
	0: Yes	0: Yes	0: Yes					
0004н	P57	P56	P55	P54	P53	P52	P51	P50
	Pull-up	Pull-up	Pull-up	Pull-up	Pull-up	Pull-up	Pull-up	Pull-up
	1: No	1: No	1: No					
	0: Yes	0: Yes	0: Yes					
0005н	Vacancy Readable and writable	Vacancy Readable and writable	Vacancy Readable and writable	P64 Pull-up 1: No 0: Yes	P63 Pull-up 1: No 0: Yes	P62 Pull-up 1: No 0: Yes	P61 Pull-up 1: No 0: Yes	P60 Pull-up 1: No 0: Yes
0006н	Vacancy	Vacancy	Vacancy	Vacancy	Vacancy	Vacancy	Vacancy	Vacancy
	Readable and	Readable and	Readable and					
	writable	writable	writable	writable	writable	writable	writable	writable

Note: Each bit is set to '1' as the initialized value, therefore the pull-up option is not selected.

■ HANDLING THE MB89P625/P627

1. Recommended Screening Conditions

High-temperature aging is recommended as the pre-assembly screening procedure for a product with a blanked OTPROM microcomputer program.

2. Programming Yield

All bits cannot be programmed at Fujitsu shipping test to a blanked OTPROM microcomputer, due to its nature. For this reason, a programming yield of 100% cannot be assured at all times.

3. Erasure

In order to clear all locations of their programmed contents, it is necessary to expose the internal EPROM to an ultraviolet light source. A dosage of 10 W-seconds/cm² is required to completely erase an internal EPROM. This dosage can be obtained by exposure to an ultraviolet lamp (wavelength of 2537 Angstroms (Å)) with intensity of 12000 μ W/cm² for 15 to 21 minutes. The internal EPROM should be about one inch from the source and all filters should be removed from the UV light source prior to erasure.

It is important to note that the internal EPROM and similar devices, will erase with light sources having wavelengths shorter than 4000Å. Although erasure time will be much longer than with UV source at 2537Å, nevertheless the exposure to fluorescent light and sunlight will eventually erase the internal EPROM, and exposure to them should be prevented to realize maximum system reliability. If used in such an environment, the package windows should be covered by an opaque label or substance.

4. EPROM Programmer Socket Adapter and Recommended Programmer Manufacturer

			Recommended programmer manufacturer and programmer name						
Part number	Package	Compatible socket adapter Sun Hayato Co., Ltd.	Minato Electronics Inc.		Data I/O Co., Ltd.			Advantest Corp.	
			1890A	1891	UNISITE	3900	2900	R4945A	
MB89P625P-SH	SH-DIP-64	ROM-64SD-28DP-8L	Recomm	ended	Recommended		_	Recommended	
MB89P625PF	QFP-64	ROM-64QF-28DP-8L	Recommended*		Recommended			Recommended	
MB89P625PFM	QFP-64	ROM-64QF2-28DP-8L	Recommended*		Recommended -		_	Recommended	

^{*:} It is required to connect a capacitor of approximately 0.1 µF between VPP and GND, and Vcc and GND.

Inquiry: Sun Hayato Co., Ltd.: TEL (81)-3-3986-0403 FAX (81)-3-5396-9106

> Minato Electronics Inc.: TEL: USA (1)-916-348-6066 JAPAN (81)-45-591-5611

Data I/O Co., Ltd: TEL: USA/ASIA (1)-206-881-6444

EUROPE (49)-8-985-8580

Advantest Corp.: TEL: Except JAPAN (81)-3-3930-4111

■ PROGRAMMING TO THE EPROM PIGGYBACK/EVALUATION DEVICE

1. EPROM for Use

MBM27C256A-20TV, MBM27C256A-20CZ

2. Programming Socket Adapter

To program to the PROM using an EPROM programmer, use the socket adapter (manufacturer: Sun Hayato Co., Ltd.) listed below.

Package	Adapter socket part number				
LCC-32 (Rectangle)	ROM-32LC-28DP-YG				

Inquiry: Sun Hayato Co., Ltd.: TEL (81)-3-3986-0403 FAX (81)-3-5396-9106

3. Memory Space

Memory space in 32-Kbyte PROM is diagrammed below.

4. Programming to the EPROM

- (1) Set the EPROM programmer to the MBM27C256A.
- (2) Load program data into the EPROM programmer at 0006H to 7FFFH.
- (3) Program to 0000H to 7FFFH with the EPROM programmer.

■ BLOCK DIAGRAM

■ CPU CORE

1. Memory Space

The microcontrollers of the MB89620R series offer a memory space of 64 Kbytes for storing all of I/O, data, and program areas. The I/O area is located at the lowest address. The data area is provided immediately above the I/O area. The data area can be divided into register, stack, and direct areas according to the application. The program area is located at exactly the opposite end, that is, near the highest address. Provide the tables of interrupt reset vectors and vector call instructions toward the highest address within the program area. The memory space of the MB89620R series is structured as illustrated below.

^{*1:} The ROM area is an external area depending on the mode.

^{*2:} Since addresses 8000_H to 8005_H for the MB89P627 and MB89W627 comprise an option area, do not use this area for the MB89PV620 and MB89627R.

^{*3:} Access to this area is prohibited when using external bus mode.

2. Registers

The F²MC-8L family has two types of registers; dedicated registers in the CPU and general-purpose registers in the memory. The following dedicated registers are provided:

Program counter (PC): A 16-bit register for indicating instruction storage positions

Accumulator (A): A 16-bit temporary register for storing arithmetic operations, etc. When the

instruction is an 8-bit data processing instruction, the lower byte is used.

Temporary accumulator (T): A 16-bit register which performs arithmetic operations with the accumulator

When the instruction is an 8-bit data processing instruction, the lower byte is used.

Index register (IX): A 16-bit register for index modification

Extra pointer (EP): A 16-bit pointer for indicating a memory address

Stack pointer (SP): A 16-bit register for indicating a stack area

Program status (PS): A 16-bit register for storing a register pointer, a condition code

The PS can further be divided into higher 8 bits for use as a register bank pointer (RP) and the lower 8 bits for use as a condition code register (CCR). (See the diagram below.)

The RP indicates the address of the register bank currently in use. The relationship between the pointer contents and the actual address is based on the conversion rule illustrated below.

The CCR consists of bits indicating the results of arithmetic operations and the contents of transfer data and bits for control of CPU operations at the time of an interrupt.

- H-flag: Set to '1' when a carry or a borrow from bit 3 to bit 4 occurs as a result of an arithmetic operation. Cleared to '0' otherwise. This flag is for decimal adjustment instructions.
- I-flag: Interrupt is enabled when this flag is set to '1'. Interrupt is disabled when the flag is cleared to '0'. Cleared to '0' at the reset.
- IL1, 0: Indicates the level of the interrupt currently allowed. Processes an interrupt only if its request level is higher than the value indicated by this bit.

IL1	IL0	Interrupt level	High-low
0	0	1	High
0	1	l	†
1	0	2	
1	1	3	Low

- N-flag: Set to '1' if the MSB becomes '1' as the result of an arithmetic operation. Cleared to '0' when the bit is cleared to '0'.
- Z-flag: Set to '1' when an arithmetic operation results in 0. Cleared to '0' otherwise.
- V-flag: Set to '1' if the complement on 2 overflows as a result of an arithmetic operation. Cleared to '0' if the overflow does not occur.
- C-flag: Set to '1' when a carry or a borrow from bit 7 occurs as a result of an arithmetic operation. Cleared to '0' otherwise.

Set to the shift-out value in the case of a shift instruction.

The following general-purpose registers are provided:

General-purpose registers: An 8-bit register for storing data

The general-purpose registers are 8 bits and located in the register banks of the memory. One bank contains eight registers and up to a total of 32 banks can be used on the MB89620R. In the MB89623R, there are 16 banks in internal RAM. The remaining 16 banks can be extended externally by allocating an external RAM to addresses 0180H to 01FFH using an external circuit. The bank currently in use is indicated by the register bank pointer (RP).

Note: The number of register banks that can be used varies with the RAM size.

■ I/O MAP

Address	Read/write	Register name	Register description		
00н	(R/W)	PDR0	Port 0 data register		
01н	(W)	DDR0	Port 0 data direction register		
02н	(R/W)	PDR1	Port 1 data register		
03н	(W)	DDR1	Port 1 data direction register		
04н	(R/W)	PDR2	Port 2 data register		
05н	(R/W)	BCTR	External bus pin control register		
06н			Vacancy		
07н			Vacancy		
08н	(R/W)	STBC	Standby control register		
09н	(R/W)	WDTC	Watchdog timer control register		
ОАн	(R/W)	TBTC	Timebase timer control register		
0Вн		'	Vacancy		
0Сн	(R/W)	PDR3	Port 3 data register		
0Dн	(W)	DDR3	Port 3 data direction register		
0Ен	(R/W)	PDR4	Port 4 data register		
0Fн	(R/W)	BZCR	Buzzer register		
10н	(R/W)	PDR5	Port 5 data register		
11н	(R)	PDR6	Port 6 data register		
12н	(R/W)	CNTR	PWM control register		
13н	(W)	COMR	PWM compare register		
14н	(R/W)	PCR1	PWC pulse width control register 1		
15н	(R/W)	PCR2	PWC pulse width control register 2		
16н	(R/W)	RLBR	PWC reload buffer register		
17н			Vacancy		
18н	(R/W)	TMCR	16-bit timer control register		
19н	(R/W)	TCHR	16-bit timer count register (H)		
1Ан	(R/W)	TCLR	16-bit timer count register (L)		
1Вн			Vacancy		
1Сн	(R/W)	SMR1	Serial I/O 1 mode register		
1Dн	(R/W)	SDR1	Serial I/O 1 data register		
1Ен	(R/W)	SMR2	Serial I/O 2 mode register		
1Fн	(R/W)	SDR2	Serial I/O 2 data register		

(Continued)

To Top / Lineup / Index MB89620R Series

(Continued)

Address	Read/write	Register name	Register description
20н	(R/W)	ADC1	A/D converter control register 1
21н	(R/W)	ADC2	A/D converter control register 2
22н	(R/W)	ADCD	A/D converter data register
23н			Vacancy
24н	(R/W)	EIC1	External interrupt 1 control register 1
25н	(R/W)	EIC2	External interrupt 1 control register 2
26н to 7Вн			Vacancy
7Сн	(W)	ILR1	Interrupt level setting register 1
7Dн	(W)	ILR2	Interrupt level setting register 2
7Ен	(W)	ILR3	Interrupt level setting register 3
7Fн			Vacancy

Note: Do not use vacancies.

■ ELECTRICAL CHARACTERISTICS

1. Absolute Maximum Ratings

(AVss = Vss = 0.0 V)

Parameter	Symbol	Va	lue	Unit	Remarks		
Parameter	Symbol	Min.	Max.	Unit	Kemarks		
Power supply voltage	Vcc AVcc	Vss - 0.3	Vss + 7.0	V	*1		
A/D converter reference input voltage	AVR	Vss - 0.3	Vss + 7.0	V	AVR must not exceed AVcc + 0.3 V.		
Input voltage	Vı	Vss-0.3	Vcc + 0.3	V	Except P40 to P47*2		
Input voltage	V _{I2}	Vss - 0.3	Vss + 7.0	V	P40 to P47		
Output voltage	Vo	Vss - 0.3	Vcc + 0.3	V	Except P40 to P47*2		
Output voltage	V _{O2}	Vss - 0.3	Vss + 7.0	V	P40 to P47		
"L" level maximum output current	loL	_	20	mA			
"L" level average output current	lolav	_	4	mA	Average value (operating current × operating rate)		
"L" level total maximum output current	∑lo∟	_	100	mA			
"L" level total average output current	Σ lolav	_	40	mA	Average value (operating current × operating rate)		
"H" level maximum output current	Іон	_	-20	mA			
"H" level average output current	Іонач	_	-4	mA	Average value (operating current × operating rate)		
"H" level total maximum output current	ΣІон	_	-50	mA			
"H" level total average output current	Σ Iohav	_	-20	mA	Average value (operating current × operating rate)		
Power consumption	Po	_	300	mW			
Operating temperature	TA	-40	+85	°C			
Storage temperature	Tstg	-55	+150	°C			

^{*1:} Use AVcc and Vcc set to the same voltage.

Take care so that AVcc does not exceed Vcc, such as when power is turned on.

WARNING: Semiconductor devices can be permanently damaged by application of stress (voltage, current, temperature, etc.) in excess of absolute maximum ratings. Do not exceed these ratings.

^{*2:} V_I and V_O must not exceed V_{CC} + 0.3 V.

2. Recommended Operating Conditions

(AVss = Vss = 0.0 V)

Parameter	Symbol	Value		Unit	Remarks		
Farameter	Symbol	Min.	Max.	Offic	Kemarks		
		2.2*	6.0*	V	Normal operation assurance range* (MB89623R/625R/626R/627R)		
Power supply voltage	Vcc AVcc	2.7*	6.0*	V	Normal operation assurance range* (MB89P625/W625/P627/T627R/ W627/PV620)		
		1.5	6.0	V	Retains the RAM state in stop mode		
A/D converter reference input voltage	AVR	0.0	AVcc	V			
Operating temperature	TA	-40	+85	°C			

^{*:} These values vary with the operating frequency and analog assurance range. See Figure 1 and "5. A/D Converter Electrical Characteristics."

Figure 1 indicates the operating frequency of the external oscillator at an instruction cycle of 4/Fc.

WARNING: Recommended operating conditions are normal operating ranges for the semiconductor device. All the device's electrical characteristics are warranted when operated within these ranges.

Always use semiconductor devices within the recommended operating conditions. Operation outside these ranges may adversely affect reliability and could result in device failure.

No warranty is made with respect to uses, operating conditions, or combinations not represented on the data sheet. Users considering application outside the listed conditions are advised to contact their FUJITSU representative beforehand.

3. DC Characteristics

 $(AVcc = Vcc = 5.0 \text{ V}, AVss = Vss = 0.0 \text{ V}, T_A = -40^{\circ}\text{C to } +85^{\circ}\text{C})$

				4 V CC = V CC =	Value	55 = V55 = C		$A = -40^{\circ}\text{C to } +85^{\circ}\text{C}$
Parameter	Symbol	Pin name	Condition	Min.	Тур.	Max.	Unit	Remarks
	Vıн	P00 to P07, P10 to P17, P22, P23	_	0.7 Vcc		Vcc + 0.3	V	
"H" level input voltage	Vihs	RST, MOD0, MOD1, P30 to P37, P60 to P64	_	0.8 Vcc	_	Vcc + 0.3	V	
	V _{IHS2}	P40 to P47	_	0.8 Vcc		Vcc + 0.3	V	
	VıL	P00 to P07, P10 to P17, P22, P23	_	Vss - 0.3	_	0.3 Vcc	V	
"L" level input voltage	VILS	RST, MOD0, MOD1, P30 to P37, P40 to P47, P60 to P64	_	Vss - 0.3	_	0.2 Vcc	V	
Open-drain output pin	VD	P50 to P57	_	Vss - 0.3	_	Vcc + 0.3	V	
application voltage	V _{D2}	P40 to P47	_	Vss - 0.3		Vss + 6.0	V	
"H" level output voltage	Vон	P00 to P07, P10 to P17, P20 to P27, P30 to P37	lон = −2.0 mA	4.0	_	_	V	
"L" level output voltage	VoL	P00 to P07, P10 to P17, P20 to P27, P30 to P37, P40 to P47, P50 to P57	loL = +4.0 mA	_	_	0.4	V	
	V _{OL2}	RST		_		0.4	V	
Input leakage current (Hi-z output leakage current)	ILI1	P00 to P07, P10 to P17, P20 to P27, P30 to P37, P40 to P47, P60 to P64, MOD0, MOD1	0.0 V < V1 < Vcc	_		±5	μА	Without pull-up resistor
Pull-up resistance	RPULL	P00 to P07, P10 to P17, P30 to P37, P40 to P47, P50 to P57, P60 to P64, RST	V _I = 0.0 V	25	50	100	kΩ	

(Continued)

(Continued)

 $(AVcc = Vcc = 5.0 \text{ V}, AVss = Vss = 0.0 \text{ V}, T_A = -40^{\circ}\text{C to } +85^{\circ}\text{C})$

Parameter	Symbol	Pin name	Condition		Value	Unit	,	
. didilictoi	Symbol		Condition	Min.	Тур.	Max.	Onic	Kemarks
Power supply current*1	loo		Fc = 10 MHz Normal	_	9	15	mA	MB89623R/ 625R/626R/ 627R/T627R/ PV620
	lcc V	Vcc	operating mode $t_{inst}^2 = 0.4 \mu s$	_	10	18	mA	MB89P625/ W625 MB89P627/ W627
	Iccs		Fc = 10 MHz Sleep mode t _{inst*2} = 0.4 µs	_	3	4	mA	
	Іссн		Stop mode T _A = +25°C	_	_	1	μА	
	IA		Fc = 10 MHz, when starting A/D conversion	_	1	3	mA	
	Іан	AVcc	$F_{\text{C}} = 10 \text{ MHz},$ $T_{\text{A}} = +25^{\circ}\text{C},$ when stopping A/D conversion	_	_	1	μА	
Input capacitance	Cin	Other than AVcc, AVss, Vcc, and Vss	f = 1 MHz	_	10	_	pF	

^{*1:} In the case of the MB89PV620, the current consumed by the connected EPROM and ICE is not included. The power supply current is measured at the external clock.

^{*2:} For information on t_{inst}, see "(4) Instruction Cycle" in "4. AC Characteristics."

4. AC Characteristics

(1) Reset Timing

 $(Vcc = +5.0 V\pm 10\%, AVss = Vss = 0.0 V, T_A = -40^{\circ}C to +85^{\circ}C)$

Parameter	Symbol	Condition	Valu	ne	Unit	Remarks
Farameter	Syllibol	Condition	Min.	Max.	Offic	
RST "L" pulse width	t zlzh	_	16 txcyL	_	ns	

Note: txcyL is the oscillation cycle (1/Fc) to input to the X0 pin.

(2) Power-on Reset

 $(AVss = Vss = 0.0 V, T_A = -40^{\circ}C \text{ to } +85^{\circ}C)$

Parameter	Symbol	Condition	Value		Unit	Remarks	
raiailletei	Syllibol	Condition	Min.	Max.	Oilit	iveillai ks	
Power supply rising time	tR		_	50	ms	Power-on reset function only	
Power supply cut-off time	toff		1		ms	Due to repeated operations	

Note: Make sure that power supply rises within the selected oscillation stabilization time.

If power supply voltage needs to be varied in the course of operation, a smooth voltage rise is recommended.

(3) Clock Timing

 $(AVss = Vss = 0.0 \text{ V}, T_A = -40^{\circ}\text{C to } +85^{\circ}\text{C})$

Doromotor	Cumbal	Din nama	Condition	Va	lue	Unit	Remarks
Parameter	Symbol	Pin name		Min.	Max.	Unit	
Clock frequency	Fc	X0, X1		1	10	MHz	
Clock cycle time	txycL	X0, X1		100	1000	ns	
Input clock pulse width	P _{WH} P _{WL}	X0	_	20	_	ns	External clock
Input clock rising/falling time	tcr tcr	X0		_	10	ns	External clock

• Clock Conditions

(4) Instruction Cycle

Parameter	Symbol	Value (typical)	Unit	Remarks
Instruction cycle (minimum execution time)	tinst	4/Fc	μs	$t_{inst} = 0.4 \mu s$ when operating at Fc = 10 MHz

(5) Clock Output Timing

 $(Vcc = +5.0 V\pm 10\%, AVss = Vss = 0.0 V, T_A = -40^{\circ}C to +85^{\circ}C)$

Parameter	Symbol	Pin name	Condition	Val	lue	Unit	Remarks
Farameter	Syllibol	Fili lialile	Condition	Min.	Max.		Kemarks
Cycle time	tcyc	CLK		200	_	ns	txcyL × 2 at 10 MHz oscillation
$CLK \uparrow \to CLK \downarrow$	t chcL		_	30	100	ns	Approx. tcyc/2 at 10 MHz oscillation

(6) Bus Read Timing

 $(Vcc = +5.0 V\pm 10\%, Fc = 10 MHz, AVss = Vss = 0.0 V, T_A = -40^{\circ}C to +85^{\circ}C)$

Parameter	Symbol	Pin name	Condition	Val	ue	Unit	Remarks
raiailletei	Syllibol	riii iiaiiie	Condition	Min.	Max.	Oill	Remarks
	t avrl	RD, A15 to A08, AD7 to AD0		1/4 t _{inst} *– 64 ns	_	μs	
RD pulse width	t rlrh	RD		1/4 t _{inst} *- 20 ns	_	μs	
Valid address → data read time	tavdv	AD7 to AD0, A15 to A08		_	1/2 t inst*	μs	In the case of no wait
$\overline{RD} \downarrow \to data \; read \; time$	t RLDV	RD, AD7 to AD0		_	1/2 t _{inst} *– 80 ns	μs	In the case of no wait
$\overline{RD} \uparrow \to data \; hold \; time$	t RHDX	AD7 to AD0, RD	_	0	_	μs	
$\overline{RD} \uparrow \to ALE \uparrow time$	t RHLH	RD, ALE		1/4 t _{inst} *– 40 ns	_	μs	
$\overline{RD} \uparrow \to address$ invalid time	t rhax	RD, A15 to A08		1/4 t _{inst} *– 40 ns	_	μs	
$\overline{RD} \downarrow \to CLK \uparrow time$	t RLCH	RD, CLK		1/4 t _{inst} *– 40 ns	_	μs	
$CLK \downarrow \to \overline{RD} \uparrow time$	t CLRH	RD, CLK		0	_	ns	
$\overline{RD} \downarrow \to BUFC \downarrow time$	t RLBL	RD, BUFC		-5	_	μs	
$ BUFC \uparrow \rightarrow valid \ address \ time $	t bhav	A15 to A08, AD7 to AD0, BUFC		5	_	μs	

^{*:} For information on tinst, see "(4) Instruction Cycle."

(7) Bus Write Timing

 $(Vcc = +5.0 V \pm 10\%, Fc = 10 MHz, AVss = Vss = 0.0 V, TA = -40°C to +85°C)$

Doromotor	Symbol		Condition	Val	•		,
Parameter	Symbol	Pin name	Condition	Min.	Max.	Unit	Remarks
Valid address $ ightarrow$ ALE \downarrow time	tavll	AD7 to AD0, ALE, A15 to A08		1/4 t _{inst} *1– 64 ns	_	μs	
ALE ↓ time → address invalid time	tllax	AD7 to AD0, ALE, A15 to A08		5	_	ns	
Valid address \rightarrow WR ↓ time	tavwl	WR, ALE		1/4 tinst*1 – 60 ns	_	μs	
WR pulse width	twlwh	WR		1/2 tinst*1- 20 ns	_	μs	
Write data \rightarrow $\overline{\text{WR}}$ \uparrow time	t DVWH	AD7 to AD0, WR		1/2 tinst*1- 60 ns	_	μs	
$\overline{WR} \ \uparrow \rightarrow address \ invalid \ time$	twhax	WR, A15 to A08	_	1/4 tinst*1- 40 ns	_	ns	
$\overline{ m WR} \uparrow ightarrow$ data hold time	twhox	AD7 to AD0, WR		1/4 tinst*1 – 40 ns	_	μs	
$\overline{WR} \uparrow \to ALE \uparrow time$	twhlh	WR, ALE		1/4 tinst*1- 40 ns	_	μs	
$\overline{WR}\downarrow \to CLK\uparrowtime$	twlch	WR, CLK		1/4 tinst*1- 40 ns	_	μs	
$CLK \downarrow \to \overline{WR} \ \uparrow time$	t clwH	WK, CLK		0	_	ns	
ALE pulse width	t LHLL	ALE		1/4 tinst*1 – 35 ns*2	_	μs	
ALE $\downarrow \rightarrow$ CLK \uparrow time	t llch	ALE,CLK		1/4 tinst*1 – 30 ns*2		μs	

^{*1:} For information on tinst, see "(4) Instruction Cycle."

*2: These characteristics are also applicable to the bus read timing.

(8) Ready Input Timing

 $(Vcc = +5.0 V\pm 10\%, Fc = 10 MHz, AVss = Vss = 0.0 V, T_A = -40^{\circ}C to +85^{\circ}C)$

Parameter	Symbol	Pin name	Condition	Va	Unit	Remarks	
Parameter	Symbol	i iii iiaiiie	Condition	Min.	Max.	Oint	Itelliaiks
RDY valid \rightarrow CLK \uparrow time	tvvcн	RDY, CLK		60	_	ns	*
$CLK \uparrow \to RDY$ invalid time	t chyx	NDI, CLK	_	0	_	ns	*

*: These characteristics are also applicable to the read cycle.

(9) Serial I/O Timing

 $(Vcc = +5.0 V\pm 10\%, AVss = Vss = 0.0 V, T_A = -40^{\circ}C to +85^{\circ}C)$

Doromotor	Cumbal	Din nama	Condition	Va	lue	I Init	Domorko
Parameter	Symbol	Pin name	Condition	Min.	Max.	Unit	Remarks
Serial clock cycle time	tscyc	SCK1, SCK2		2 tinst*	_	μs	
$\begin{array}{c} SCK1 \downarrow \to SO1 \ time \\ SCK2 \downarrow \to SO2 \ time \end{array}$	tsLov	SCK1, SO1 SCK2, SO2	laternal abift	-200	200	ns	
Valid SI1 \rightarrow SCK1 \uparrow Valid SI2 \rightarrow SCK2 \uparrow	tıvsн	SI1, SCK1 SI2, SCK2	Internal shift clock mode	1/2 tinst*	_	μs	
$\begin{array}{c} \text{SCK1} \uparrow \rightarrow \text{valid SI1 hold time} \\ \text{SCK2} \uparrow \rightarrow \text{valid SI2 hold time} \end{array}$	t shix	SCK1, SI1 SCK2, SI2		1/2 tinst*	_	μs	
Serial clock "H" pulse width	t shsl	SCK1, SCK2		1 tinst*	_	μs	
Serial clock "L" pulse width	t slsh	SCK1, SCK2		1 tinst*	_	μs	
$\begin{array}{c} \text{SCK1} \downarrow \rightarrow \text{SO1 time} \\ \text{SCK2} \downarrow \rightarrow \text{SO2 time} \end{array}$	tsLov	SCK1, SO1 SCK2, SO2	External shift	0	200	ns	
Valid SI1 → SCK1 \uparrow Valid SI2 → SCK2 \uparrow	tıvsн	SI1, SCK1 SI2, SCK2	clock mode	1/2 t _{inst} *	_	μs	
$\begin{array}{c} \text{SCK1} \uparrow \rightarrow \text{valid SI1 hold time} \\ \text{SCK2} \uparrow \rightarrow \text{valid SI2 hold time} \end{array}$	t shix	SCK1, SI1 SCK2, SI2		1/2 t _{inst} *	_	μs	

^{*:} For information on t_{inst}, see "(4) Instruction Cycle."

(10) Peripheral Input Timing

 $(V_{CC} = +5.0 \text{ V} \pm 10\%, \text{ AVss} = \text{Vss} = 0.0 \text{ V}, \text{ T}_{A} = -40^{\circ}\text{C to } +85^{\circ}\text{C})$

				,	/			
Parameter	Symbol	Pin name	Pin name Condition		lue	Unit	Remarks	
Farameter	Symbol	Fill Hallie	Condition	Min.	Max.	Oilit	Nemarks	
Peripheral input "H" pulse width 1	t _{ILIH1}	PWC,		2 tinst*	_	μs		
Peripheral input "L" pulse width 1	t _{IHIL1}	EC, INT0 to INT3	_	2 tinst*	_	μs		
Peripheral input "H" pulse width 2	t _{ILIH2}		A/D mode	32 tinst*	_	μs		
Peripheral input "L" pulse width 2	t _{IHIL2}	ADST	A/D mode	32 tinst*		μs		
Peripheral input "H" pulse width 2	t _{ILIH2}	ADST Sense mode		8 tinst*	_	μs		
Peripheral input "L" pulse width 2	t _{IHIL2}		Serise mode	8 tinst*	_	μs		

^{*:} For information on tinst, see "(4) Instruction Cycle."

5. A/D Converter Electrical Characteristics

 $(AVcc = Vcc = +3.5 \text{ V to } +6.0 \text{ V}, AVss = Vss = 0.0 \text{ V}, T_A = -40^{\circ}\text{C to } +85^{\circ}\text{C})$

Parameter	Symbol	Pin name	Condition		Value		Unit	Remarks
Parameter	Symbol	Pili Haille	Condition	Min.	Тур.	Max.	UIII	Remains
Resolution			_	_	_	8	bit	
Total error				_	_	±1.5	LSB	
Linearity error	_			_	_	±1.0	LSB	
Differential linearity error				_	_	±0.9	LSB	
Zero transition voltage	Vот		AVR = AVcc	AVss – 1.0 LSB	AVss + 0.5 LSB	AVss + 2.0 LSB	mV	
Full-scale transition voltage	V _{FST}	_		AVR – 3.0 LSB	AVR – 1.5 LSB	AVR mV		
Interchannel disparity				_	_	0.5	LSB	
A/D mode conversion time	_		_	_	44 tinst*	_	μs	
Sense mode conversion time				_	12 tinst*	— μs		
Analog port input current	IAIN	AN0 to				10	μА	
Analog input voltage	_	AN7		0.0	_	AVR	V	
Reference voltage	_			0.0	_	AVcc	V	
Reference voltage supply current	I R	AVR	AVR = 5.0 V, when starting A/D conversion	_	100	_	μΑ	
	lкн		AVR = 5.0 V, when stopping A/D conversion	_	_	1	μА	

^{*:} For information on tinst, see "(4) Instruction Cycle" in "4 AC Characteristics."

6. A/D Converter Glossary

- Resolution
 - Analog changes that are identifiable with the A/D converter.
 - When the number of bits is 8, analog voltage can be divided into $2^8 = 256$.
- Linearity error (unit: LSB)
 - The deviation of the straight line connecting the zero transition point ("0000 0000" \leftrightarrow "0000 0001") with the full-scale transition point ("1111 1111" \leftrightarrow "1111 1110") from actual conversion characteristics
- Differential linearity error (unit: LSB)
 - The deviation of input voltage needed to change the output code by 1 LSB from the theoretical value
- Total error (unit: LSB)
 - The difference between theoretical and actual conversion values

7. Notes on Using A/D Converter

· Input impedance of the analog input pins

The A/D converter contains a sample hold circuit as illustrated below to fetch analog input voltage into the sample hold capacitor for eight instruction cycles after activating A/D conversion.

For this reason, if the output impedance of the external circuit for the analog input is high, analog input voltage might not stabilize within the analog input sampling period. Therefore, it is recommended to keep the output impedance of the external circuit low (below 10 $\rm k\Omega$).

Note that if the impedance cannot be kept low, it is recommended to connect an external capacitor of about $0.1 \, \mu F$ for the analog input pin.

• Error

The smaller the | AVR - AVss |, the greater the error would become relatively.

■ EXAMPLE CHARACTERISTICS

(1) "L" Level Output Voltage

(2) "H" Level Output Voltage

(3) "H" Level Input Voltage/"L" Level Input Voltage (CMOS Input)

(4) "H" Level Input Voltage/"L" Level Input Voltage (Hysteresis Input)

(5) Power Supply Current (External Clock)

(6) Pull-up Resistance

■ INSTRUCTIONS

Execution instructions can be divided into the following four groups:

- Transfer
- · Arithmetic operation
- Branch
- Others

Table 1 lists symbols used for notation of instructions.

Table 1 Instruction Symbols

Symbol	Meaning
dir	Direct address (8 bits)
off	Offset (8 bits)
ext	Extended address (16 bits)
#vct	Vector table number (3 bits)
#d8	Immediate data (8 bits)
#d16	Immediate data (16 bits)
dir: b	Bit direct address (8:3 bits)
rel	Branch relative address (8 bits)
@	Register indirect (Example: @A, @IX, @EP)
А	Accumulator A (Whether its length is 8 or 16 bits is determined by the instruction in use.)
AH	Upper 8 bits of accumulator A (8 bits)
AL	Lower 8 bits of accumulator A (8 bits)
Т	Temporary accumulator T (Whether its length is 8 or 16 bits is determined by the instruction in use.)
TH	Upper 8 bits of temporary accumulator T (8 bits)
TL	Lower 8 bits of temporary accumulator T (8 bits)
IX	Index register IX (16 bits)

(Continued)

(Continued)

Symbol	Meaning
EP	Extra pointer EP (16 bits)
PC	Program counter PC (16 bits)
SP	Stack pointer SP (16 bits)
PS	Program status PS (16 bits)
dr	Accumulator A or index register IX (16 bits)
CCR	Condition code register CCR (8 bits)
RP	Register bank pointer RP (5 bits)
Ri	General-purpose register Ri (8 bits, i = 0 to 7)
×	Indicates that the very \times is the immediate data. (Whether its length is 8 or 16 bits is determined by the instruction in use.)
(×)	Indicates that the contents of \times is the target of accessing. (Whether its length is 8 or 16 bits is determined by the instruction in use.)
((×))	The address indicated by the contents of \times is the target of accessing. (Whether its length is 8 or 16 bits is determined by the instruction in use.)

Columns indicate the following:

Mnemonic: Assembler notation of an instruction

~: Number of instructions

#: Number of bytes

Operation: Operation of an instruction

TL, TH, AH: A content change when each of the TL, TH, and AH instructions is executed. Symbols in

the column indicate the following:

• "-" indicates no change.

• dH is the 8 upper bits of operation description data.

AL and AH must become the contents of AL and AH immediately before the instruction

is executed.

• 00 becomes 00.

N, Z, V, C: An instruction of which the corresponding flag will change. If + is written in this column,

the relevant instruction will change its corresponding flag.

OP code: Code of an instruction. If an instruction is more than one code, it is written according to

the following rule:

Example: 48 to 4F \leftarrow This indicates 48, 49, ... 4F.

Table 2 Transfer Instructions (48 instructions)

Mnemonic	~	#	Operation	TL	TH	АН	NZVC	OP code
MOV dir,A	3	2	$(dir) \leftarrow (A)$	_	_	_		45
MOV @IX +off,A	4	2	$((IX) + off) \leftarrow (A)$	_	_	_		46
MOV ext,A	4	3	$(ext) \leftarrow (A)$	_	_	_		61
MOV @EP,A	3	1	$((EP)) \leftarrow (A)$	_	_	_		47
MOV Ri,A	3	1	$(Ri) \leftarrow (A)$	_	_	_		48 to 4F
MOV A,#d8	2	2	(A) ← d8	AL	_	_	++	04
MOV A,dir	3	2	$(A) \leftarrow (dir)$	AL	_	_	++	05
MOV A,@IX +off	4	2	$(A) \leftarrow ((IX) + off)$	AL	_	_	++	06
MOV A,ext	4	3	$(A) \leftarrow (ext)$	AL	_	_	++	60
MOV A,@A	3	1	$(A) \leftarrow ((A))$	AL	_	_	++	92
MOV A,@EP	3	1	$(A) \leftarrow ((EP))$	AL	_	_	++	07
MOV A,Ri	3	1	$(A) \leftarrow (Ri)$	AL	_	_	++	08 to 0F
MOV dir,#d8	4	3	(dír) ← d8	_	_	_		85
MOV @IX +off,#d8	5	3	$((IX) + off) \leftarrow d8$	_	_	_		86
MOV @EP,#d8	4	2	((EP)) ← d8	_	_	_		87
MOV Ri,#d8	4	2	(Ri) ← d8	_	_	_		88 to 8F
MOVW dir,A	4	2	$(dir) \leftarrow (AH), (dir + 1) \leftarrow (AL)$	_	_	_		D5
MOVW @IX +off,A	5	2	$((IX) + off) \leftarrow (AH),$	_	_	_		D6
,			$((X) + off + 1) \leftarrow (AL)$					
MOVW ext,A	5	3	$(ext) \leftarrow (AH), (ext + 1) \leftarrow (AL)$	_	_	_		D4
MOVW @EP,A	4	1	$((EP)) \leftarrow (AH), ((EP) + 1) \leftarrow (AL)$	_	_	_		D7
MOVW EP,A	2	1	$(EP) \leftarrow (A)$	_	_	_		E3
MOVW A,#d16	3	3	(A) ← d16	AL	AH	dH	++	E4
MOVW A,dir	4	2	$(AH) \leftarrow (dir), (AL) \leftarrow (dir + 1)$	AL	AH	dH	++	C5
MOVW A,@IX +off	5	2	$(AH) \leftarrow ((IX) + off),$	AL	AH	dH	++	C6
		_	$(AL) \leftarrow ((IX) + off + 1)$		'	<u> </u>		
MOVW A,ext	5	3	$(AH) \leftarrow (ext), (AL) \leftarrow (ext + 1)$	AL	AH	dH	++	C4
MOVW A,@A	4	1	$(AH) \leftarrow ((A)), (AL) \leftarrow ((A)) + 1)$	AL	AH	dH	++	93
MOVW A,@EP	4	1	$(AH) \leftarrow ((EP)), (AL) \leftarrow ((EP) + 1)$	AL	AH	dH	++	C7
MOVW A,EP	2	1	$(A) \leftarrow (EP)$	_		dH		F3
MOVW EP,#d16	3	3	(EP) ← d16	_	_	_		E7
MOVW IX,A	2	1	$(IX) \leftarrow (A)$	_	_	_		E2
MOVW A,IX	2	i	$(A) \leftarrow (IX)$	_	_	dH		F2
MOVW SP,A	2	i	$(SP) \leftarrow (A)$	_	_	_		E1
MOVW A,SP	2	i i	(A) ← (SP)	_	_	dH		F1
MOV @A,T	3	1	$(A) \leftarrow (B)$	_	_			82
MOV @A,T	4	i	$(A) \leftarrow (T)$ $(A) \leftarrow (TH), (A) + 1) \leftarrow (TL)$	_	_	_		83
MOVW (S/A, 1) MOVW IX,#d16	3	3	$(IX) \leftarrow d16$	_	_	_		E6
MOVW A,PS	2	1	$(A) \leftarrow (PS)$			dH		70
MOVW A,1 S	2	1	$(PS) \leftarrow (A)$			—	++++	71
MOVW 15,A	3	3	$(SP) \leftarrow (A)$					E5
SWAP	2	1	$(AH) \leftrightarrow (AL)$			AL		10
SETB dir: b	4	2	$(AII) \leftrightarrow (AL)$ $(dir): b \leftarrow 1$	_	_	AL _		A8 to AF
CLRB dir: b	4	2	$(dir): b \leftarrow 1$ $(dir): b \leftarrow 0$	_	1 <u>-</u>			A0 to A7
XCH A,T	2	1		AL				42
XCHW A,T	3		$(AL) \leftrightarrow (TL)$ $(A) \leftrightarrow (T)$	AL	AH	dH		42
XCHW A,T	3	1		∧∟		dH		F7
XCHW A,EP XCHW A,IX	3	1	$(A) \leftrightarrow (EP)$	_	_	dH		F7
	3	1	$(A) \leftrightarrow (IX)$	_	_	dH		
XCHW A,SP MOVW A,PC	2		$(A) \leftrightarrow (SP)$	_	-			F5 F0
IVIOV VV A,PC		1	(A) ← (PC)		_	dH		ΓU

Notes: \bullet During byte transfer to A, T \leftarrow A is restricted to low bytes.

• Operands in more than one operand instruction must be stored in the order in which their mnemonics are written. (Reverse arrangement of F²MC-8 family)

 Table 3
 Arithmetic Operation Instructions (62 instructions)

Mnemonic	~	#	Operation	TL	TH	АН	NZVC	OP code
ADDC A,Ri	3	1	$(A) \leftarrow (A) + (Ri) + C$	_	_	_	++++	28 to 2F
ADDC A,#d8	2	2	$(A) \leftarrow (A) + d8 + C$	_	_	_	++++	24
ADDC A,dir	3	2	$(A) \leftarrow (A) + (dir) + C$	_	_	_	++++	25
ADDC A,@IX +off	4	2	$(A) \leftarrow (A) + ((IX) + off) + C$	_	_	_	++++	26
ADDC A,@EP	3	1	$(A) \leftarrow (A) + ((EP)) + C$	_	_	-11.1	++++	27
ADDC A	3 2	1	$(A) \leftarrow (A) + (T) + C$	_	_	dH	++++	23 22
ADDC A SUBC A,Ri	3	1 1	$(AL) \leftarrow (AL) + (TL) + C$ $(A) \leftarrow (A) - (Ri) - C$	_	_	_	++++	38 to 3F
SUBC A,RI	2	2	$(A) \leftarrow (A) - (B) - C$ $(A) \leftarrow (A) - d8 - C$				++++	34
SUBC A,#do	3	2	$(A) \leftarrow (A) - G = G$ $(A) \leftarrow (A) - (G) - G$	_	_		++++	35
SUBC A,@IX +off	4	2	$(A) \leftarrow (A) - (IX) + off) - C$	_	_	_	++++	36
SUBC A,@EP	3	1	$(A) \leftarrow (A) - ((EP)) - C$	_	_	_	++++	37
SUBCW A	3	1	$(A) \leftarrow (T) - (A) - C$	_	_	dH	++++	33
SUBC A	2	1	$(AL) \leftarrow (TL) - (AL) - C$	_	_	_	++++	32
INC Ri	4	1	(Ri) ← (Ri) + 1	_	_	_	+++-	C8 to CF
INCW EP	3	1	(EP) ← (EP) + 1	_	_	_		C3
INCW IX	3	1	$(IX) \leftarrow (IX) + 1$	_	_	_		C2
INCW A	3	1	$(A) \leftarrow (A) + 1$	_	_	dΗ	++	C0
DEC Ri	4	1	$(Ri) \leftarrow (Ri) - 1$	_	_	_	+++-	D8 to DF
DECW EP	3	1	(EP) ← (EP) – 1	_	_	_		D3
DECW IX	3	1	$(IX) \leftarrow (IX) - 1$	_	_	_		D2
DECW A	3	1	$(A) \leftarrow (A) - 1$	_	_	dH	++	D0
MULU A	19	1	$(A) \leftarrow (AL) \times (TL)$		_	dH		01
DIVU A	21	1	$(A) \leftarrow (T) / (AL), MOD \rightarrow (T)$	dL	00	00		11
ANDW A	3	1	$(A) \leftarrow (A) \land (T)$	_	_	dH dH	++R-	63
ORW A XORW A	3	1 1	$(A) \leftarrow (A) \vee (T)$	_	_	dН	++R- ++R-	73 53
CMP A	2	1	$(A) \leftarrow (A) \ \forall \ (T) (TL) - (AL)$	_		uп _	++ -	12
CMPW A	3		(TL) – (AL) (T) – (A)	_	_	_	++++	13
RORC A	2		\rightarrow C \rightarrow A \rightarrow	_	_	_	++-+	03
ROLC A	2	1	$C \leftarrow A \leftarrow$	_	_	_	++-+	02
CMP A,#d8	2	2	(A) – d8	_	_	_	++++	14
CMP A,dir	3	2	(A) - (dir)	_	_	_	++++	15
CMP A,@EP	3	1	(A) – ((EP))	_	_	_	++++	17
CMP A,@IX +off	4	2	(A) - ((IX) + off)	_	_	_	++++	16
CMP A,Ri	3	1	(A) – (Ri)	_	_	_	++++	18 to 1F
DAA	2	1	Decimal adjust for addition	_	_	_	++++	84
DAS	2	1	Decimal adjust for subtraction $(A) \leftarrow (AL) \forall (TL)$	_	_	_	++++	94
XOR A	2	1	$(A) \leftarrow (AL) \lor (TL)$ $(A) \leftarrow (AL) \lor d8$	_	_	_	++R-	52
XOR A,#d8	2	2 2	$(A) \leftarrow (AL) \lor dS$ $(A) \leftarrow (AL) \lor (dir)$	_	_	_	++R-	54 55
XOR A,dir	3	1	$(A) \leftarrow (AL) \lor (BP)$ $(A) \leftarrow (AL) \lor (BP)$	_	_	_	++R- ++R-	55 57
XOR A,@EP XOR A,@IX +off	4	2	$(A) \leftarrow (AL) \lor ((LI))$ $(A) \leftarrow (AL) \lor ((IX) + off)$	_	_	_	++R- ++R-	57 56
XOR A, @IX +OII	3	1	$(A) \leftarrow (AL) \lor (B)$	_	_	_	++R- ++R-	58 to 5F
AND A	2		$(A) \leftarrow (AL) \wedge (TL)$	_	_	_	++R-	62
AND A,#d8	2	2	$(A) \leftarrow (AL) \wedge d8$	_	_	_	++R-	64
AND A, dir	3	2	$(A) \leftarrow (AL) \land (dir)$	_	_	_	++R-	65
	J		· / · / / /					- 55

(Continued)

(Continued)

Mnemonic	~	#	Operation	TL	TH	AH	NZVC	OP code
AND A,@EP	3	1	$(A) \leftarrow (AL) \land ((EP))$	_	_	_	++R-	67
AND A,@IX +off	4	2	$(A) \leftarrow (AL) \land ((IX) + off)$	_	_	_	++R-	66
AND A,Ri	3	1	$(A) \leftarrow (AL) \land (Ri)$	_	_	_	++R-	68 to 6F
OR A	2	1	$(A) \leftarrow (AL) \lor (TL)$	_	_	_	++R-	72
OR A,#d8	2	2	$(A) \leftarrow (AL) \lor d8$	_	_	_	++R-	74
OR A,dir	3	2	$(A) \leftarrow (AL) \lor (dir)$	_	_	_	++R-	75
OR A,@EP	3	1	$(A) \leftarrow (AL) \lor ((EP))$	_	_	_	++R-	77
OR A,@IX +off	4	2	$(A) \leftarrow (AL) \lor ((IX) + off)$	_	_	_	++R-	76
OR A,Ri	3	1	$(A) \leftarrow (AL) \lor (Ri)$	_	_	_	++R-	78 to 7F
CMP dir,#d8	5	3	(dir) – d8	_	_	_	++++	95
CMP @EP,#d8	4	2	((EP)) – d8	_	_	_	++++	97
CMP @IX +off,#d8	5	3	((IX) + off) - d8	_	_	_	++++	96
CMP Ri,#d8	4	2	(Ri) – d8	_	_	_	++++	98 to 9F
INCW SP	3	1	(SP) ← (SP) + 1	_	_	_		C1
DECW SP	3	1	(SP) ← (SP) – 1	_	_	_		D1

Table 4 Branch Instructions (17 instructions)

Mnemonic	~	#	Operation	TL	TH	AH	NZVC	OP code
BZ/BEQ rel	3	2	If Z = 1 then PC ← PC + rel	_	_	_		FD
BNZ/BNE rel	3	2	If $Z = 0$ then $PC \leftarrow PC + rel$	-	_	_		FC
BC/BLO rel	3	2	If C = 1 then PC ← PC + rel	-	_	_		F9
BNC/BHS rel	3	2	If $C = 0$ then $PC \leftarrow PC + rel$	_	_	_		F8
BN rel	3	2	If N = 1 then PC ← PC + rel	_	_	_		FB
BP rel	3	2	If N = 0 then PC \leftarrow PC + rel	-	_	_		FA
BLT rel	3	2	If V \forall N = 1 then PC \leftarrow PC + rel	_	_	_		FF
BGE rel	3	2	If V \forall N = 0 then PC \leftarrow PC + rel	-	_	_		FE
BBC dir: b,rel	5	3	If (dir: b) = 0 then PC \leftarrow PC + rel	_	_	_	-+	B0 to B7
BBS dir: b,rel	5	3	If (dir: b) = 1 then PC \leftarrow PC + rel	-	_	_	-+	B8 to BF
JMP @A	2	1	$(PC) \leftarrow (A)$	-	_	_		E0
JMP ext	3	3	(PC) ← ext	_	_	_		21
CALLV #vct	6	1	Vector call	_	_	_		E8 to EF
CALL ext	6	3	Subroutine call	_	_	_		31
XCHW A,PC	3	1	$(PC) \leftarrow (A), (A) \leftarrow (PC) + 1$	-	_	dΗ		F4
RET	4	1	Return from subrountine	-	_	_		20
RETI	6	1	Return form interrupt	_	_	_	Restore	30

Table 5 Other Instructions (9 instructions)

Mnemonic	~	#	Operation	TL	TH	AH	NZVC	OP code
PUSHW A	4	1		_	_	_		40
POPW A	4	1		_	_	dΗ		50
PUSHW IX	4	1		–	_	_		41
POPW IX	4	1		_	_	_		51
NOP	1	1		_	_	_		00
CLRC	1	1		_	_	_	R	81
SETC	1	1		_	_	_	S	91
CLRI	1	1		_	_	_		80
SETI	1	1		_	_	_		90

■ INSTRUCTION MAP

LH	0	1	2	3	4	5	6	7	8	9	Α	В	С	D	E	F
0	NOP	SWAP	RET	RETI	PUSHW A	POPW A	MOV A,ext	MOVW A,PS	CLRI	SETI	CLRB dir: 0	BBC dir: 0,rel	INCW A	DECW A	JMP @A	MOVW A,PC
1	MULU A	DIVU A	JMP addr16	CALL addr16	PUSHW IX	POPW IX	MOV ext,A	MOVW PS,A	CLRC	SETC	CLRB dir: 1	BBC dir: 1,rel	INCW SP	DECW SP	MOVW SP,A	MOVW A,SP
2	ROLC A	CMP A	ADDC A	SUBC A	XCH A, T	XOR A	AND A	OR A	MOV @A,T	MOV A,@A	CLRB dir: 2	BBC dir: 2,rel	INCW IX	DECW IX	MOVW IX,A	MOVW A,IX
3	RORC A	CMPW A	ADDCW A	SUBCW A	XCHW A, T	XORW A	ANDW A	ORW A	MOVW @A,T	MOVW A,@A	CLRB dir: 3	BBC dir: 3,rel	INCW EP	DECW EP	MOVW EP,A	MOVW A,EP
4	MOV A,#d8	CMP A,#d8	ADDC A,#d8	SUBC A,#d8		XOR A,#d8	AND A,#d8	OR A,#d8	DAA	DAS	CLRB dir: 4	BBC dir: 4,rel	MOVW A,ext	MOVW ext,A	MOVW A,#d16	XCHW A,PC
5	MOV A,dir	CMP A,dir	ADDC A,dir	SUBC A,dir	MOV dir,A	XOR A,dir	AND A,dir	OR A,dir	MOV dir,#d8	CMP dir,#d8	CLRB dir: 5	BBC dir: 5,rel	MOVW A,dir	MOVW dir,A	MOVW SP,#d16	XCHW A,SP
6	MOV A,@IX +d	CMP A,@IX +d	ADDC A,@IX +d	SUBC A,@IX +d	MOV @IX +d,A	XOR A,@IX +d	AND A,@IX +d	OR A,@IX +d	MOV @IX +d,#d8	CMP @IX +d,#d8	CLRB dir: 6	BBC dir: 6,rel	MOVW A,@IX +d	MOVW @IX +d,A	MOVW IX,#d16	XCHW A,IX
7	MOV A,@EP	CMP A,@EP	ADDC A,@EP	SUBC A,@EP	MOV @EP,A	XOR A,@EP	AND A,@EP	OR A,@EP	MOV @EP,#d8	CMP @EP,#d8	CLRB dir: 7	BBC dir: 7,rel	MOVW A,@EP	MOVW @EP,A	MOVW EP,#d16	XCHW A,EP
8	MOV A,R0	CMP A,R0	ADDC A,R0	SUBC A,R0	MOV R0,A	XOR A,R0	AND A,R0	OR A,R0	MOV R0,#d8	CMP R0,#d8	SETB dir: 0	BBS dir: 0,rel	INC R0	DEC R0	CALLV #0	BNC rel
9	MOV A,R1	CMP A,R1	ADDC A,R1	SUBC A,R1	MOV R1,A	XOR A,R1	AND A,R1	OR A,R1	MOV R1,#d8	CMP R1,#d8	SETB dir: 1	BBS dir: 1,rel	INC R1	DEC R1	CALLV #1	BC rel
Α	MOV A,R2	CMP A,R2	ADDC A,R2	SUBC A,R2	MOV R2,A	XOR A,R2	AND A,R2	OR A,R2	MOV R2,#d8	CMP R2,#d8	SETB dir: 2	BBS dir: 2,rel	INC R2	DEC R2	CALLV #2	BP rel
В	MOV A,R3	CMP A,R3	ADDC A,R3	SUBC A,R3	MOV R3,A	XOR A,R3	AND A,R3	OR A,R3	MOV R3,#d8	CMP R3,#d8	SETB dir: 3	BBS dir: 3,rel	INC R3	DEC R3	CALLV #3	BN rel
С	MOV A,R4	CMP A,R4	ADDC A,R4	SUBC A,R4	MOV R4,A	XOR A,R4	AND A,R4	OR A,R4	MOV R4,#d8	CMP R4,#d8	SETB dir: 4	BBS dir: 4,rel	INC R4	DEC R4	CALLV #4	BNZ rel
D	MOV A,R5	CMP A,R5	ADDC A,R5	SUBC A,R5	MOV R5,A	XOR A,R5	AND A,R5	OR A,R5	MOV R5,#d8	CMP R5,#d8	SETB dir: 5	BBS dir: 5,rel	INC R5	DEC R5	CALLV #5	BZ rel
E	MOV A,R6	CMP A,R6	ADDC A,R6	SUBC A,R6	MOV R6,A	XOR A,R6	AND A,R6	OR A,R6	MOV R6,#d8	CMP R6,#d8	SETB dir: 6	BBS dir: 6,rel	INC R6	DEC R6	CALLV #6	BGE rel
F	MOV A,R7	CMP A,R7	ADDC A,R7	SUBC A,R7	MOV R7,A	XOR A,R7	AND A,R7	OR A,R7	MOV R7,#d8	CMP R7,#d8	SETB dir: 7	BBS dir: 7,rel	INC R7	DEC R7	CALLV #7	BLT rel

■ MASK OPTIONS

No.	Part number	MB89623R MB89625R MB89626R MB89627R	MB89P625 MB89W625 MB89P627 MB89W627	MB89PV620 MB89T627R	
	Specifying procedure	Specify when ordering masking	Set with EPROM programmer	Setting not possible	
1	Pull-up resistors P00 to P07, P10 to P17, P30 to P37, P40 to P47, P50 to P57, P60 to P64	Selectable per pin. (P50 to P57 must be set to without a pull-up resistor when an A/D converter is used.)	Can be set per pin. (P40 to P47 are available only for without a pull-up resistor.)	Fixed to without pull-up resistor	
2	Power-on reset selection With power-on reset Without power-on reset	Selectable	Setting possible	Fixed to with power-on reset	
3	Oscillation stabilization time selection Crystal oscillator: 2 ¹⁸ /Fc(s)) Ceramic oscillator: 2 ¹⁴ /Fc(s))	Selectable	Setting possible	Crystal oscillator (2 ¹⁸ /Fc(s))	
4	Reset pin output With reset output Without reset output	Selectable	Setting possible	With reset output	

Note: Reset is input asynchronized with the internal clock whether with or without power-on reset.

■ ORDERING INFORMATION

Part number	Package	Remarks
MB89623RP-SH MB89625RP-SH MB89626RP-SH MB89627RP-SH MB89P625P-SH MB89P627-SH MB89T627RP-SH	64-pin Plastic SH-DIP (DIP-64P-M01)	
MB89623RPFV MB89625RPFV	64-pin Plastic LQFP (FPT-64P-M03)	Lead pitch: 0.5 mm
MB89623RPF MB89625RPF MB89626RPF MB89627RPF MB89P625PF MB89P627PF MB89T623RPF MB89T625RPF MB89T627RPF	64-pin Plastic QFP (FPT-64P-M06)	Lead pitch: 1.0 mm
MB89623RPFM MB89625RPFM MB89626RPFM MB89627RPFM MB89P625PFM MB89T627RPFM	64-pin Plastic QFP (FPT-64P-M09)	Lead pitch: 0.65 mm
MB89W625C-SH MB89W627C-SH	64-pin Ceramic SH-DIP (DIP-64C-A06)	
MB89PV620CF	64-pin Ceramic MQFP (MQP-64C-P01)	
MB89PV620C-SH	64-pin Ceramic MDIP (MDP-64C-P02)	

■ PACKAGE DIMENSIONS

FUJITSU LIMITED

For further information please contact:

Japan

FUJITSU LIMITED
Corporate Global Business Support Division
Electronic Devices
KAWASAKI PLANT, 4-1-1, Kamikodanaka
Nakahara-ku, Kawasaki-shi
Kanagawa 211-88, Japan

Tel: (044) 754-3763 Fax: (044) 754-3329

North and South America

FUJITSU MICROELECTRONICS, INC. Semiconductor Division 3545 North First Street San Jose, CA 95134-1804, U.S.A.

Tel: (408) 922-9000 Fax: (408) 432-9044/9045

Europe

FUJITSU MIKROELEKTRONIK GmbH Am Siebenstein 6-10 63303 Dreieich-Buchschlag Germany

Tel: (06103) 690-0 Fax: (06103) 690-122

Asia Pacific

FUJITSU MICROELECTRONICS ASIA PTE. LIMITED #05-08, 151 Lorong Chuan New Tech Park

Singapore 556741 Tel: (65) 281-0770 Fax: (65) 281-0220 All Rights Reserved.

The contents of this document are subject to change without notice. Customers are advised to consult with FUJITSU sales representatives before ordering.

The information and circuit diagrams in this document presented as examples of semiconductor device applications, and are not intended to be incorporated in devices for actual use. Also, FUJITSU is unable to assume responsibility for infringement of any patent rights or other rights of third parties arising from the use of this information or circuit diagrams.

FUJITSU semiconductor devices are intended for use in standard applications (computers, office automation and other office equipment, industrial, communications, and measurement equipment, personal or household devices, etc.).

CAUTION:

Customers considering the use of our products in special applications where failure or abnormal operation may directly affect human lives or cause physical injury or property damage, or where extremely high levels of reliability are demanded (such as aerospace systems, atomic energy controls, sea floor repeaters, vehicle operating controls, medical devices for life support, etc.) are requested to consult with FUJITSU sales representatives before such use. The company will not be responsible for damages arising from such use without prior approval.

Any semiconductor devices have inherently a certain rate of failure. You must protect against injury, damage or loss from such failures by incorporating safety design measures into your facility and equipment such as redundancy, fire protection, and prevention of over-current levels and other abnormal operating conditions.

If any products described in this document represent goods or technologies subject to certain restrictions on export under the Foreign Exchange and Foreign Trade Control Law of Japan, the prior authorization by Japanese government should be required for export of those products from Japan.

F9703

© FUJITSU LIMITED Printed in Japan