DISCRETE SEMICONDUCTORS # DATA SHEET # **BGD814** 860 MHz, 20 dB gain power doubler amplifier Product specification Supersedes data of 2001 Sep 07 2001 Nov 01 ## 860 MHz, 20 dB gain power doubler amplifier ## **BGD814** ## **FEATURES** - · Excellent linearity - Extremely low noise - Excellent return loss properties - · Silicon nitride passivation - Rugged construction - Gold metallization ensures excellent reliability. ## **APPLICATIONS** • CATV systems operating in the 40 to 870 MHz frequency range. ## **DESCRIPTION** Hybrid amplifier module in a SOT115J package operating with a voltage supply of 24 V (DC). #### **PINNING - SOT115J** | PIN | DESCRIPTION | | |------|-----------------|--| | 1 | input | | | 2, 3 | common | | | 5 | +V _B | | | 7, 8 | common | | | 9 | output | | ## **QUICK REFERENCE DATA** | SYMBOL | PARAMETER | CONDITIONS | MIN. | MAX. | UNIT | |------------------|--------------------------------|-----------------------|------|------|------| | G _p | power gain | f = 45 MHz | 19.7 | 20.3 | dB | | | | f = 870 MHz | 20.5 | 21.5 | dB | | I _{tot} | total current consumption (DC) | V _B = 24 V | 380 | 410 | mA | ## **LIMITING VALUES** In accordance with the Absolute Maximum Rating System (IEC 60134). | SYMBOL | PARAMETER | | MAX. | UNIT | |------------------|-------------------------------------|-----|------|------| | V _B | supply voltage | _ | 30 | V | | Vi | RF input voltage | _ | 70 | dBmV | | T _{stg} | storage temperature | -40 | +100 | °C | | T _{mb} | operating mounting base temperature | -20 | +100 | °C | ## 860 MHz, 20 dB gain power doubler amplifier **BGD814** ## **CHARACTERISTICS** Bandwidth 40 to 870 MHz; V_B = 24 V; T_{mb} = 35 °C; Z_S = Z_L = 75 Ω . | SYMBOL | PARAMETER | CONDITIONS | MIN. | TYP. | MAX. | UNIT | |---------------------------|------------------------|---|------|------|-------|------| | G _p power gain | | f = 45 MHz | 19.7 | _ | 20.3 | dB | | | | f = 870 MHz | 20.5 | _ | 21.5 | dB | | SL | slope straight line | f = 45 to 870 MHz; note 1 | 0.5 | _ | 1.5 | dB | | FL | flatness straight line | f = 45 to 100 MHz | _ | _ | ±0.25 | dB | | | | f = 100 to 800 MHz | _ | _ | ±0.5 | dB | | | | f = 800 to 870 MHz | -0.4 | _ | 0.1 | dB | | S ₁₁ | input return losses | f = 45 to 80 MHz | 25 | _ | _ | dB | | | | f = 80 to 160 MHz | 22 | _ | _ | dB | | | | f = 160 to 320 MHz | 19 | _ | _ | dB | | | | f = 320 to 550 MHz | 17 | _ | _ | dB | | | | f = 550 to 650 MHz | 17 | _ | _ | dB | | | | f = 650 to 750 MHz | 16 | _ | _ | dB | | | | f = 750 to 870 MHz | 15 | _ | _ | dB | | | | f = 870 to 914 MHz | 12 | _ | _ | dB | | S ₂₂ | output return losses | f = 45 to 80 MHz | 24 | _ | _ | dB | | | | f = 80 to 160 MHz | 22 | _ | _ | dB | | | | f = 160 to 320 MHz | 17 | _ | _ | dB | | | | f = 320 to 550 MHz | 18 | _ | _ | dB | | | | f = 550 to 650 MHz | 16 | _ | _ | dB | | | | f = 650 to 750 MHz | 15 | _ | _ | dB | | | | f = 750 to 870 MHz | 15 | _ | _ | dB | | | | f = 870 to 914 MHz | 13 | _ | _ | dB | | S ₂₁ | phase response | f = 50 MHz | -45 | _ | +45 | deg | | СТВ | composite triple beat | 79 chs flat; $V_0 = 44 \text{ dBmV}$; $f_m = 547.25 \text{ MHz}$ | _ | _ | -66 | dB | | | | 112 chs flat; $V_0 = 44 \text{ dBmV}$; $f_m = 745.25 \text{ MHz}$ | _ | _ | -60.5 | dB | | | | 132 chs flat; $V_0 = 44 \text{ dBmV}$; $f_m = 859.25 \text{ MHz}$ | _ | _ | -56 | dB | | | | 112 chs; $f_m = 547.25$ MHz; $V_o = 50.2$ dBmV at 745 MHz; note 2 | _ | _ | -55.5 | dB | | | | 79 chs; $f_m = 331.25$ MHz; $V_o = 47.3$ dBmV at 547 MHz; note 3 | _ | _ | -65 | dB | | X _{mod} | cross modulation | 79 chs flat; $V_0 = 44 \text{ dBmV}$; $f_m = 55.25 \text{ MHz}$ | _ | _ | -66 | dB | | | | 112 chs flat; V _o = 44 dBmV; f _m = 55.25 MHz | _ | - | -62.5 | dB | | | | 132 chs flat; V _o = 44 dBmV; f _m = 55.25 MHz | _ | _ | -61 | dB | | | | 112 chs; f _m = 745.25 MHz; V _o = 50.2 dBmV at 745 MHz; note 2 | _ | _ | -57 | dB | | | | 79 chs; $f_m = 445.25$ MHz; $V_o = 47.3$ dBmV at 547 MHz; note 3 | _ | _ | -66 | dB | ## 860 MHz, 20 dB gain power doubler amplifier **BGD814** | SYMBOL | PARAMETER | CONDITIONS | MIN. | TYP. | MAX. | UNIT | |-------------------------------|--|---|------|------|------|------| | CSO | composite second | 79 chs flat; V _o = 44 dBmV; f _m = 548.5 MHz | _ | _ | -68 | dB | | | order distortion | 112 chs flat; V _o = 44 dBmV; f _m = 746.5 MHz | _ | _ | -61 | dB | | | | 132 chs flat; V _o = 44 dBmV; f _m = 860.5 MHz | _ | _ | -57 | dB | | | | 112 chs; $f_m = 210 \text{ MHz}$; $V_o = 50.2 \text{ dBmV}$ at 745 MHz; note 2 | _ | _ | -56 | dB | | | | 79 chs; $f_m = 210 \text{ MHz}$; $V_o = 47.3 \text{ dBmV}$ at 547 MHz; note 3 | _ | _ | -64 | dB | | d ₂ | second order distortion | note 4 | _ | _ | -69 | dB | | V _o output voltage | V _o output voltage | $d_{im} = -60 \text{ dB}$; note 5 | 64 | _ | _ | dBmV | | | | CTB compression = 1 dB; 132 chs flat; f = 859.25 MHz | 48 | _ | _ | dBmV | | | CSO compression = 1 dB; 132 chs flat;
f = 860.5 MHz | 50 | _ | _ | dBmV | | | NF | noise figure | f = 50 MHz | _ | _ | 5.5 | dB | | | | f = 550 MHz | _ | _ | 5.5 | dB | | | | f = 750 MHz | _ | _ | 6.5 | dB | | | | f = 870 MHz | _ | _ | 7.5 | dB | | I _{tot} | total current consumption (DC) | note 6 | 380 | 395 | 410 | mA | ## **Notes** - 1. Slope straight line is defined as gain at 870 MHz against gain at 45 MHz. - 2. Tilt = 10.2 dB (55 to 745 MHz). - 3. Tilt = 7.3 dB (55 to 547 MHz). - 4. f_p = 55.25 MHz; V_p = 44 dBmV; f_q = 805.25 MHz; V_q = 44 dBmV; measured at f_p + f_q = 860.5 MHz. - 5. Measured according to DIN45004B: f_p = 851.25 MHz; V_p = V_o ; f_q = 858.25 MHz; V_q = V_o 6 dB; f_r = 860.25 MHz; V_r = V_o 6 dB; measured at f_p + f_q f_r = 849.25 MHz. - 6. The module normally operates at V_B = 24 V, but is able to withstand supply transients up to 35 V. ## 860 MHz, 20 dB gain power doubler amplifier **BGD814** $Z_S = Z_L = 75 \Omega$; $V_B = 24 V$; 79 chs; tilt = 7.3 dB (50 to 550 MHz). - (1) V_o. - (3) Typ. - (2) Typ. +3 σ . - (4) Typ. –3 σ. Fig.2 Composite triple beat as a function of frequency under tilted conditions. $Z_S = Z_L = 75 \Omega$; $V_B = 24 V$; 79 chs; tilt = 7.3 dB (50 to 550 MHz). - (1) V_o. - (3) Typ. - (2) Typ. +3 σ. - (4) Typ. –3 σ. Fig.3 Cross modulation as a function of frequency under tilted conditions. $Z_S = Z_L = 75 \ \Omega$; $V_B = 24 \ V$; 79 chs; tilt = 7.3 dB (50 to 550 MHz). - (1) V_o. - (3) Typ. - (2) Typ. +3 σ . - (4) Typ. –3 σ. Fig.4 Composite second order distortion as a function of frequency under tilted conditions. ## 860 MHz, 20 dB gain power doubler amplifier **BGD814** Z_S = Z_L = 75 $\Omega;$ V_B = 24 V; 112 chs; tilt = 10.3 dB (50 to 750 MHz). - (1) V_o. - (3) Typ. - (2) Typ. +3 σ . - (4) Typ. –3 σ. Fig.5 Composite triple beat as a function of frequency under tilted conditions. $Z_S = Z_L = 75 \Omega$; $V_B = 24 V$; 112 chs; tilt = 10.3 dB (50 to 750 MHz). - (1) V_o. - (3) Typ. - (2) Typ. +3 σ. - (4) Typ. –3 σ. Fig.6 Cross modulation as a function of frequency under tilted conditions. $Z_S = Z_L = 75~\Omega;~V_B = 24~V;~112~chs;~tilt = 10.3~dB~(50~to~750~MHz).$ - (1) V_o. - (3) Typ. - (2) Typ. $+3 \sigma$. - (4) Typ. –3 σ. Fig.7 Composite second order distortion as a function of frequency under tilted conditions. ## 860 MHz, 20 dB gain power doubler amplifier **BGD814** ## **PACKAGE OUTLINE** Rectangular single-ended package; aluminium flange; 2 vertical mounting holes; 2 x 6-32 UNC and 2 extra horizontal mounting holes; 7 gold-plated in-line leads SOT115J ## 860 MHz, 20 dB gain power doubler amplifier **BGD814** #### **DATA SHEET STATUS** | DATA SHEET STATUS(1) | PRODUCT
STATUS ⁽²⁾ | DEFINITIONS | |----------------------|----------------------------------|--| | Objective data | Development | This data sheet contains data from the objective specification for product development. Philips Semiconductors reserves the right to change the specification in any manner without notice. | | Preliminary data | Qualification | This data sheet contains data from the preliminary specification. Supplementary data will be published at a later date. Philips Semiconductors reserves the right to change the specification without notice, in order to improve the design and supply the best possible product. | | Product data | Production | This data sheet contains data from the product specification. Philips Semiconductors reserves the right to make changes at any time in order to improve the design, manufacturing and supply. Changes will be communicated according to the Customer Product/Process Change Notification (CPCN) procedure SNW-SQ-650A. | #### **Notes** - 1. Please consult the most recently issued data sheet before initiating or completing a design. - 2. The product status of the device(s) described in this data sheet may have changed since this data sheet was published. The latest information is available on the Internet at URL http://www.semiconductors.philips.com. ## **DEFINITIONS** **Short-form specification** — The data in a short-form specification is extracted from a full data sheet with the same type number and title. For detailed information see the relevant data sheet or data handbook. Limiting values definition — Limiting values given are in accordance with the Absolute Maximum Rating System (IEC 60134). Stress above one or more of the limiting values may cause permanent damage to the device. These are stress ratings only and operation of the device at these or at any other conditions above those given in the Characteristics sections of the specification is not implied. Exposure to limiting values for extended periods may affect device reliability. Application information — Applications that are described herein for any of these products are for illustrative purposes only. Philips Semiconductors make no representation or warranty that such applications will be suitable for the specified use without further testing or modification. ## **DISCLAIMERS** Life support applications — These products are not designed for use in life support appliances, devices, or systems where malfunction of these products can reasonably be expected to result in personal injury. Philips Semiconductors customers using or selling these products for use in such applications do so at their own risk and agree to fully indemnify Philips Semiconductors for any damages resulting from such application. Right to make changes — Philips Semiconductors reserves the right to make changes, without notice, in the products, including circuits, standard cells, and/or software, described or contained herein in order to improve design and/or performance. Philips Semiconductors assumes no responsibility or liability for the use of any of these products, conveys no licence or title under any patent, copyright, or mask work right to these products, and makes no representations or warranties that these products are free from patent, copyright, or mask work right infringement, unless otherwise specified. ## CAUTION This product is supplied in anti-static packing to prevent damage caused by electrostatic discharge during transport and handling. For further information, refer to Philips specs.: SNW-EQ-608, SNW-FQ-302A, and SNW-FQ-302B. # 860 MHz, 20 dB gain power doubler amplifier **BGD814** NOTES # 860 MHz, 20 dB gain power doubler amplifier **BGD814** NOTES # 860 MHz, 20 dB gain power doubler amplifier **BGD814** NOTES # Philips Semiconductors – a worldwide company #### **Contact information** For additional information please visit http://www.semiconductors.philips.com. Fax: +31 40 27 24825 For sales offices addresses send e-mail to: sales.addresses@www.semiconductors.philips.com. © Koninklijke Philips Electronics N.V. 2001 SCA73 All rights are reserved. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner. The information presented in this document does not form part of any quotation or contract, is believed to be accurate and reliable and may be changed without notice. No liability will be accepted by the publisher for any consequence of its use. Publication thereof does not convey nor imply any license under patent- or other industrial or intellectual property rights. Printed in The Netherlands 613518/04/pp12 Date of release: 2001 Nov 01 Document order number: 9397 750 08857 Let's make things better. Philips Semiconductors