OCTAL D-TYPE FLIP FLOP NON INVERTING (3-STATE) WITH 5V TOLERANT INPUTS AND OUTPUTS

. 5V TOLERANT INPUTS AND OUTPUTS

- HIGH SPEED:
$\mathrm{f}_{\mathrm{MAX}}=150 \mathrm{MHz}(\mathrm{MIN}$.$) at \mathrm{V}_{\mathrm{CC}}=3 \mathrm{~V}$
- POWER-DOWN PROTECTIONON INPUTS AND OUTPUTS
- SYMMETRICAL OUTPUT IMPEDANCE: $|\mathrm{loh}|=\mathrm{loL}=24 \mathrm{~mA}(\mathrm{MIN})$
- PCI BUS LEVELSGUARANTEED AT 24mA
- BALANCED PROPAGATION DELAYS: tpLh $\cong \mathrm{tPHL}$
- OPERATING VOLTAGE RANGE: Vcc (OPR) $=2.0 \mathrm{~V}$ to 3.6 V (1.5V Data Retention)
- PIN AND FUNCTION COMPATIBLE WITH 74 SERIES 574
- LATCH-UP PERFORMANCE EXCEEDS 500mA
- ESDPERFORMANCE:

HBM > 2000V; MM > 200V

DESCRIPTION

The LCX574 is a low voltage CMOS OCTAL D-TYPE FLIP FLOP with 3 STATE OUTPUT NON INVERTING fabricated with sub-micron silicon gate and double-layer metal wiring $\mathrm{C}^{2} \mathrm{MOS}$ technology. It is ideal for low power and high speed 3.3 V applications; it can be interfaced to 5 V signal enviroment for both inputs and outputs.
These 8 bit D-Type flip-flops are controlled by a clock input (CK) and an output enable input ($\overline{\mathrm{OE}}$).
On the positive transition of the clock, the Q

outputs will be set to logic state that were setup at the D inputs.
While the ($\overline{\mathrm{OE})}$ input is low, the 8 outputs will be in al normal logic state (high or low logic level) and while high level, the outputs will be in a high impedance state.
The output control does not affect the internal operation of flip flop, that is, the old data can be retained or the new data can be entered even while the outputs are off.
It has same speed performance at 3.3 V than 5 V , AC/ACT family, combined with a lower power consumption.
All inputs and outputs are equipped with protection circuits against static discharge, giving them 2KV ESD immunity and transient excess voltage.

PIN CONNECTION AND IEC LOGIC SYMBOLS

INPUT AND OUTPUT EQUIVALENT CIRCUIT

PIN DESCRIPTION

PIN No	SYMBOL	NAME AND FUNCTION
1	$\overline{\mathrm{OE}}$	3 State Output Enable Input (Active LOW)
$2,3,4$, $5,6,7$, 8,9	D0 to D7	Data Inputs
$12,13,14$, $15,16,17$, 18,19	Q0 to Q7	3 State Outputs
11	CLOCK	Clock Input (LOW to HIGH, edge triggered)
10	GND	Ground (OV)
20	VCC	Positive Supply Voltage

TRUTH TABLE

INPUTS			OUTPUTS
$\overline{\mathbf{O E}}$	$\mathbf{C K}$	\mathbf{D}	\mathbf{Q}
H	X	X	Z
L	L	X	NO CHANGE
L	-	L	L
L	-	H	H

X:"H" or"L
Z. High Impedance

LOGIC DIAGRAM

ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	Value	Unit
V_{CC}	Supply Voltage	-0.5 to +7.0	V
$\mathrm{~V}_{\mathrm{I}}$	DC Input Voltage	-0.5 to +7.0	V
$\mathrm{~V}_{\mathrm{O}}$	DC Output Voltage (OFF state)	-0.5 to +7.0	V
$\mathrm{~V}_{\mathrm{O}}$	DC Output Voltage (High or Low State) (note1)	-0.5 to $\mathrm{V}_{\mathrm{CC}}+0.5$	V
I_{K}	DC Input Diode Current	-50	mA
I_{OK}	DC Output Diode Current (note2)	± 50	mA
I_{O}	DC Output Source/Sink Current	± 50	mA
I_{CC}	DC Supply Current per Supply Pin	± 100	mA
$\mathrm{I}_{\mathrm{GND}}$	DC Ground Current per Supply Pin	± 100	mA
$\mathrm{~T}_{\text {stg }}$	Storage Temperature	-65 to +150	${ }^{\circ} \mathrm{C}$
T_{L}	Lead Temperature (10 sec)	300	${ }^{\circ} \mathrm{C}$

Absolute Maximum Ratings are those values beyond which damage to the device may occur. Functional operation under these condition is not implied.

1) Io absolute maximum rating must be observed
2) $V_{o}<G N D, V_{o}>V_{c c}$

RECOMMENDED OPERATING CONDITIONS

Symbol	Parameter	Value	Unit
V_{CC}	Supply Voltage (note 1)	2.0 to 3.6	V
$\mathrm{~V}_{\mathrm{I}}$	Input Voltage	0 to 5.5	V
$\mathrm{~V}_{\mathrm{O}}$	Output Voltage (OFF state)	0 to 5.5	V
$\mathrm{~V}_{\mathrm{O}}$	Output Voltage (High or Low State)	0 to V_{CC}	V
$\mathrm{I}_{\mathrm{OH}}, \mathrm{I}_{\mathrm{CL}}$	High or Low Level Output Current $\left(\mathrm{V}_{\mathrm{CC}}=3.0\right.$ to 3.6 V$)$	± 24	mA
$\mathrm{I}_{\mathrm{OH}}, \mathrm{I}_{\mathrm{LL}}$	High or Low Level Output Current $\left(\mathrm{V}_{\mathrm{CC}}=2.7\right.$ to 3.0 V$)$	± 12	mA
$\mathrm{~T}_{\mathrm{Op}}$	Operating Temperature:	-40 to +85	${ }^{\circ} \mathrm{C}$
$\mathrm{dt} / \mathrm{dv}$	Input Transition Rise or Fall Rate $\left(\mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V}\right)($ note 2$)$	0 to 10	$\mathrm{~ns} / \mathrm{V}$

1) Truth Table guaranteed: 1.5 V to 3.6 V
2) V IN from 0.8 V to 2.0 V

DC SPECIFICATIONS

Symbol	Parameter	Test Conditions			Value		Unit
		V_{cc} (V)			-40 to $85{ }^{\circ} \mathrm{C}$		
					Min.	Max.	
$\mathrm{V}_{\text {IH }}$	High Level Input Voltage	2.7 to 3.6			2.0		V
VIL	Low Level Input Voltage					0.8	V
V_{OH}	High Level Output Voltage	2.7 to 3.6	$\begin{aligned} & V_{1}= \\ & V_{I H} \text { or } \\ & V_{\text {IL }} \end{aligned}$	$\mathrm{I}_{0}=-100 \mu \mathrm{~A}$	$\mathrm{V}_{\mathrm{CC}}-0.2$		V
		2.7		$\mathrm{I}_{\mathrm{O}}=-12 \mathrm{~mA}$	2.2		
		3.0		$\mathrm{I}_{\mathrm{O}}=-18 \mathrm{~mA}$	2.4		
				$\mathrm{l}=-24 \mathrm{~mA}$	2.2		
VoL	Low Level Output Voltage	2.7 to 3.6	$V_{1}=$ V_{IH} or VIL	$\mathrm{I}_{\mathrm{O}}=100 \mu \mathrm{~A}$		0.2	V
		2.7		$\mathrm{I}_{\mathrm{O}}=12 \mathrm{~mA}$		0.4	
		3.0		$\mathrm{I}_{\mathrm{O}}=16 \mathrm{~mA}$		0.4	
		3.0		$\mathrm{I}_{\mathrm{O}}=24 \mathrm{~mA}$		0.55	
1	Input Leakage Current	2.7 to 3.6	$\mathrm{V}_{1}=$	to 5.5 V		± 5	$\mu \mathrm{A}$
loz	3 State Output Leakage Current	2.7 to 3.6		$\begin{aligned} & \mathrm{V}_{\mathrm{H}} \text { or } \mathrm{V}_{\mathrm{IL}} \\ & 0 \text { to } 5.5 \mathrm{~V} \\ & \hline \end{aligned}$		± 5	$\mu \mathrm{A}$
$\mathrm{I}_{\text {off }}$	Power Off Leakage Current	0	V_{1} or	$\mathrm{O}_{\mathrm{O}}=5.5 \mathrm{~V}$		100	$\mu \mathrm{A}$
I_{cc}	Quiescent Supply Current	2.7 to 3.6	$\mathrm{V}_{1}=\mathrm{V}_{1}$	c or GND		10	$\mu \mathrm{A}$
				$\begin{aligned} & \text { r } \mathrm{V}_{\mathrm{O}}= \\ & \text { to } 5.5 \mathrm{~V} \end{aligned}$		± 10	
$\Delta \mathrm{lcc}$	ICC incr. per input	2.7 to 3.6	$\mathrm{V}_{1 \mathrm{H}}=$	ccc -0.6V		500	$\mu \mathrm{A}$

DYNAMIC SWITCHING CHARACTERISTICS

Symbol	Parameter	Test Conditions		Value			Unit
		Vcc (V)		$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$			
				Min.	Typ.	Max.	
$\mathrm{V}_{\text {OLP }}$	Dynamic Low Voltage Quiet Output (note 1)	3.3	$\begin{gathered} \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \\ \mathrm{~V}_{I L}=0 \mathrm{~V} \\ \mathrm{~V}_{I H}=3.3 \mathrm{~V} \end{gathered}$		0.8		V
$\mathrm{V}_{\text {OLV }}$					-0.8		

1) Number of outputs defined as"n". Measured with" n-1" outputs switching from HIGH to LOW or LOW t o HIGH. The remaining output is measured in the LOW state.

AC ELECTRICAL CHARACTERISTICS ($\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \mathrm{RL}_{\mathrm{L}}=500 \Omega$, Input $\left.\mathrm{tr}_{\mathrm{r}}=\mathrm{t}_{\mathrm{f}}=2.5 \mathrm{~ns}\right)$

Symbol	Parameter	Test Condition		Value		Unit
		$V_{c c}$ (V)	Waveform	-40 to $85{ }^{\circ} \mathrm{C}$		
				Min.	Max.	
$\begin{aligned} & \hline \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \end{aligned}$	Propagation Delay Time	2.7	1	1.5	9.5	ns
		3.0 to 3.6		1.5	8.5	
$\begin{aligned} & \text { tpzL } \\ & \text { tpzH } \end{aligned}$	Output Enable Time to HIGH and LOW level	2.7	2	1.5	9.5	ns
		3.0 to 3.6		1.5	8.5	
$\begin{aligned} & \text { tpLZ } \\ & \text { tpHZ } \end{aligned}$	Output Disable Time from HIGH and LOW level	2.7	2	1.5	8.5	ns
		3.0 to 3.6		1.5	7.5	
t_{s}	Setup Time, HIGh or LOW level Dn to CK	2.7	1	2.5		ns
		3.0 to 3.6		2.5		
$t_{\text {h }}$	Hold Time, HIGh or LOW level Dn to CK	2.7	1	1.5		ns
		3.0 to 3.6		1.5		
$\mathrm{t}_{\text {w }}$	CK Pulse Width, HIGH or LOW	2.7	3	3.3		ns
		3.0 to 3.6		3.3		
$\mathrm{f}_{\text {MAX }}$	Clock Pulse Frequency	3.0 to 3.6	1	150		MHz
$\begin{aligned} & \text { tosLh } \\ & \text { toshl } \\ & \hline \end{aligned}$	Output to Output Skew Time (note 1, 2)	3.0 to 3.6			1.0	ns

1) Skew is defined as the absolute value of the difference between the actual propagation delay for any two outputs of the same device switching in the same direction, either HIGHor LOW (tosLH $=\left|\mathrm{t}_{\mathrm{PLHm}}-\mathrm{t}_{\text {PLHn }}\right|, \mathrm{t}_{\mathrm{OSH}}=\left|\mathrm{t}_{\text {pHLm }}-\mathrm{t}_{\text {pHLn }}\right|$)
2) Parameter guaranteed by design

CAPACITIVE CHARACTERISTICS

Symbol	Parameter	Test Conditions		Value			Unit
		$V_{c c}$ (V)		$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$			
				Min.	Typ.	Max.	
$\mathrm{CIN}_{\text {IN }}$	Input Capacitance	3.3	$\mathrm{V}_{\mathrm{IN}}=0$ to $\mathrm{V}_{\text {cC }}$		6		pF
Cout	Output Capacitance	3.3	$\mathrm{V}_{\mathrm{IN}}=0$ to V_{CC}		12		pF
$\mathrm{C}_{\text {PD }}$	Power Dissipation Capacitance (note 1)	3.3	$\begin{aligned} & \mathrm{f}_{\mathrm{IN}}=10 \mathrm{MHz} \\ & \mathrm{~V}_{\text {IN }}=0 \text { or } \mathrm{V}_{\mathrm{CC}} \\ & \hline \end{aligned}$		25		pF

1) CPD isdefined as the value of the IC'sinternal equivalent capacitance which is calculated from the operating current consumption without load. Average operting current can be obtained by the following equation. Icc(opr) $=\mathrm{CpD} \bullet \mathrm{Vcc}_{\mathrm{cc}} \bullet \mathrm{fin}+\mathrm{Icd} 8$ (per Flip-Flop)

TEST CIRCUIT

TEST	SWITCH
$t_{\text {PLH }}, t_{\text {PHL }}$	Open
$t_{\text {PZL }}, t_{\text {PLZ }}$	6 V
$t_{\text {PZH }}, t_{\text {PHZ }}$	GND

$\mathrm{CL}=50 \mathrm{pF}$ or equivalent (includes jig and probe capacitance)
$R_{L}=R_{1}=500 \Omega$ orequivalent
$\mathrm{R}_{\mathrm{T}}=$ Zour of pulse generator (typically 50Ω)
WAVEFORM 1: PROPAGATION DELAYS, SETUP AND HOLD TIMES (f=1MHz; 50\% duty cycle)

WAVEFORM 2: OUTPUT ENABLE AND DISABLE TIMES ($\mathrm{f}=1 \mathrm{MHz} ; 50 \%$ duty cycle)

WAVEFORM 3: PULSE WIDTH

SO-20 MECHANICAL DATA

DIM.	mm			inch		
	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.
A			2.65			0.104
a1	0.10		0.20	0.004		0.007
a2			2.45			0.096
b	0.35		0.49	0.013		0.019
b1	0.23		0.32	0.009		0.012
C		0.50			0.020	
c1	45 (typ.)					
D	12.60		13.00	0.496		0.512
E	10.00		10.65	0.393		0.419
e		1.27			0.050	
e3		11.43			0.450	
F	7.40		7.60	0.291		0.299
L	0.50		1.27	0.19		0.050
M			0.75			0.029
S	8 (max.)					

TSSOP20 MECHANICAL DATA

DIM.	mm			inch		
	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.
A			1.1			0.433
A1	0.05	0.10	0.15	0.002	0.004	0.006
A2	0.85	0.9	0.95	0.335	0.354	0.374
b	0.19		0.30	0.0075		0.0118
C	0.09		0.2	0.0035		0.0079
D	6.4	6.5	6.6	0.252	0.256	0.260
E	6.25	6.4	6.5	0.246	0.252	0.256
E1	4.3	4.4	4.48	0.169	0.173	0.176
e		0.65 BSC			0.0256 BSC	
K	0°	4°	8°	0°	4°	8°
L	0.50	0.60	0.70	0.020	0.024	0.028

Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specification mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics.

The ST logo is a trademark of STMicroelectronics
© 1999 STMicroelectronics - Printed in Italy - All Rights Reserved
STMicroelectronics GROUP OF COMPANIES
Australia - Brazil - Canada - China - France - Germany - Italy - Japan - Korea - Malaysia - Malta - Mexico - Morocco - The Netherlands Singapore - Spain - Sweden - Switzerland - Taiwan - Thailand - United Kingdom - U.S.A.
http://www.st.com

