TOSHIBA TA8028S

TOSHIBA BIPOLAR LINEAR INTEGRATED CIRCUIT SILICON MONOLITHIC

TA8028S

DUTY CONTROLLER

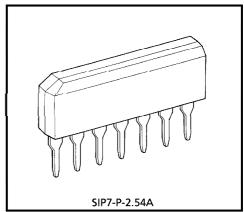
The TA8028S is an IC designed to control automotive illumination systems. It produces an accurate output with small temperature drift.

Either Sink or Source type output can be selected.

FEATURES

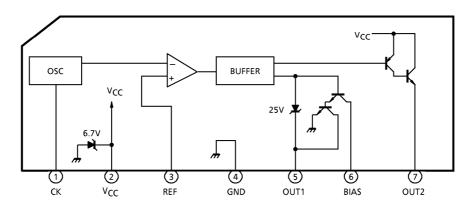
- Output ON/OFF duty variable
- Large output current

: I_{OUT} = 300mA Sink type Source type: IOUT = 100mA


Regulated voltage circuit incorporated

: 6.7V shunt regulator

Operating temperature range


: $Ta = -40 \text{ to } 85^{\circ}C$

Small SIP-7 pin

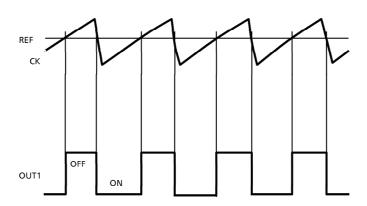
Weight: 0.7g (Typ.)

BLOCK DIAGRAM AND PIN LAYOUT

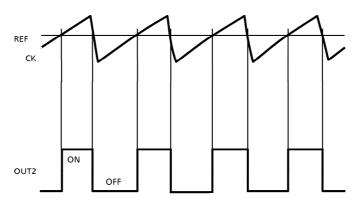
- TOSHIBA is continually working to improve the quality and the reliability of its products. Nevertheless, semiconductor devices in general can malfunction or fail due to their inherent electrical sensitivity and vulnerability to physical stress. It is the responsibility of the buyer, when utilizing TOSHIBA products, to observe standards of safety, and to avoid situations in which a malfunction or failure of a TOSHIBA product could cause loss of human life, bodily injury or damage to property. In developing your designs, please ensure that TOSHIBA products are used within specified operating ranges as set forth in the most recent products specifications. Also, please keep in mind the precautions and conditions set forth in the TOSHIBA Semiconductor Reliability Handbook.

 The products described in this document are subject to foreign exchange and foreign trade control laws.

 The information contained herein is presented only as a guide for the applications of our products. No responsibility is assumed by TOSHIBA CORPORATION for any infringements of intellectual property or other rights of the third parties which may result from its use. No license is granted by implication or otherwise under any intellectual property or other rights of TOSHIBA CORPORATION or others.


 The information contained herein is subject to change without notice.

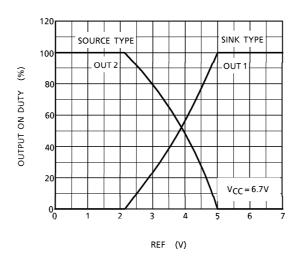
PIN DESCRIPTION


PIN No.	SYMBOL	DESCRIPTION
1	СК	Pin for determining the output frequency. A resistor is connected between V _{CC} and CK; a capacitor is connected between CK and GND.
2	V _{CC}	Power supply pin. This pin connects to the 6.7V regulated voltage circuit.
3	REF	Duty control pin. The voltage at this pin determines the output duty.
4	GND	Grounded
5	OUT1	Sink-type output pin which supplies the open-collector output of an NPN transistor.
6	BIAS	Connects to the collector of an NPN transistor preceding the NPN transistor which leads to the OUT1 pin. A resistor is connected between this pin and the power supply. When this pin is connected to OUT1, it supplies a Darlington transistor output.
7	OUT2	Source-type output pin which supplies the open-emitter output of an NPN transistor.

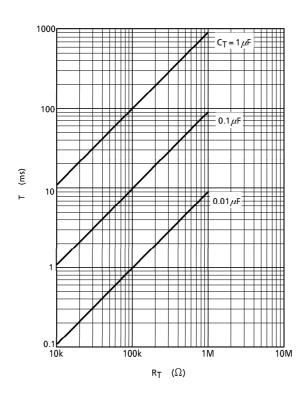
TIMING CHART

(1) SINK TYPE

(2) SOURCE TYPE

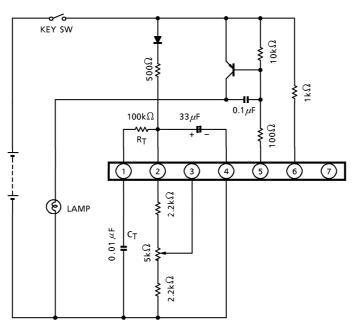

MAXIMUM RATINGS (Ta = 25°C)

CHARACTERISTIC	SYMBOL	RATING	UNIT	
Supply Voltage	ICC	50 (1s)	mA	
Output Current	IOUT1	300	mA	
Output Current	IOUT2	100		
Output Voltage	VOUT1, 2	24	V	
Input Voltage	V _{IN}	−0.3~V _{CC}	٧	
Power Dissipation	PD	300	mW	
Operation Temperature	T _{opr}	- 40∼85	°C	
Storage Temperature	T _{stg}	- 55∼150	°C	

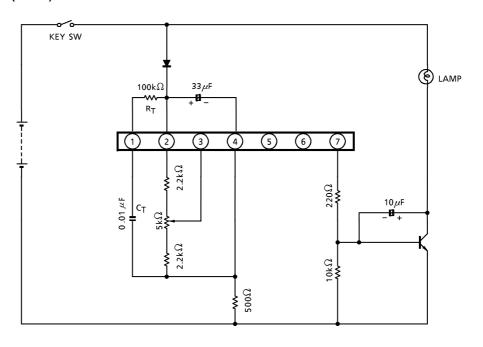

ELECTRICAL CHARACTERISTICS (Ta = 25°C, $V_{CC} = 6V$)

CHARACTERISTIC	SYMBOL	PIN	TEST CIR- CUIT	TEST CONDITION	MIN.	TYP.	MAX.	UNIT
Current Consumption	ıcc	VCC	_	_	_	3.0	4.5	mA
Regulated Voltage	VS	Vcc	_	I _{CC} = 10mA	6.2	6.7	7.2	٧
Input Current	IN	CK	_	V _{IN} = 0	- 5	_	5	μΑ
input Current		REF	_	$V_{IN} = 0 \sim V_{CC}$	- 5	_	5	
		V _{OUT1}	_	I _{OUT} = 200mA (BIAS : I _{OUT} = 15mA)	_	_	0.7	V
Output Voltage	VOUT	V _{OUT2}	_	I _{OUT} = 80mA	V _C C - 1.3	_	_	
		BIAS	_	I _{OUT} = 15mA	_	_	1.5	
		V _{OUT1}	_	V _{OUT} = 16V	_	_	10	μΑ
Output Leakage Current	ILEAK	V _{OUT2}	_	V _{OUT} = 0V	- 10	_	_	
		BIAS	_	V _{OUT} = 16V	_	_	10	
	V _{IH}	CK	_	_	0.71×	0.75×	0.79×	· V
Detection Voltage					Vcc	Vcc	Vcc	
Detection voitage	V _{IL}				0.29×	0.31×	0.33×	
					Vcc	Vcc	Vcc	
Duty variation with temperature	_	_	_	$R_T = 100k\Omega$ $C_T = 0.01\mu$ F	_	50	_	ppm /°C

Input-Output Characteristic

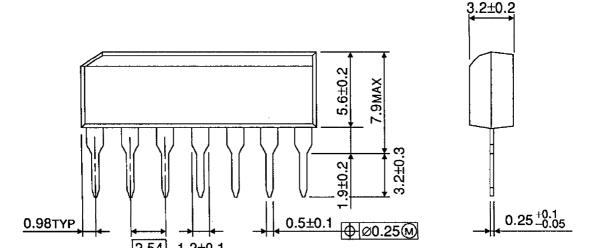


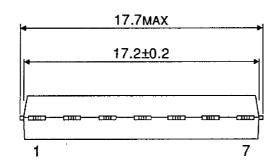
Relationship between Frequency and C_T, R_T



EXAMPLE OF APPLICATION CIRCUIT

(1) SINK TYPE (OUT1)


(2) SOURCE TYPE (OUT2)



Unit: mm

OUTLINE DRAWING

SIP7-P-2.54A

2.54 1.2±0.1

Weight: 0.7g (Typ.)