

LOW Power, High Accuracy Quad Universal Filter Building Block

February 1998

FEATURES

- Four Identical 2nd Order Filters in an SSOP Package
- Center Frequency Error: ±0.3%
- Low Noise: \leq 40µ W_{RMS} per 2nd Order Section, Q \leq 5
- High Dynamic Range: THD + Noise ≤ 0.01%
- Low DC Offsets: ≤10mV per 2nd Order Section
- Clock-to-Center Frequency Ratio: 50:1
- No Aliasing for Input Frequencies up to 100 × f_{CLITOFF}
- Maximum Center Frequency up to 50kHz $(V_S = \pm 5V)$
- Operates from ±1.57V to ±5V Power Supplies

APPLICATIONS

- Low Power Linear Phase Bandpass Filters (Up to 40kHz, V_S = Single 5V)
- Dual 4th Order Phase Matched Filters (Up to 40kHz, V_S = Single 5V)
- Low Power Tone Detectors (High Selectivity Bandpass Filters up to 30kHz, V_S = Single 5V)

(T), LTC and LT are registered trademarks of Linear Technology Corporation. FilterCAD is a trademark of Linear Technology Corporation.

DESCRIPTION

The LTC®1068-50 consists of four identical, low noise, high accuracy 2nd order switched-capacitor filter building blocks. Each building block, together with three to five resistors, can provide 2nd order filter functions like low-pass, bandpass, highpass and notch. High precision, high performance, quad 2nd order, dual 4th order or 8th order filters can also be designed with an LTC1068-50. The center frequency of each 2nd order section is tuned by an external clock. The clock-to-center frequency ratio is internally set to 50:1 and can be modified by external resistors.

The sampling rate of the LTC1068-50 is twice the clock frequency. The maximum input frequency can approach twice the clock frequency before aliasing occurs.

A customized version of the LTC1068-50 in a 16-lead SO with internal thin film resistors can be obtained. Clock-to-center frequency ratios higher or lower than 50:1 can also be obtained. Please contact LTC Marketing for details.

The LTC1068-50 is available in a 28-pin SSOP surface mount package and is supported by FilterCADTM 2.0 filter design software.

TYPICAL APPLICATION

Low Power, Single 5V Supply, 10kHz, 8th Order, Linear Phase Lowpass Filter

Frequency Response 5 0 -5 -10 -15 -20 -20 -35 -40 -45 -50 -55 -60 -65 -70 -75 1 10 100 FREQUENCY (kHz)

Information furnished by Linear Technology Corporation is believed to be accurate and reliable. However, no responsibility is assumed for its use. Linear Technology Corporation makes no representation that the interconnection of its circuits as described herein will not infringe on existing patent rights.

ABSOLUTE MAXIMUM RATINGS

Total Supply Voltage (V ⁺ to V ⁻)	12V
Power Dissipation	500mW
Operating Temperature Range	
LTC1068CG-500	°C to 70°C
LTC1068IG-5040	°C to 85°C
Input Voltage at Any Pin $V^ 0.3V \le V_{IN} \le$	$V^{+} + 0.3V$
Storage Temperature Range65°C	C to 150°C
Lead Temperature (Soldering, 10 sec)	300°C

PACKAGE/ORDER INFORMATION

	TOP VIEW	L	ORDER PART NUMBER
INV B		28 INV C	INUIVIDEIT
HPB/NB	2	27 HPC/NC	
ВРВ	3	26 BPC	LTC1068CG-50
LPB	4	25 LPC	LTC1068IG-50
SB	5	24 SC	
NC	6	23 V ⁻	
AGND	7	22 NC	
V+	8	21 CLK	
NC	9	20 NC	
SA	10	19 SD	
LPA	11	18 LPD	
BPA	12	17 BPD	
HPA/NA	13	16 HPD/ND	
INV A	14	15 INV D	
ī	G PACKAGE 28-LEAD PLASTIC S _{JMAX} = 125°C, θ _{JA} = 9		

Consult factory for Military grade parts.

ELECTRICAL CHARACTERISTICS (Internal Op Amps) $V_S = \pm 5V$, $T_A = 25^{\circ}C$, unless otherwise specified.

PARAMETER CONDITIONS		MIN	TYP	MAX	UNITS	
Operating Supply Voltage Range			3.14		±5.5	V
Voltage Swings	$V_S = 3.14V, R_L = 5k \text{ (Note 1)}$ $V_S = 4.75V, R_L = 5k \text{ (Note 2)}$ $V_S = \pm 5V, R_L = 5k$	•	1.2 2.6 ±3.4	1.8 3.6 ±4.1		V _{P-P} V _{P-P} V
Output Short-Circuit Current (Source/Sink)	$V_S = 3.14V \text{ (Note 1)}$ $V_S = \pm 5V$			17/6 20/15		mA mA
DC Open-Loop Gain	R _L = 5k			85		dB
GBW Product				4		MHz
Slew Rate				10		V/µs
Analog Ground Voltage	V _S = 5V, Voltage at Pin 7 (AGND) (Note 3)			2.175		V

(Complete Filter) $T_A=25^{\circ}C,$ unless otherwise specified.

PARAMETER	CONDITIONS		MIN	TYP	MAX	UNITS
Clock-to-Center Frequency, f _{CLK} /f ₀ (Note 5)	$\begin{split} &V_S = 3.14 V, f_{CLK} = 250 \text{kHz}, \text{Mode 1 (Note 1)}, \\ &f_0 = 5 \text{kHz}, Q = 5, V_{IN} = 0.34 V_{RMS}, \\ &R1 = R3 = 49.9 \text{k}, R2 = 10 \text{k} \end{split}$	•		50 ± 0.3%	$50 \pm 0.8\% \\ 50 \pm 0.9\%$	
	$V_S = \pm 5V$, $f_{CLK} = 500 kHz$, Mode 1, $f_0 = 10 kHz$, $Q = 5$, $V_{IN} = 1V_{RMS}$, R1 = R3 = 49.9 k, $R2 = 10 k$	•		50 ± 0.3%	$50 \pm 0.8\%$ $50 \pm 0.9\%$	
Clock-to-Center Frequency Ratio, Side-to-Side Matching (Note 5)	$V_S = 3.14V$, $f_{CLK} = 250$ kHz, $Q = 5$ (Note 1) $V_S = \pm 5V$, $f_{CLK} = 500$ kHz, $Q = 5$	•		±0.25 ±0.25	±0.9 ±0.9	% %
Q Accuracy (Note 5)	$V_S = 3.14V$, $f_{CLK} = 250$ kHz, $Q = 5$ (Note 1) $V_S = \pm 5V$, $f_{CLK} = 500$ kHz, $Q = 5$	•		±1 ±1	±3 ±3	% %

ELECTRICAL CHARACTERISTICS (Complete Filter) $T_A = 25$ °C, unless otherwise specified.

PARAMETER	CONDITIONS		MIN	TYP	MAX	UNITS
f ₀ Temperature Coefficient				±1		ppm/°C
Q Temperature Coefficient				±5		ppm/°C
DC Offset Voltage (Note 5) (See Table 1)	$V_S = \pm 5V$, $f_{CLK} = 500$ kHz, V_{OS1} (DC Offset of Input Inverter)	•		0	±15	mV
	$V_S = \pm 5V$, $f_{CLK} = 500$ kHz, V_{OS2} (DC Offset of First Integrator)	•		-2	±25	mV
	$V_S = \pm 5V$, $f_{CLK} = 500$ kHz, V_{OS3} (DC Offset of Second Integrator)	•		-5	±40	mV
Clock Feedthrough	$V_S = \pm 5V$, $f_{CLK} = 500$ kHz			0.16		mV _{RMS}
Maximum Clock Frequency	$V_S = \pm 5V, Q \le 1.6, Mode 1$			3.4		MHz
Power Supply Current	$V_S = 3.14V$, $f_{CLK} = 250$ kHz (Note 1) $V_S = 4.75V$, $f_{CLK} = 250$ kHz (Note 2) $V_S = \pm 5V$, $f_{CLK} = 500$ kHz	•		3.0 4.3 6.0	5 8 11	mA mA mA

The lacktriangle denotes specifications which apply over the full operating temperature range.

Note 1: Production testing for single 3.14V supply is achieved by using the equivalent dual supplies of 1.7696V and -1.3704V. Note 3 is an explanation for using nonsymmetrical power supplies.

Note 2: Production testing for single 4.75V supply is achieved by using the equivalent dual supplies of 2.6771V and -2.0729V. Note 3 is an explanation for using nonsymmetrical power supplies.

Note 3: Pin 7 (AGND) is the internal analog ground of the device. For single supply applications this pin should be bypassed with a $1\mu F$ capacitor. The biasing voltage of AGND is set with an internal resistive divider from Pin 8 to Pin 23, the value of AGND = $0.435 \cdot V^+$.

Note 4: See typical performance characteristics.

Note 5: Side D is guaranteed by design.

Table 1. Output DC Offsets One 2nd Order Section

MODE	V _{OSN}	V _{OSBP}	V _{OSLP}
1	$V_{0S1}[(1/Q) + 1 + H_{0LP}] - V_{0S3}/Q$	V _{OS3}	V _{OSN} – V _{OS2}
1B	$V_{0S1}[(1/Q) + 1 + R2/R1] - V_{0S3}/Q$	V _{OS3}	$\sim (V_{OSN} - V_{OS2})(1 + R5/R6)$
2	[V _{0S1} (1 + R2/R1 + R2/R3 + R2/R4) – V _{0S3} (R2/R3)X [R4/(R2 + R4)] + V _{0S2} [R2/(R2 + R4)]	V _{OS3}	V _{OSN} - V _{OS2}
3	V _{0S2}	V _{OS3}	V _{0S1} [1 + R4/R1 + R4/R2 + R4/R3] - V _{0S2} (R4/R2) - V _{0S3} (R4/R3)

TYPICAL PERFORMANCE CHARACTERISTICS

Maximum Q vs Frequency (Modes 2, 3)

BLOCK DIAGRAM

PACKAGE DESCRIPTION

Dimensions in inches (millimeters) unless otherwise noted.

RELATED PARTS

PART NUMBER	DESCRIPTION	COMMENTS
LTC1068	Low Noise Universal Filter	100:1 Clock-to-f ₀ Ratio, f _C to 50kHz
LTC1068-25	High Speed Universal Filter	25:1 Clock-to-f ₀ Ratio, f _C to 200kHz
LTC1068-200	Universal Filter	200:1 Clock-to-f ₀ Ratio, f _C to 25kHz
LTC1064	Universal Filter	50:1 and 100:1 Clock-to- f_0 Ratios, f_C to 100kHz, V_S = Up to ± 7.5 V
LTC1164	Low Power Universal Filter	50:1 and 100:1 Clock-to- f_0 Ratios, f_C to 20kHz, V_S = Up to ± 7.5 V
LTC1264	High Speed Universal Filter	20:1 Clock-to- f_0 Ratio, f_C to 200kHz, V_S = Up to ± 7.5 V