feATURES

- Four Identical 2nd Order Filters in an SSOP Package
- Center Frequency Error: $\pm 0.3 \%$
- Low Noise: $\leq 40 \mu V_{\text {RMs }}$ per 2nd Order Section, $\mathrm{Q} \leq 5$
- High Dynamic Range: THD + Noise $\leq \mathbf{0 . 0 1 \%}$
- Low DC Offsets: $\leq 10 \mathrm{mV}$ per 2nd Order Section
- Clock-to-Center Frequency Ratio: 50:1
- No Aliasing for Input Frequencies up to $100 \times \mathrm{f}_{\text {Cutoff }}$
- Maximum Center Frequency up to 50 kHz $\left(V_{S}= \pm 5 \mathrm{~V}\right.$)
- Operates from $\pm 1.57 \mathrm{~V}$ to $\pm 5 \mathrm{~V}$ Power Supplies

APPLICATIONS

- Low Power Linear Phase Bandpass Filters (Up to 40 kHz , V V = Single 5V)
- Dual 4th Order Phase Matched Filters (Up to 40 kHz , V S = Single 5V)
- Low Power Tone Detectors (High Selectivity

Bandpass Filters up to $30 \mathrm{kHz}, \mathrm{V}_{\mathrm{S}}=$ Single 5 V)
$\overline{\boldsymbol{\Sigma Y}}$, LTC and LT are registered trademarks of Linear Technology Corporation. FilterCAD is a trademark of Linear Technology Corporation.

DESCRIPTION

February 1998

The LTC ${ }^{\circledR}$ 1068-50 consists of four identical, low noise, high accuracy 2nd order switched-capacitor filter building blocks. Each building block, together with three to five resistors, can provide 2nd order filter functions like lowpass, bandpass, highpass and notch. High precision, high performance, quad 2nd order, dual 4th order or 8th order filters can also be designed with an LTC1068-50. The center frequency of each 2nd order section is tuned by an external clock. The clock-to-center frequency ratio is internally set to 50:1 and can be modified by external resistors.

The sampling rate of the LTC1068-50 is twice the clock frequency. The maximum input frequency can approach twice the clock frequency before aliasing occurs.
A customized version of the LTC1068-50 in a 16-lead SO with internal thin film resistors can be obtained. Clock-tocenter frequency ratios higher or lower than 50:1 can also be obtained. Please contact LTC Marketing for details.

The LTC1068-50 is available in a 28 -pin SSOP surface mount package and is supported by FilterCAD ${ }^{\text {TM }} 2.0$ filter design software.

TYPICAL APPLICATION

Low Power, Single 5V Supply, 10kHz, 8th Order, Linear Phase Lowpass Filter

Frequency Response

ABSOLUTE mAXIMUM RATINGS

PACKAGE/ORDER INFORMATIO
Total Supply Voltage (V^{+}to V^{-}) 12 V
Power Dissipation \qquad 500 mW
Operating Temperature Range
LTC1068CG-50 \qquad $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$ LTC1068IG-50 \qquad $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$ Input Voltage at Any Pin ... $\mathrm{V}^{-}-0.3 \mathrm{~V} \leq \mathrm{V}_{\mathrm{IN}} \leq \mathrm{V}^{+}+0.3 \mathrm{~V}$ Storage Temperature Range \qquad $-65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$ Lead Temperature (Soldering, 10 sec) \qquad $300^{\circ} \mathrm{C}$

Consult factory for Military grade parts.

eLECTRICAL CHARACTERISTICS

(Internal $0 p$ Amps) $V_{S}= \pm 5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=\mathbf{2 5 ^ { \circ }}$, unless otherwise specified.

PARAMETER	CONDITIONS		MIN	TYP	MAX	UNITS
Operating Supply Voltage Range			3.14		± 5.5	V
Voltage Swings	$\begin{aligned} & \mathrm{V}_{S}=3.14 \mathrm{~V}, R_{\mathrm{L}}=5 \mathrm{k} \text { (Note 1) } \\ & \mathrm{V}_{S}=4.75 \mathrm{~V}, R_{L}=5 \mathrm{k} \text { (Note 2) } \\ & \mathrm{V}_{S}= \pm 5 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=5 \mathrm{k} \end{aligned}$	$\stackrel{\bullet}{\bullet}$	$\begin{gathered} 1.2 \\ 2.6 \\ \pm 3.4 \end{gathered}$	$\begin{gathered} 1.8 \\ 3.6 \\ \pm 4.1 \end{gathered}$		VP-P $V_{\text {P-P }}$ V
Output Short-Circuit Current (Source/Sink)	$\begin{aligned} & V_{S}=3.14 \mathrm{~V} \text { (Note 1) } \\ & V_{S}= \pm 5 \mathrm{~V} \end{aligned}$			$\begin{gathered} 17 / 6 \\ 20 / 15 \end{gathered}$		mA mA
DC Open-Loop Gain	$\mathrm{R}_{\mathrm{L}}=5 \mathrm{k}$			85		dB
GBW Product				4		MHz
Slew Rate				10		$\mathrm{V} / \mathrm{\mu s}$
Analog Ground Voltage	$\mathrm{V}_{\mathrm{S}}=5 \mathrm{~V}$, Voltage at Pin 7 (AGND) (Note 3)			2.175		V

(Complete Filter) $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, unless otherwise specified.

PARAMETER	CONDITIONS		MIN	TYP	MAX	UNITS
Clock-to-Center Frequency, $\mathrm{f}_{\text {CLK }} / \mathrm{f}_{0}$ (Note 5)	$\begin{aligned} & V_{S}=3.14 \mathrm{~V}, \mathrm{f}_{\text {CLK }}=250 \mathrm{kHz}, \text { Mode } 1(\text { Note } 1), \\ & f_{0}=5 \mathrm{kHz}, \mathrm{Q}=5, \mathrm{~V}_{\text {IN }}=0.34 \mathrm{~V}_{\text {RMS }}, \\ & R 1=R 3=49.9 \mathrm{k}, \mathrm{R} 2=10 \mathrm{k} \end{aligned}$	\bullet		$50 \pm 0.3 \%$	$\begin{aligned} & 50 \pm 0.8 \% \\ & 50 \pm 0.9 \% \end{aligned}$	
	$\begin{aligned} & V_{S}= \pm 5 \mathrm{~V}, \mathrm{f}_{\mathrm{CLK}}=500 \mathrm{kHz}, \text { Mode } 1, \\ & f_{0}=10 \mathrm{kHz}, \mathrm{Q}=5, \mathrm{~V}_{\text {IN }}=1 V_{\text {RMS }}, \\ & R 1=R 3=49.9 \mathrm{k}, \mathrm{R} 2=10 \mathrm{k} \end{aligned}$	\bullet		$50 \pm 0.3 \%$	$\begin{aligned} & 50 \pm 0.8 \% \\ & 50 \pm 0.9 \% \end{aligned}$	
Clock-to-Center Frequency Ratio, Side-to-Side Matching (Note 5)	$\begin{aligned} & \left.V_{S}=3.14 \mathrm{~V}, f_{\text {CLK }}=250 \mathrm{kHz}, Q=5 \text { (Note } 1\right) \\ & V_{S}= \pm 5 \mathrm{~V}, f_{\text {CLK }}=500 \mathrm{kHz}, Q=5 \end{aligned}$	\bullet		$\begin{aligned} & \pm 0.25 \\ & \pm 0.25 \end{aligned}$	$\begin{aligned} & \pm 0.9 \\ & \pm 0.9 \end{aligned}$	\%
Q Accuracy (Note 5)	$\begin{aligned} & V_{S}=3.14 \mathrm{~V}, f_{\text {CLK }}=250 \mathrm{kHz}, Q=5(\text { Note } 1) \\ & V_{S}= \pm 5 \mathrm{~V}, f_{\text {CLK }}=500 \mathrm{kHz}, Q=5 \end{aligned}$	\bullet		$\begin{aligned} & \pm 1 \\ & \pm 1 \end{aligned}$	$\begin{aligned} & \pm 3 \\ & \pm 3 \end{aligned}$	\%

ELECTRICAL CHARACTERISTICS (Complete Filter) $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, unless otherwise specified.

PARAMETER	CONDITIONS		MIN	TYP	MAX	UNITS
f_{0} Temperature Coefficient				± 1		ppm/ ${ }^{\circ} \mathrm{C}$
Q Temperature Coefficient				± 5		ppm/ ${ }^{\circ} \mathrm{C}$
DC Offset Voltage (Note 5) (See Table 1)	$\mathrm{V}_{\mathrm{S}}= \pm 5 \mathrm{~V}, \mathrm{f}_{\mathrm{CLK}}=500 \mathrm{kHz}, \mathrm{~V}_{\text {OS }}$ (DC Offset of Input Inverter)	\bullet		0	± 15	mV
	$\begin{aligned} & \mathrm{V}_{\mathrm{S}}= \pm 5 \mathrm{~V}, \mathrm{f}_{\mathrm{CLK}}=500 \mathrm{kHz}, \mathrm{~V}_{\text {OS2 }} \\ & \text { (DC Offset of First Integrator) } \end{aligned}$	\bullet		-2	± 25	mV
	$\begin{aligned} & \mathrm{V}_{S}= \pm 5 \mathrm{~V}, \mathrm{f}_{\mathrm{CLK}}=500 \mathrm{kHz}, \mathrm{~V}_{\text {OS3 }} \\ & \text { (DC Offset of Second Integrator) } \end{aligned}$	\bullet		-5	± 40	mV
Clock Feedthrough	$V_{S}= \pm 5 \mathrm{~V}, \mathrm{f}_{\text {CLK }}=500 \mathrm{kHz}$			0.16		mV RMS
Maximum Clock Frequency	$V_{S}= \pm 5 \mathrm{~V}, \mathrm{Q} \leq 1.6$, Mode 1			3.4		MHz
Power Supply Current	$\begin{aligned} & \mathrm{V}_{\mathrm{S}}=3.14 \mathrm{~V}, \mathrm{f}_{\text {CLK }}=250 \mathrm{kHz} \text { (Note 1) } \\ & \mathrm{V}_{\mathrm{S}}=4.75 \mathrm{~V}, \mathrm{f}_{\text {CLK }}=250 \mathrm{kHz} \text { (Note 2) } \\ & \mathrm{V}_{\mathrm{S}}= \pm 5 \mathrm{~V}, \mathrm{f}_{\mathrm{CLK}}=500 \mathrm{kHz} \end{aligned}$	$\stackrel{\bullet}{\bullet}$		$\begin{aligned} & 3.0 \\ & 4.3 \\ & 6.0 \end{aligned}$	$\begin{gathered} \hline 5 \\ 8 \\ 11 \end{gathered}$	mA mA mA

The denotes specifications which apply over the full operating temperature range.
Note 1: Production testing for single 3.14 V supply is achieved by using the equivalent dual supplies of 1.7696 V and -1.3704 V . Note 3 is an explanation for using nonsymmetrical power supplies.
Note 2: Production testing for single 4.75V supply is achieved by using the equivalent dual supplies of 2.6771 V and -2.0729 V . Note 3 is an explanation for using nonsymmetrical power supplies.

Note 3: Pin 7 (AGND) is the internal analog ground of the device. For single supply applications this pin should be bypassed with a $1 \mu \mathrm{~F}$ capacitor. The biasing voltage of AGND is set with an internal resistive divider from Pin 8 to Pin 23, the value of AGND $=0.435 \cdot \mathrm{~V}^{+}$.
Note 4: See typical performance characteristics.
Note 5: Side D is guaranteed by design.

Table 1. Output DC Offsets One 2nd Order Section

MODE	$V_{\text {OSN }}$	$\mathrm{V}_{\text {OSBP }}$	$\mathrm{V}_{\text {OSLP }}$		
1	$\mathrm{V}_{0 \text { S1 }}\left[(1 / Q)+1+\left\\|\mathrm{H}_{0 \mathrm{LP}}\right\\|\right]-\mathrm{V}_{0 S 3} / \mathrm{Q}$	$\mathrm{V}_{0 S 3}$	$V_{\text {OSN }}-V_{\text {OS2 }}$		
1B	$\mathrm{V}_{0 S 1}[(1 / Q)+1+\mathrm{R} 2 / \mathrm{R} 1]-\mathrm{V}_{0 S 3} / \mathrm{Q}$	V_{053}	$\sim\left(\mathrm{V}_{\text {OSN }}-\mathrm{V}_{\text {OS2 }}\right)(1+\mathrm{R} 5 / \mathrm{R} 6)$		
2	$\begin{aligned} & {\left[\mathrm{V}_{\text {OS1 }}(1+\mathrm{R} 2 / R 1+\mathrm{R} 2 / \mathrm{R} 3+\mathrm{R} 2 / \mathrm{R} 4)-\mathrm{V}_{\text {OS3 }}(\mathrm{R} 2 / \mathrm{R} 3) \mathrm{X}\right.} \\ & {[\mathrm{R} 4 /(\mathrm{R} 2+\mathrm{R} 4)]+\mathrm{V}_{0 S 2}[\mathrm{R} 2 /(\mathrm{R} 2+\mathrm{R} 4)]} \end{aligned}$	$\mathrm{V}_{0 S 3}$	$\mathrm{V}_{\text {OSN }}-\mathrm{V}_{\text {OS2 }}$		
3	$\mathrm{V}_{\text {OS2 }}$	$\mathrm{V}_{0 S 3}$	$\mathrm{V}_{0 S 1}[1+\mathrm{R} 4 / \mathrm{R} 1+\mathrm{R} 4 / \mathrm{R} 2+\mathrm{R} 4 / \mathrm{R} 3]-\mathrm{V}_{\text {OS2 }}(\mathrm{R} 4 / \mathrm{R} 2)-\mathrm{V}_{\text {OS3 }}(\mathrm{R} 4 / \mathrm{R} 3)$		

TYPICAL PERFORMAOCE CHARACTERISTICS

068-50 G02

LTC 1068-50

BLOCK DIAGRAM

NOTE: THE RATIO OF Ra/Rb CAN VARY BY $\pm 0.8 \%$.
THE ABSOLUTE VALUE OF Ra OR Rb CAN VARY BY $\pm 25 \%$

PACKAGE DESCRIPTION
 Dimensions in inches (millimeters) unless otherwise noted.

RELATGD PARTS

PART NUMBER	DESCRIPTION	COMMENTS
LTC1068	Low Noise Universal Filter	$100: 1$ Clock-to-fo Ratio, f_{C} to 50 kHz
LTC1068-25	High Speed Universal Filter	$25: 1$ Clock-to- f_{0} Ratio, f_{C} to 200 kHz
LTC1068-200	Universal Filter	$200: 1$ Clock-to-fo Ratio, f_{C} to 25 kHz
LTC1064	Universal Filter	$50: 1$ and $100: 1$ Clock-to- f_{0} Ratios, f_{C} to $100 \mathrm{kHz}, \mathrm{V}_{\mathrm{S}}=$ Up to $\pm 7.5 \mathrm{~V}$
LTC1164	Low Power Universal Filter	$50: 1$ and 100:1 Clock-to- f_{0} Ratios, f_{C} to $20 \mathrm{kHz}, \mathrm{V}_{\mathrm{S}}=\mathrm{Up}$ to $\pm 7.5 \mathrm{~V}$
LTC1264	High Speed Universal Filter	$20: 1$ Clock-to- f_{0} Ratio, f_{C} to $200 \mathrm{kHz}, \mathrm{V}_{\mathrm{S}}=\mathrm{Up}$ to $\pm 7.5 \mathrm{~V}$

