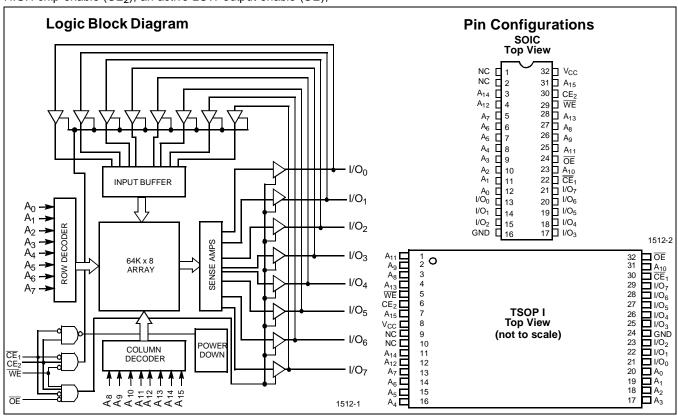


64K x 8 Static RAM

Features

- · High speed
 - $-t_{AA} = 15 \text{ ns}$
- · CMOS for optimum speed/power
- · Low active power
 - -770 mW
- Low standby power
 - 28 mW
- Automatic power-down when deselected
- · TTL-compatible inputs and outputs
- Easy memory expansion with \overline{CE}_1 , CE_2 , and \overline{OE} options

Functional Description


The CY7C1512 is a high-performance CMOS static RAM organized as 65,536 words by 8 bits. Easy memory expansion is provided by an active LOW chip enable (CE1), an active HIGH chip enable (CE_2), an active LOW output enable (\overline{OE}), and three-state drivers. This device has an automatic power-down feature that reduces power consumption by more than 75% when deselected.

Writing to the device is accomplished by taking chip enable one (\overline{CE}_1) and write enable (\overline{WE}) inputs LOW and chip enable two (CE2) input HIGH. Data on the eight I/O pins (I/O0 through I/O₇) is then written into the location specified on the address pins (A_0 through A_{15}).

Reading from the device is accomplished by taking chip enable one (\overline{CE}_1) and output enable (\overline{OE}) LOW while forcing write enable (WE) and chip enable two (CE2) HIGH. Under these conditions, the contents of the memory location specified by the address pins will appear on the I/O pins.

The eight input/output pins (I/O₀ through I/O₇) are placed in a high-impedance state when the device is deselected (CE₁ HIGH or CE₂ LOW), the outputs are disabled (OE HIGH), or during a write operation (\overline{CE}_1 LOW, \overline{CE}_2 HIGH, and \overline{WE} LOW).

The CY7C1512 is available in standard TSOP type I and 450-mil-wide plastic SOIC packages.

Selection Guide

		7C1512-15	7C1512-20	7C1512-25	7C1512-35	7C1512-70
Maximum Access Time (ns)	15	20	25	35	70	
Maximum Operating Current (mA)	Commercial	140	130	120	110	110
Maximum CMOS Standby Current (mA)	Commercial	5	5	5	5	5

Maximum Ratings

(Above which the useful life may be impaired. For user guidelines, not tested.) Storage Temperature-65°C to +150°C Ambient Temperature with Power Applied –55°C to +125°C Supply Voltage on $\rm V_{CC}$ to Relative $\rm GND^{[1]}$ –0.5V to +7.0V DC Voltage Applied to Outputs in High Z State^[1].....-0.5V to V_{CC} +0.5V DC Input Voltage^[1].....-0.5V to V_{CC} +0.5V

Current into Outputs (LOW)	20 mA
Static Discharge Voltage(per MIL–STD–883, Method 3015)	>2001V
Latch-Up Current	>200 mA

Operating Range

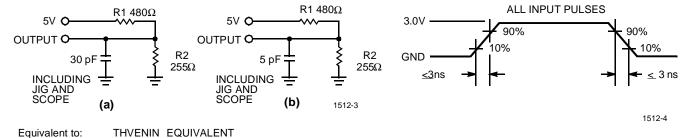
Range	Ambient Temperature ^[2]	v _{cc}		
Commercial	0°C to +70°C	5V ± 10%		
Industrial	−40°C to +85°C	5V ± 10%		

Electrical Characteristics Over the Operating Range^[3]

			7C1512-15		7C15	12-20	7C15		
Parameter	Description	Test Conditions	Min.	Max.	Min.	Max.	Min.	Max.	Unit
V _{OH}	Output HIGH Voltage	$V_{CC} = Min., I_{OH} = -4.0 \text{ mA}$	2.4		2.4		2.4		V
V _{OL}	Output LOW Voltage	V _{CC} = Min., I _{OL} = 8.0 mA		0.4		0.4		0.4	V
V _{IH}	Input HIGH Voltage		2.2	V _{CC} + 0.3	2.2	V _{CC} + 0.3	2.2	V _{CC} + 0.3	V
V _{IL}	Input LOW Voltage[1]		-0.3	0.8	-0.3	0.8	-0.3	0.8	V
I _{IX}	Input Load Current	$GND \le V_I \le V_{CC}$	-1	+1	-1	+1	-1	+1	μΑ
l _{OZ}	Output Leakage Current	$GND \le V_1 \le V_{CC}$, Output Disabled	-5	+5	-5	+5	-5	+5	μΑ
Ios	Output Short Circuit Current ^[4]	V _{CC} = Max., V _{OUT} = GND		-300		-300		-300	mA
I _{CC}	V _{CC} Operating Supply Current	$V_{CC} = Max.$, $I_{OUT} = 0 \text{ mA}$, $f = f_{MAX} = 1/t_{RC}$		140		130		120	mA
I _{SB1}	Automatic CE Power–Down Current —TTL Inputs	Max. V_{CC} , $\overline{CE}_1 \ge V_{IH}$ or $CE_2 \le V_{IL}$, $V_{IN} \ge V_{IH}$ or $V_{IN} \le V_{IL}$, $f = f_{MAX}$		40		30		30	mA
I _{SB2}	Automatic CE Power–Down Current —CMOS Inputs	Max. V_{CC} , $\overline{CE}_1 \ge V_{CC} - 0.3V$, or $CE_2 \le 0.3V$, $V_{IN} \ge V_{CC} - 0.3V$, or $V_{IN} \le 0.3V$, f=0		5		5		5	mA

			7C1512-35		7C1	512-70	
Parameter	Description	Test Conditions	Min.	Max.	Min.	Max.	Unit
V _{OH}	Output HIGH Voltage	V_{CC} = Min., I_{OH} = -4.0 mA	2.4		2.4		V
V _{OL}	Output LOW Voltage	V _{CC} = Min., I _{OL} = 8.0 mA		0.4		0.4	V
V _{IH}	Input HIGH Voltage		2.2	V _{CC} +0.3	2.2	V _{CC} + 0.3	V
V _{IL}	Input LOW Voltage[1]		-0.3	0.8	-0.3	0.8	V
I _{IX}	Input Load Current	$GND \le V_1 \le V_{CC}$	-1	+1	-1	+1	μΑ
I _{OZ}	Output Leakage Current	$GND \le V_1 \le V_{CC}$, Output Disabled	- 5	+5	- 5	+5	μΑ
I _{OS}	Output Short Circuit Current ^[4]	V _{CC} = Max., V _{OUT} = GND		-300		-300	mA
I _{CC}	V _{CC} Operating Supply Current	$V_{CC} = Max$, $I_{OUT} = 0 \text{ mA}$, $f = f_{MAX} = 1/t_{RC}$		110		110	mA
I _{SB1}	Automatic CE Power-Down Current —TTL Inputs	$\begin{aligned} &\text{Max. V}_{CC}, \overline{CE}_1 \geq V_{IH} \text{ or } CE_2 \leq V_{IL}, \\ &V_{IN} \geq V_{IH} \text{ or } V_{IN} \leq V_{IL}, f = f_{MAX} \end{aligned}$		25		25	mA
I _{SB2}	Automatic CE Power-Down Current —CMOS Inputs	Max. V_{CC} , $\overline{CE}_1 \ge V_{CC} - 0.3V$, or $CE_2 \le 0.3V$, $V_{IN} \ge V_{CC} - 0.3V$, or $V_{IN} \le 0.3V$, f=0		5		5	mA

Notes:


- $V_{\rm IL}$ (min.) = -2.0V for pulse durations of less than 20 ns. $T_{\rm A}$ is the "instant on" case temperature. See the last page of this specification for Group A subgroup testing information. Not more than one output should be shorted at one time. Duration of the short circuit should not exceed 30 seconds.

Capacitance^[5]

Parameter	Description	Test Conditions	Max.	Unit
C _{IN}	Input Capacitance	$T_A = 25^{\circ}C, f = 1 \text{ MHz},$	9	pF
C _{OUT}	Output Capacitance	$V_{CC} = 5.0V$	9	pF

AC Test Loads and Waveforms

OUTPUT O

Switching Characteristics [3, 6] Over the Operating Range

		7C15	12-15	7C15	12-20	7C1512-25		
Parameter	Description	Min.	Max.	Min.	Max.	Min.	Max.	Unit
READ CYCI	E				•			•
t _{RC}	Read Cycle Time	15		20		25		ns
t _{AA}	Address to Data Valid		15		20		25	ns
t _{OHA}	Data Hold from Address Change	3		3		5		ns
t _{ACE}	CE ₁ LOW to Data Valid, CE ₂ HIGH to Data Valid		15		20		25	ns
t _{DOE}	OE LOW to Data Valid		7		8		10	ns
t _{LZOE}	OE LOW to Low Z	0		0		0		ns
t _{HZOE}	OE HIGH to High Z ^[7, 8]		7		8		10	ns
t _{LZCE}	CE ₁ LOW to Low Z, CE ₂ HIGH to Low Z ^[8]	3		3		5		ns
t _{HZCE}	CE ₁ HIGH to High Z, CE ₂ LOW to High Z ^[7, 8]		7		8		10	ns
t _{PU}	CE ₁ LOW to Power-Up, CE ₂ HIGH to Power-Up	0		0		0		ns
t _{PD}	CE ₁ HIGH to Power-Down, CE ₂ LOW to Power-Down		15		20		25	ns
WRITE CYC	LE ^[9]				_			
t _{WC}	Write Cycle Time	15		20		25		ns
t _{SCE}	CE ₁ LOW to Write End, CE ₂ HIGH to Write End	12		15		20		ns
t _{AW}	Address Set-Up to Write End	12		15		20		ns
t _{HA}	Address Hold from Write End	0		0		0		ns
t _{SA}	Address Set-Up to Write Start	0		0		0		ns
t _{PWE}	WE Pulse Width	12		15		20		ns
t _{SD}	Data Set-Up to Write End	8		10		15		ns
t _{HD}	Data Hold from Write End	0		0		0		ns
t _{LZWE}	WE HIGH to Low Z ^[8]	3		3		5		ns
t _{HZWE}	WE LOW to High Z ^[7, 8]		7		8		10	ns

Tested initially and after any design or process changes that may affect these parameters.

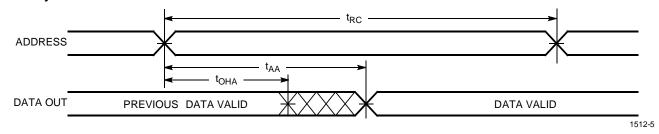
Test conditions assume signal transition time of 3 ns or less, timing reference levels of 1.5V, input pulse levels of 0 to 3.0V, and output loading of the specified I_{OL}/I_{OH} and 30-pF load capacitance.

I_{OL}/_{OH} and 30-P load capacitance.

t_{HZOE}, t_{HZCE}, and t_{HZWE} are specified with a load capacitance of 5 pF as in part (b) of AC Test Loads. Transition is measured ±500 mV from steady-state voltage.

At any given temperature and voltage condition, t_{HZCE} is less than t_{LZCE}, t_{HZOE} is less than t_{LZCE}, and t_{HZWE} is less than t_{LZCE} for any given device.

The internal write time of the memory is defined by the overlap of CE₁ LOW, CE₂ HIGH, and WE LOW. CE₁ and WE must be LOW and CE₂ HIGH to initiate a write, and the transition of any of these signals can terminate the write. The input data set-up and hold timing should be referenced to the leading edge of the signal that terminates

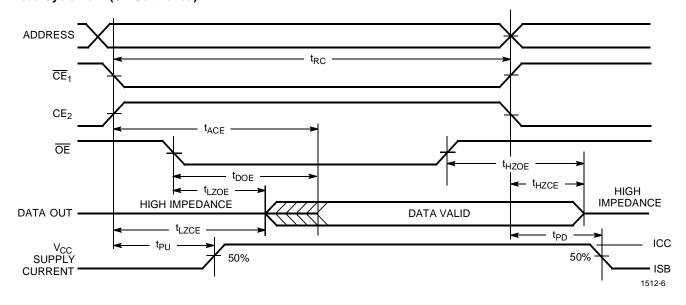


$\textbf{Switching Characteristics}^{[3,\ 6]} \ \text{Over the Operating Range (continued)}$

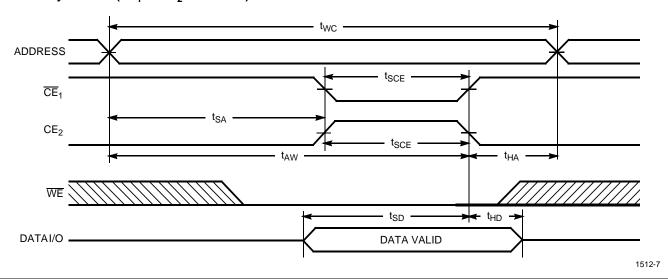
		7C15	12-35	12-35 7C15°		
Parameter	Description	Min.	Min.	Min.	Min.	Unit
READ CYCLE						•
t _{RC}	Read Cycle Time	35		70		ns
t _{AA}	Address to Data Valid		35		70	ns
t _{OHA}	Data Hold from Address Change	5		5		ns
t _{ACE}	CE ₁ LOW to Data Valid, CE ₂ HIGH to Data Valid		35		70	ns
t _{DOE}	OE LOW to Data Valid		15		15	ns
t _{LZOE}	OE LOW to Low Z	0		0		ns
t _{HZOE}	OE HIGH to High Z ^[7, 8]		15		15	ns
t _{LZCE}	CE ₁ LOW to Low Z, CE ₂ HIGH to Low Z ^[8]	5		5		ns
t _{HZCE}	CE ₁ HIGH to High Z, CE ₂ LOW to High Z ^[7, 8]		15		15	ns
t _{PU}	CE ₁ LOW to Power-Up, CE ₂ HIGH to Power-Up	0		0		ns
t _{PD}	CE ₁ HIGH to Power-Down, CE ₂ LOW to Power-Down		35		70	ns
WRITE CYCL	E [9]					
t _{WC}	Write Cycle Time	35		70		ns
t _{SCE}	CE ₁ LOW to Write End, CE ₂ HIGH to Write End	25		60		ns
t _{AW}	Address Set-Up to Write End	25		60		ns
t _{HA}	Address Hold from Write End	0		0		ns
t _{SA}	Address Set-Up to Write Start	0		0		ns
t _{PWE}	WE Pulse Width	25		60		ns
t _{SD}	Data Set-Up to Write End	20		55		ns
t _{HD}	Data Hold from Write End	0		0		ns
t _{LZWE}	WE HIGH to Low Z ^[8]	5		5		ns
t _{HZWE}	WE LOW to High Z ^[7, 8]		15		15	ns

Switching Waveforms

Read Cycle No. 1 $^{[10, 11]}$



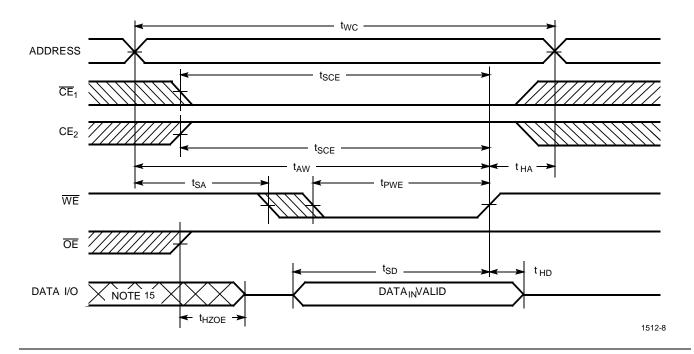
- 10. Device is continuously selected. OE, CE₁ = V_{IL}, CE₂ = V_{IH}.
 11. WE is HIGH for read cycle.



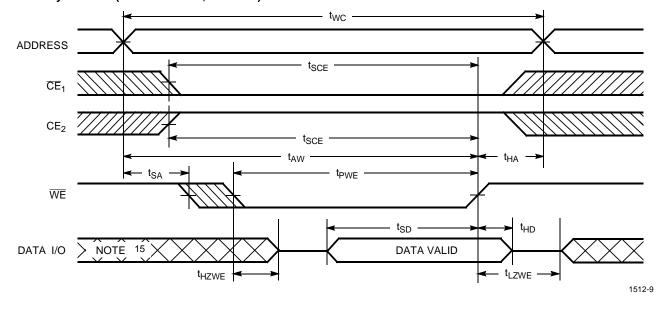
Switching Waveforms (continued)

Read Cycle No. 2 (OE Controlled) [11, 12]

Write Cycle No. 1 ($\overline{\text{CE}}_1$ or CE_2 Controlled) [13, 14]

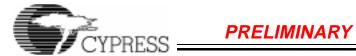

Notes:

- 12. Address valid prior to or coincident with $\overline{\text{CE}}_1$ transition LOW and CE_2 transition HIGH.
- Data I/O is high impedance if OE = V_{IH}.
 If CE₁ goes HIGH or CE₂ goes LOW simultaneously with WE going HIGH, the output remains in a high-impedance state.



Switching Waveforms (continued)

Read Cycle No. 2 (WE Controlled, OE HIGH During Write)[13, 14]

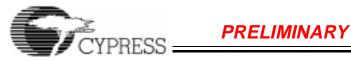


Write Cycle No. 3 (WE Controlled, OE LOW) [14]

Note:

^{15.} During this period the I/Os are in the output state and input signals should not be applied.

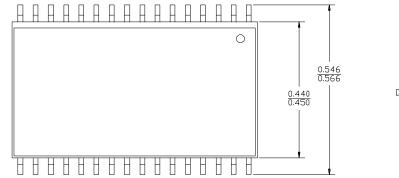
Truth Table

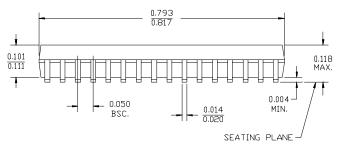

CE ₁	CE ₂	OE	WE	I/O ₀ – I/O ₇	Mode	Power
Н	Х	Χ	Х	High Z	Power-Down	Standby (I _{SB})
Х	L	Х	Х	High Z	Power-Down	Standby (I _{SB})
L	Н	L	Н	Data Out	Read	Active (I _{CC})
L	Н	Χ	L	Data In	Write	Active (I _{CC})
L	Н	Н	Н	High Z	Selected, Outputs Disabled	Active (I _{CC})

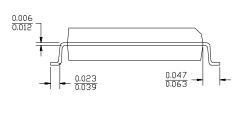
Ordering Information

Speed (ns)	Ordering Code	Package Name	Package Type	Operating Range
15	CY7C1512-15SC	S34	32-Lead (450-Mil) Molded SOIC	Commercial
	CY7C1512-15ZC	Z32	32-Lead TSOP Type I	
	CY7C1512-20ZI	Z32	32-Lead TSOP Type I	Industrial
20	CY7C1512-20SC	S34	32-Lead (450-Mil) Molded SOIC	Commercial
	CY7C1512-20ZC	Z32	32-Lead TSOP Type I	
	CY7C1512-20ZI	Z32	32-Lead TSOP Type I	Industrial
25	CY7C1512-25SC	S34	32-Lead (450-Mil) Molded SOIC	Commercial
	CY7C1512-25ZC	Z32	32-Lead TSOP Type I	
	CY7C1512-25ZI	Z32	32-Lead TSOP Type I	Industrial
35	CY7C1512-35SC	S34	32-Lead (450-Mil) Molded SOIC	Commercial
70	CY7C1512-70SC	S34	32-Lead (450-Mil) Molded SOIC	Commercial
	CY7C1512-70ZC	Z32	32-Lead TSOP Type I	
	CY7C1512-70ZI	Z32	32-Lead TSOP Type I	Industrial

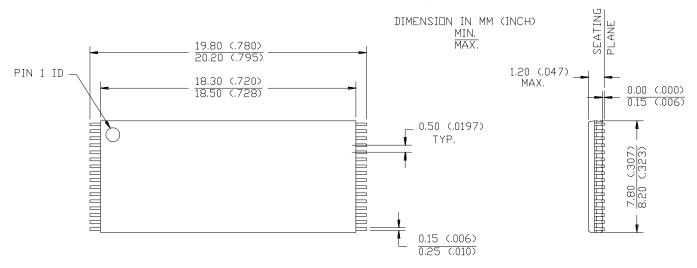
Shaded areas contain advanced information.


Document #: 38-00522-A

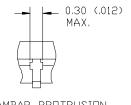



Package Diagrams

32-Lead (450 -Mil) Molded SOIC S34



DIMENSIONS IN INCHES MIN. MAX.



32-Lead Thin Small Outline Package Z32

DAMBAR PROTRUSION