Preliminary W91310N SERIES

TONE/PULSE DIALER WITH
 FLASH TIME STOREABL AND SAVE FUNCTIONS

GENERAL DESCRIPTION

The W91310N series are monolithic Ics that provide the necessary signals for either pulse or tone dialing. The W91310N series feature a redial memory, Handsfree, auto redial function, and flash time storeable.

FEATURES

- DTMF/Pulse switchable dialer
- 32 digits for redial memory
- Pulse-to-tone $(\mathrm{P} \rightarrow \mathrm{T})$ keypad for long distance call operation
- Break/Make ratio is selectable by pin option
- Uses 5×5 keyboard
- Easy operation with redial, flash, pause, and $P \rightarrow T$ keypads
- Flash, pause, $\mathrm{P} \rightarrow \mathrm{T}$ (pulse-to-tone) can be stored as a digit in memory
- Minimum tone output duration: 93 mS
- Minimum intertone pause: 93 mS
- On-chip power-on reset
- One flash time storeable
- Uses 3.579545 MHz crystal or ceramic resonator
- Packaged in 18-pin plastic DIP, and 300 mil 20-pin SOP.
- The dialer in the W91310N series are shown in the following table:

TYPE NO.	PULSE (ppS)	FLASH (Ms)	FLASH PAUSE (S)	PAUSE (S)
W91310N	$10 / 20$	$600 / 300 / 100 / 73$	1.0	$2.0 / 3.6$
W91310AN	$10 / 20$	$600 / 300 / 100 / 73$	1.0	$2.0 / 3.6$

Preliminary W91310N SERIES

PIN CONFIGURATIONS

Preliminary W91310N SERIES

PIN DESCRIPTION

Preliminary W91310N SERIES

Pin Description, continued

BLOCK DIAGRAM

Preliminary W91310N SERIES

FUNCTIONAL DESCRIPTION

Keyboard Operation

- R/P: Redial and pause function key
- */T: * in tone mode and $\mathrm{P} \rightarrow \mathrm{T}$: Pulse mode to tone mode
- S: Store function
- MEM: With the same memory location as SAVE memory
- SAVE: Save function memory
- R/P1, R/P2: Redial and pause function key, P1 is 3.6 sec , and P2 is 2.0 sec .
- F1, .,.F4: Flash key
- RD: One key redial.

Normal Dialing

1. D1, D2, ..., Dn will be dialed out.
2. Dialing length is unlimited, but redial is inhibited if length oversteps 32 digits.

Redialing

1. The redial memory content will be D1, D2, .,.Dn.
b. The R/P key can execute the redial function only as the first key-in after off-hook; otherwise, it will invoke the pause function.
c. If redialing length oversteps 32 digits, the redialing function will be inhibits.

Save
OFF HOOK or \square
\square
\square
\square
\square
\square SAVE

1. D1, D2, .., Dn will be dialed out .

Preliminary W91310N SERIES

Vivinbond

2. If the sequence of the dialed digits D1, D2, .., Dn has not finished, SAVE will be ignored; otherwise, D1, D2, .., Dn will be duplicated to SAVE memory.

Repertory Dialing

One-touch direct repertory dialing:
1.
 (or \square

2.

Press MEM will dial out the same as pressing SAVE.

Access Pause

OFF HOOK, (or ON HOOK, $\overline{\mathrm{HFl}}{ }^{\mathrm{\sigma}}$ 1 $) \mathrm{D} 1, \mathrm{D} 2, \mathrm{R} / \mathrm{P}, \mathrm{D} 3, \ldots, \mathrm{Dn}$

1. The pause function can be stored in memory.
2. The pause function is executed in normal dialing or memory dialing.
3. The pause function timing diagram is shown in Figure 5.

Pulse-to-tone ($\mathrm{P} \rightarrow \mathrm{T}$)

1. If the mode switch is set to pulse mode, then the output signal will be:

D1, D2, ..., Dn, Pause, D1', D2', ..., Dn'
(Pulse) (Tone)
2. If the mode switch is set to tone mode, then the output signal will be:
$\begin{array}{ll}\mathrm{D} 1, \mathrm{D} 2, \ldots, \mathrm{Dn}, & \mathrm{P} \rightarrow \mathrm{T} \\ \text { D1, D2, } & \text { (Pause) Dn, } \\ \text { (Tone) } & \text { (Tone) }\end{array}$

1. The dialer remains in tone mode when the digits have been dialed out and can be reset to pulse mode only
by going on-hook.
2. The $\mathrm{P} \rightarrow \mathrm{T}$ function timing diagram is shown in Figure 6.

Flash
OFF HOOK, (or ON HOOK, $\overline{\mathrm{HFI}}{ }^{\top}$ 」), Fn

1. Flash key can be stored as a digit in memory.
2. Only one flash key can be released to end user.
3. The system will return to the initial state after the break time is finished.

Preliminary W91310N SERIES

4. If the mode switch is set in pulse mode, after the dialing sequence D1, D2. */T, D3, Fn, D4, the dialer will keep in tone mode.
5. The flash function timing diagram is shown in Figure 7.

Mixed Dialing

1. Definition of mixed dialing:

In mixed dialing, a new sequence may be accepted only when the previous sequence has been dialed out completely. The following are examples of mixed dialing:
Example 1: Normal dialing $+\frac{\text { Repertory dialing 1 }}{\text { (1st sequence) }}+\frac{\text { Repertory dialing 2 }}{\text { (2nd sequence) }}+\ldots$.

$\begin{aligned} \text { Example 3: Redialing } & +$| Normal dialing |
| :---: |
| |
| (1st sequence) | (2nd sequence) \(\begin{array}{l}Repertory dialing 1

(3rd sequence)\end{array}+··· . . .\end{aligned}\)
2. There is no limitation on the number of digits and sequences in the mixed dialing.
3. The content of mixed dialing may be a combination of normal dialing, memory dialing, or one-key redialing.
4. If ON HOOK, OFF HOOK (or ON HOOK \& $\overline{\mathrm{HFI}}{ }^{\sigma}$ -), RD is entered, then the mixed dialing sequence described in the above examples will be dialed out only if the total number of digits does not exceed 32.
If the total exceeds 32 digits, then redialing is inhibited.

Preliminary W91310N SERIES

ABSOLUTE MAXIMUM RATINGS

PARAMETER	SYMBOL	RATING	UNIT
DC Supply Voltage	VDD-VSS	-0.3 to +7.0	V
Input/Output Voltage	VIL	VSS -0.3	V
	VIH	VDD +0.3	V
	VOL	$\mathrm{VSS}-0.3$	V
	VoH	$\mathrm{VDD}+0.3$	V
Power Dissipation	PD	120	mW
Operating Temperature	TOPR	-20 to +70	${ }^{\circ} \mathrm{C}$
Storage Temperature	TSTG	-55 to +125	${ }^{\circ} \mathrm{C}$

Note: Exposure to conditions beyond those listed under Absolute Maximum Ratings may adversely affect the life and reliability of the device.

DC CHARACTERISTICS

(Vdd-Vss $=2.5 \mathrm{~V}$, Fosc. $=3.58 \mathrm{MHz}, \mathrm{TA}=25^{\circ} \mathrm{C}$, all outputs unloaded)

PARAMETER	SYM.	CONDITIONS	MIN.	TYP.	MAX.	UNIT
Operating Voltage	VDD		2.0	-	5.5	V
Operating Current	IOP	Tone, Unloaded	-	0.4	0.6	mA
		Pulse, Unloaded	-	0.2	0.4	mA
Standby Current	ISB	$\overline{\mathrm{HKS}}=0$, No load, \& No key entry	-	-	15	$\mu \mathrm{A}$
Memory Retention Current	IMR	$\overline{H K S}=1, \mathrm{VDD}=1.0 \mathrm{~V}$	-	-	0.2	$\mu \mathrm{A}$
DTMF Output Voltage	VTO	Row group, $\mathrm{RL}=5 \mathrm{~K} \Omega$	130	150	170	mVrms
Pre-emphasis		Col/Row, VdD $=2.0$ to 5.5 V	1	2	3	dB
DTMF Distortion	THD	$\mathrm{RL}=5 \mathrm{~K} \Omega$, VDD $=2.0$ to 5.5 V	-	-30	-23	dB
DTMF Output DC Level	VTDC	$\mathrm{RL}=5 \mathrm{~K} \Omega, \mathrm{VDD}=2.0$ to 5.5 V	1.0	-	3.0	V
DTMF Output Sink Current	ITL	$\mathrm{VTO}=0.5 \mathrm{~V}$	0.2	-	-	mA
$\overline{\mathrm{DP}}$ Output Sink Current	IPL	$\mathrm{VPO}=0.5 \mathrm{~V}$	0.5	-	-	mA
T/P MUTE Output Sink Current	IML	$\mathrm{VMO}=0.5 \mathrm{~V}$	0.5	-	-	mA
$\overline{\text { HKS I/P Pull-high Resistor }}$	RKH		-	300	-	$\mathrm{K} \Omega$
HFO Drive/Sink Current	IHFH	VHFH $=2.0 \mathrm{~V}$	0.5	-	-	mA
	IHFL	$\mathrm{VHFL}=0.5 \mathrm{~V}$	0.5	-	-	mA

Preliminary W91310N SERIES

DC Characteristics, continued

PARAMETER	SYM.	CONDITIONS	MIN.	TYP.	MAX.	UNIT
Keypad Input Drive Current	IKD	$\mathrm{VI}=0 \mathrm{~V}$	30	-	-	$\mu \mathrm{A}$
Keypad Input Sink Current	IKS	$\mathrm{VI}=2.5 \mathrm{~V}$	200	400	-	$\mu \mathrm{A}$
Keypad Resistance			-	-	5.0	$\mathrm{~K} \Omega$

AC CHARACTERISTICS

PARAMETER	SYMBOL	CONDITIONS	MIN.	TYP.	MAX.	UNIT
Keypad Active in Debounce	TKID		-	20	-	mS
Key Release Debounce	TKRD		-	20	-	mS
Pre-digit Pause ${ }^{1}$	TPDP1	$B / M=1$	-	40	-	mS
	10 ppS	$B / M=0$	-	33.3	-	
Pre-digit Pause ${ }^{2}$	TPDP2	$B / M=1$	-	20	-	mS
	20 ppS	$B / M=0$	-	16.7	-	
Interdigit Pause (Auto dialing)	TIDP	10 ppS	-	800	-	mS
		20 ppS	-	500	-	
Make/Break Ratio	M/B	$\mathrm{B} / \mathrm{M}=1$	-	40:60	-	\%
		$B / M=0$	-	33:67	-	
DTMF Output Duration	TTD	Auto Dialing	-	93	-	mS
Intertone Pause	TITP	Auto Dialing	-	93	-	mS
Flash Break Time	TFB	F1	-	600	-	mS
		F2	-	100	-	
		F3	-	300	-	
		F4	-	73	-	
Flash Pause Time	TFP	F1, F2, F3, F4	-	1.0	-	S
One Key Redial Break Time	TRB	-	-	2.2	-	S
One Key Redial Pause Time	TRP	-	-	0.6	-	S
Pause Time	TP	R/P1	-	3.6	-	S
		R/P2	-	2.0	-	

Notes:

1. Crystal parameters suggested for proper operation are $\mathrm{Rs}<100 \Omega, \mathrm{Lm}=96 \mathrm{mH}, \mathrm{Cm}=0.02 \mathrm{pF}, \mathrm{Cn}=5 \mathrm{pF}, \mathrm{Cl}=18 \mathrm{pF}$, Fosc. $=3.579545 \mathrm{MHz} \pm 0.02 \%$.
2. Crystal oscillator accuracy directly affects these times.
3. Pause Time selectable.
4. Flash time only can be use any one in any same time.

Preliminary W91310N SERIES

TIMING WAVEFORMS

Figure 1(a). Normal Dialing Timing Diagram (Pulse Mode Timing Diagram)

Figure 1(b). Auto Dialing Timing Diagram (Pulse Mode Timing Diagram)

Preliminary W91310N SERIES

Timing Waveforms, continued

Figure 2(a). Normal Dialing Timing Diagram (Tone Mode Timing Diagram)

Figure 2(b). Auto Dialing Timing Diagram (Tone Mode Auto Dialing Timing Diagram)

Preliminary W91310N SERIES

Figure 3. Handfree Timing Diagram

Figure 4 One -key redial Timing Diagram (Pulse mode)

Preliminary W91310N SERIES

Timing Waveforms, continued

Figure 5. Pause Function Timing Diagram

Figure 6. Pulse-to-tone Function Timing Diagram

Preliminary W91310N SERIES

Timing Waveforms, continued

Figure 7. Flash Function Timing Diagram

Preliminary W91310N SERIES

APPLICATION CIRCUIT

Preliminary W91310N SERIES

Headquarters
No. 4, Creation Rd. III,
Science-Based Industrial Park,
Hsinchu, Taiwan
TEL: 886-3-5770066
FAX: 886-3-5792766
http://www.winbond.com.tw/
Voice \& Fax-on-demand: 886-2-27197006

Winbond Electronics (H.K.) Ltd. Winbond Electronics North America Corp.
Unit 9-15, 22F, Millennium City, Winbond Memory Lab.
No. 378 Kwun Tong Rd;
Kowloon, Hong Kong
TEL: 852-27513100
FAX: 852-27552064

Winbond Microelectronics Corp.
Winbond Systems Lab.
2727 N. First Street, San Jose,
CA 95134, U.S.A.
TEL: 408-9436666
FAX: 408-5441798

Taipei Office

11F, No. 115, Sec. 3, Min-Sheng East Rd.,
Taipei, Taiwan
TEL: 886-2-27190505
FAX: 886-2-27197502

