IF Digitally Controlled Variable-Gain Amplifier

Abstract

General Description

The MAX2027 high-performance, digitally controlled variable-gain amplifier is designed for use from 50 MHz to 400 MHz .

The device integrates a digitally controlled attenuator and a high-linearity IF amplifier in one package. Targeted for IF signal chains to adjust gain either dynamically or as a one-time channel gain setting, the MAX2027 is ideal for applications requiring high performance. The attenuator provides 23 dB of attenuation range with $\pm 0.2 \mathrm{~dB}$ accuracy.
The MAX2027 is available in a thermally enhanced 20pin TSSOP-EP package and operates over the $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ temperature range.

Features

- 50 MHz to 400 MHz Frequency Range
- Variable Gain: -8dB to +15dB
- Output IP3: 40dBm (at All Gain Settings and 50MHz)
- Noise Figure: 4.7dB at Maximum Gain
- Digitally Controlled Gain with 1dB Resolution and $\pm 0.2 \mathrm{~dB}$ Accuracy

Ordering Information

PART	TEMP RANGE	PIN-PACKAGE
MAX2027EUP- T	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	20 TSSOP-EP ${ }^{*}$

*EP $=$ exposed pad
Pin Configuration/

Cellular Base Stations
Receiver Gain Control
Transmitter Gain Control
Broadband Systems
Automatic Test Equipment
Terrestrial Links

Applications

Functional Diagram
\qquad

IF Digitally Controlled Variable-Gain Amplifier

ABSOLUTE MAXIMUM RATINGS

Operating Temperature Range $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Junction Temperature ... $+60^{\circ} \mathrm{C}$
Storage Temperature Range e.............................. $+300^{\circ} \mathrm{C}$
Lead Temperature (soldering, 10s)

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

DC ELECTRICAL CHARACTERISTICS

(Typical application circuit, $\mathrm{V}_{\mathrm{CC}}=+4.75 \mathrm{~V}$ to +5.25 V , $\mathrm{GND}=0 \mathrm{~V}$. No RF signals applied, and RF input and output ports are terminated with 50Ω. R1 $=825 \Omega, T_{A}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$. Typical values are at $\mathrm{V}_{C C}=+5 \mathrm{~V}$ and $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise noted.) (Notes 1, 2)

PARAMETER	SYMBOL	CONDITIONS	MIN TYP	MAX	UNITS
SUPPLY					
Supply Voltage	VCC		4.75 5	5.25	V
Supply Current	ICC		60	70	mA
ISET Current	ISET		0.9		mA
CONTROL INPUTS/OUTPUTS					
Control Bits		Parallel	5		Bits
Input Logic High		(Note 3)	$V_{\text {CC }}-0.5$		V
Input Logic Low				0.5	V
Input Leakage Current			-2	+2	$\mu \mathrm{A}$

IF Digitally Controlled Variable-Gain Amplifier

AC ELECTRICAL CHARACTERISTICS

(Typical application circuit without matching, $\mathrm{VCC}=+4.75 \mathrm{~V}$ to +5.25 V , $\mathrm{GND}=0 \mathrm{~V}$, max gain ($\mathrm{B} 0=\mathrm{B} 1=\mathrm{B} 2=\mathrm{B} 3=\mathrm{B} 4=0$), $\mathrm{R}_{1}=$ 825Ω, POUT $=5 \mathrm{dBm}, \mathrm{f}_{\mathrm{IN}}=50 \mathrm{MHz}, 50 \Omega$ RF system impedance. Typical values are at $\mathrm{V}_{\mathrm{CC}}=+5 \mathrm{~V}$ and $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise noted.) (Notes 1, 2)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
Frequency Range	f_{R}		50		400	MHz
Gain	G	Max gain		15.3		dB
Noise Figure	NF	Max gain		4.7		dB
Minimum Reverse Isolation		Max gain		22		dB
Output 1dB Compression Point	P1dB	Max gain		20.6		dBm
2nd-Order Output Intercept Point	OIP2	$\mathrm{f}_{1}+\mathrm{f}_{2}, \mathrm{f}_{1}=50 \mathrm{MHz}, \mathrm{f}_{2}=51 \mathrm{MHz},$ $5 \mathrm{dBm} /$ tone at RF_OUT		42		dBm
3rd-Order Output Intercept Point	OIP3	All gain conditions, 5dBm/tone at RF_OUT		40		dBm
2nd Harmonic	2 fin	All gain conditions		-42		dBc
3rd Harmonic	3fin	All gain conditions		-68		dBc
RF Gain-Control Range				23		dB
Gain-Control Resolution				1		dB
Attenuation Absolute Accuracy		Compared to the ideal expected attenuation		± 0.2		dB
Attenuation Relative Accuracy		Between adjacent states		± 0.2		dB
Gain Drift Over Temperature		$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$		± 0.1		dB
Gain Flatness Over 50MHz BW		Peak-to-peak for all settings		0.3		dB
Attenuator Switching Time		50\% control to 90\% RF		40		ns
Input Return Loss		$\mathrm{f}_{\mathrm{R}}=50 \mathrm{MHz}$ to 150 MHz , all gain conditions		15		dB
Output Return Loss		$\mathrm{ffR}=50 \mathrm{MHz}$ to 150 MHz , all gain conditions		15		dB

Note 1: Guaranteed by design and characterization.
Note 2: All limits reflect losses of external components. Output measurements are taken at RF OUT using the typical application circuit.
Note 3: Device draws current in excess of the specified supply current when a digital input is driven with a voltage of $\mathrm{V}_{\mathrm{IN}}<\mathrm{V}_{\mathrm{CC}}-0.5 \mathrm{~V}$ or $\mathrm{V}_{\mathrm{IN}}>0.5 \mathrm{~V}$. This is due to the CMOS input stage crowbar current. Part may be damaged if operated in this condition for an extended period of time.

IF Digitally Controlled Variable-Gain Amplifier

(Typical application circuit, $\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$, max gain ($\mathrm{B} 0=\mathrm{B} 1=\mathrm{B} 2=\mathrm{B} 3=\mathrm{B} 4=0$), PouT $=5 \mathrm{dBm}, \mathrm{R}_{1}=825 \Omega$, $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise noted. External matching components for 300 MHz in Table 2 are used for matched circuit.)

GAIN vs. RF FREQUENCY WITHOUT MATCHING
(ALL STATES)

OUTPUT RETURN LOSS
vs. RF FREQUENCY WITH MATCHING
(ALL STATES)

INPUT RETURN LOSS
vs. RF FREQUENCY WITHOUT MATCHING

REVERSE ISOLATION
vs. FREQUENCY WITHOUT MATCHING

GAIN vs. RF FREQUENCY WITH MATCHING
(ALL STATES)

OUTPUT RETURN LOSS
vs. RF FREQUENCY WITHOUT MATCHING
(ALL STATES)

INPUT RETURN LOSS
vs. RF FREQUENCY WITH MATCHING
(ALL STATES)

REVERSE ISOLATION vs. FREQUENCY WITH MATCHING

IF Digitally Controlled Variable-Gain Amplifier

Typical Operating Characteristics (continued)
(Typical application circuit, $\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$, max gain $\left(\mathrm{BO}=\mathrm{B} 1=\mathrm{B} 2=\mathrm{B} 3=\mathrm{B} 4=0\right.$), POUT $=5 \mathrm{dBm}, \mathrm{R}_{1}=825 \Omega, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise noted. External matching components for 300 MHz in Table 2 are used for matched circuit.)

ATTENUATION ABSOLUTE ACCURACY WITH MATCHING (ALL STATES)

GAIN vs. FREQUENCY WITH MATCHING

ATTENUATION RELATIVE ACCURACY WITHOUT MATCHING (ALL STATES)

NOISE FIGURE vs. FREQUENCY WITH MATCHING

IF Digitally Controlled Variable-Gain Amplifier

Typical Operating Characteristics (continued)
(Typical application circuit, $\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$, max gain $\left(\mathrm{BO}=\mathrm{B} 1=\mathrm{B} 2=\mathrm{B} 3=\mathrm{B} 4=0\right.$), $\mathrm{POUT}=5 \mathrm{dBm}, \mathrm{R}_{1}=825 \Omega, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise noted. External matching components for 300 MHz in Table 2 are used for matched circuit.)

OUTPUT IP3 vs. FREQUENCY WITHOUT MATCHING

INPUT IP3 vs. ATTENUATION STATE WITH MATCHING

OUTPUT P1dB vs. FREQUENCY WITH MATCHING

OUTPUT IP3 vs. FREQUENCY WITH MATCHING

2ND HARMONIC vs. FREQUENCY WITHOUT MATCHING

IF Digitally Controlled Variable-Gain Amplifier

Typical Operating Characteristics (continued)

(Typical application circuit, $\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$, max gain ($\mathrm{B} 0=\mathrm{B} 1=\mathrm{B} 2=\mathrm{B} 3=\mathrm{B} 4=0$), $\mathrm{Pout}=5 \mathrm{dBm}, \mathrm{R}_{1}=825 \Omega, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise noted. External matching components for 300 MHz in Table 2 are used for matched circuit.)

3RD HARMONIC vs. FREQUENCY WITHOUT MATCHING

3RD HARMONIC vs. FREQUENCY WITH MATCHING

IF Digitally Controlled Variable-Gain Amplifier

PIN	NAME	FUNCTION
$1,2,11$	VCC	Power Supply. Bypass to GND with capacitors as close to the pin as possible as shown in the typical application circuit (Figure 1).
3	RF_IN	Signal Input. See the typical application circuit for recommended component values. Requires an external DC-blocking capacitor.
$4,5,16,17$, 19,20, EP	GND	Ground. Use low-inductance layout techniques on PC board. Solder the exposed pad evenly to the board ground plane.
$6-10$	B4-B0	Gain-Control Bits. See Table 3 for gain setting.
12	RF_OUT	Signal Output. Requires an external pullup choke inductor (52mA typical current) to VCC along with a DC-blocking capacitor (Figure 1).
13	ISET	Connect an 825 Ω resistor from ISET to GND.
14	IBIAS	Amplifier Bias. Connect to AMPIN (pin 15) through a choke inductor (0.3mA typ).
15	AMPIN	Amplifier Input. Requires a DC-coupling capacitor to allow biasing.
18	ATTNOUT	Attenuator Output. Requires an external DC-blocking capacitor.

Detailed Description

The MAX2027 is a high-performance, digitally controlled variable-gain amplifier for use in applications from 50 MHz to 400 MHz .
The MAX2027 incorporates a digital attenuator with a 23dB selectable attenuation range followed by a fixedgain, high-linearity amplifier. The attenuator is digitally controlled through five logic lines: B0-B4. This on-chip attenuator provides up to 23 dB of attenuation with $\pm 0.2 \mathrm{~dB}$ accuracy. The fixed-gain amplifier utilizes negative feedback to achieve high stability, gain, linearity, and wide bandwidth.

Applications Information

Input and Output Matching

The MAX2027 incorporates on-chip input and output matching for operation below 150 MHz . Use a DC-blocking capacitor value of 1000 pF for pins 3,12 , and 18 (see Figure 1). For operation above 150 MHz , external matching improves performance. Table 1 and Table 2 provide recommended components for device operation.

Digitally Controlled Attenuator The digital attenuator is controlled through five logic lines: $\mathrm{B} 0, \mathrm{~B} 1, \mathrm{~B} 2, \mathrm{~B} 3$, and B 4 . Table 3 lists the attenuation settings. The input and output of this attenuator require external DC-blocking capacitors. This attenuator insertion loss is 2 dB when the attenuator is set to $\mathrm{OdB}(\mathrm{B} 0=\mathrm{B} 1=\mathrm{B} 2=\mathrm{B} 3=\mathrm{B} 4=0)$.

Table 1. Suggested Components of Typical Application Circuit

COMPONENT	VALUE	SIZE
$\mathrm{C} 1, \mathrm{C} 3, \mathrm{C} 4, \mathrm{C} 6, \mathrm{C} 7, \mathrm{C} 10$	1000 pF	0603
$\mathrm{C} 2, \mathrm{C} 5$	100 pF	0603
R 1	$825 \Omega \pm 1 \%$	0603
$\mathrm{R} 2-\mathrm{R} 6$	$47 \mathrm{k} \Omega$	0603
L 1	330 nH	0805
L 2	680 nH	1008

Table 2. Suggested Matching Components

FREQUENCY	COMPONENT	VALUE	SIZE
200 MHz	$\mathrm{L} 3, \mathrm{~L} 4$	18 nH	0603
	$\mathrm{C} 8, \mathrm{C} 9$	8 pF	0603
250 MHz	$\mathrm{L} 3, \mathrm{~L} 4$	15 nH	0603
	$\mathrm{C} 8, \mathrm{C} 9$	8 pF	0603
300 MHz	$\mathrm{L} 3, \mathrm{~L} 4$	11 nH	0603
	$\mathrm{C} 8, \mathrm{C} 9$	7 pF	0603
400 MHz	$\mathrm{L} 3, \mathrm{~L} 4$	10 nH	0603
	$\mathrm{C} 8, \mathrm{C} 9$	5 pF	0603

IF Digitally Controlled Variable-Gain Amplifier

Figure 1. Typical Application Circuit

Fixed-Gain Amplifier
The MAX2027 integrates a fixed-gain amplifier in a negative feedback topology. This fixed-gain amplifier is optimized for a frequency range of operation from 50 MHz to 400 MHz with a high-output third-order intercept point (OIP3). The bias current is chosen to optimize the $I P_{3}$ of the amplifier. When R_{1} is 825Ω, the current consumption is 60 mA while exhibiting a typical 40 dBm output IP_{3} at 50 MHz .

Choke Inductor

The fixed-gain amplifier output port requires an external pullup choke inductor to V_{C}. At the input, connect a bias inductor of 330 nH from AMPIN (pin 15) to IBIAS (pin 14). At the output, connect a 680nH choke inductor from RF_OUT (pin 12) to VCC (pin 11) to provide bias current to the amplifier.

Layout Considerations

A properly designed PC board is an essential part of any RF/microwave circuit. Keep RF signal lines as short as possible to reduce losses, radiation, and induc-
tance. For the best performance, route the ground pin traces directly to the exposed pad under the package. Solder the exposed pad on the bottom of the device package evenly to the board ground plane to provide a heat transfer path along with RF grounding.

Power-Supply Bypassing
Proper voltage-supply bypassing is essential for highfrequency circuit stability. Bypass each VCc pin with a 1000 pF and 100 pF capacitor. Connect the 100pF capacitor as close to Vcc pins as possible.

Exposed Pad RF/Thermal Considerations The exposed paddle (EP) of the MAX2027's 20-pin TSSOP-EP package provides a low thermal-resistance path to the die. It is important that the PC board on which the MAX2027 is mounted be designed to conduct heat from the EP. In addition, provide the EP with a low-inductance path to electrical ground. The EP should be soldered to a ground plane on the PC board, either directly or through an array of plated via holes.

IF Digitally Controlled Variable-Gain Amplifier

Table 3. Attenuation Setting vs. GainControl Bits

ATTENUATION 2dB MINIMUM INSERTION LOSS	B4	B3 $^{\boldsymbol{*}}$	B2	B1	B0
0	0	0	0	0	0
1	0	0	0	0	1
2	0	0	0	1	0
3	0	0	0	1	1
4	0	0	1	0	0
5	0	0	1	0	1
6	0	0	1	1	0
7	0	0	1	1	1
8	0	1	0	0	0
9	0	1	0	0	1
10	0	1	0	1	0
11	0	1	0	1	1
12	0	1	1	0	0
13	0	1	1	0	1
14	0	1	1	1	0
15	0	1	1	1	1
16	1	X	0	0	0
17	1	X	0	0	1
18	1	X	0	1	0
19	1	X	0	1	1
20	1	X	1	0	0
21	1	X	1	0	1
22	1	X	1	1	0
23	1	X	1	1	1

*Enabling B4 disables B3, and the minimum attenuation is 16 dB .

Chip Information TRANSISTOR COUNT: 325

IF Digitally Controlled Variable-Gain Amplifier

Package Information
(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information, go to www.maxim-ic.com/packages.)

Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.

