SPICE Device Model SUD15N15-95 Vishay Siliconix ### N-Channel 150-V (D-S) 175° MOSFET ### **CHARACTERISTICS** - N-Channel Vertical DMOS - Macro Model (Subcircuit Model) - Level 3 MOS - Apply for both Linear and Switching Application - Accurate over the -55 to 125°C Temperature Range - Model the Gate Charge, Transient, and Diode Reverse Recovery Characteristics ### **DESCRIPTION** The attached spice model describes the typical electrical characteristics of the n-channel vertical DMOS. The subcircuit model is extracted and optimized over the -55 to 125° C temperature ranges under the pulsed 0 to 10V gate drive. The saturated output impedance is best fit at the gate bias near the threshold voltage. A novel gate-to-drain feedback capacitance network is used to model the gate charge characteristics while avoiding convergence difficulties of the switched $C_{\rm gd}$ model. All model parameter values are optimized to provide a best fit to the measured electrical data and are not intended as an exact physical interpretation of the device. ### SUBCIRCUIT MODEL SCHEMATIC This document is intended as a SPICE modeling guideline and does not constitute a commercial product data sheet. Designers should refer to the appropriate data sheet of the same number for guaranteed specification limits. Document Number: 71756 www.vishay.com 05-Jun-04 1 # **SPICE Device Model SUD15N15-95** ## Vishay Siliconix | SPECIFICATIONS (T _J = 25°C UNLESS OTHERWISE NOTED) | | | | | | |---|---------------------|---|-------------------|------------------|------| | Parameter | Symbol | Test Conditions | Simulated
Data | Measured
Data | Unit | | Static | | | | | | | Gate Threshold Voltage | $V_{GS(th)}$ | $V_{DS} = V_{GS}, I_{D} = 250 \mu A$ | 2.6 | | V | | On-State Drain Current ^b | I _{D(on)} | V _{DS} = 5 V, V _{GS} = 10 V | 71 | | Α | | Drain-Source On-State Resistance ^b | r _{DS(on)} | $V_{GS} = 10 \text{ V}, I_D = 15 \text{ A}$ | 0.069 | 0.077 | Ω | | | | V _{GS} = 10 V, I _D = 15 A, T _J = 125°C | 0.115 | | | | | | V _{GS} = 10 V, I _D = 15 A, T _J = 175°C | 0.139 | | | | | | V _{GS} = 6 V, I _D = 10 A | 0.080 | 0.081 | | | Forward Voltage ^b | V _{SD} | I _S = 15 A, V _{GS} = 0 V | 0.89 | 0.90 | V | | Dynamic ^a | | | | | | | Input Capacitance | C _{iss} | V _{GS} = 0 V, V _{DS} = 25 V, f = 1 MHz | 897 | 900 | pF | | Output Capacitance | C _{oss} | | 126 | 115 | | | Reverse Transfer Capacitance | C _{rss} | | 73 | 70 | | | Total Gate Charge ^c | Qg | $V_{DS} = 75 \text{ V}, V_{GS} = 10 \text{ V}, I_{D} = 15 \text{ A}$ | 21 | 20 | nC | | Gate-Source Charge ^c | Q _{gs} | | 5.5 | 5.5 | | | Gate-Drain Charge ^c | Q _{gd} | | 7 | 7 | | | Turn-On Delay Time ^c | t _{d(on)} | V_{DD} = 75 V, R_{L} = 5 Ω I_{D} \cong 15 A, V_{GEN} = 10 V, R_{G} = 2.5 Ω I_{F} = 15 A, di/dt = 100 A/μs | 12 | 8 | ns | | Rise Time ^c | t _r | | 19 | 35 | | | Turn-Off Delay Time ^c | t _{d(off)} | | 36 | 17 | | | Fall Time ^c | t _f | | 41 | 30 | | | Source-Drain Reverse Recovery Time | t _{rr} | | 48 | 55 | | ### Notes Guaranteed by design, not subject to production testing. Pulse test; pulse width $\leq 300~\mu s$, duty cycle $\leq 2\%$. Independent of operating temperature. a. www.vishay.com Document Number: 71756 b. ### SPICE Device Model SUD15N15-95 Vishay Siliconix ### COMPARISON OF MODEL WITH MEASURED DATA (TJ=25°C UNLESS OTHERWISE NOTED) Note: Dots and squares represent measured data.