

MICROPOWER PHASE -LOCKED LOOP GENERAL DESCRIPTION FEATURES

The MMC 4046 micropower phase-locked loop (PLL) consists of a low powere, linear, voltage-controlled oscillator (VCO), a source follower, a zener diode, and two stage comparators. The two phase comporators have a common signal input and a common comparator input. The signal input can be directly coupled for a large voltage signal, or capacitively coupled to the self-biasing amplifier at the signal input for a small voltage signal.

- Wide supply voltage range −3V to 18V
- Low dynamic power consumption -70 μW (typ) at f₀=10 kHz, V_{DD}=5V
- VCO frequency −1.3 MHz (typ) at V_{DO}=10V

APPLICATIONS

- FM demodulator and modulator
- Frequency synthesis and multiplication
- Frequency discrimination
- Data synchronization and conditioning
- Voltage-to-frequency conversion
- Tone decoding
- Motor speed control

ABSOLUTE MAXIMUM RATINGS

-					
V _{DD} •	Supply voltage: G and H types E and F types	-0.5 to -0.5 to	20 18	V V	
V,	Input voltage	-0.5 to		v	
l. '	DC input current (any one input)	-0.5 66	V _{DD} +0.5 ±10	mÅ	
7,					
P_{tot}	Total power dissipation (per package)		500	mW	
	Dissipation per output transistor				
	for $T_A = \text{full package-temperature } r \cdot \text{nge}$		100	rnW	
T_{A}	-				
ľΑ	Operating				
	temperature: G and H types	-55 to	125	٥C	
	E and F types	-40 to	85	.0 0 0 0	
Ť	Storage temperature			°C	
T_{stg}	arai ade rembei arai a	- 65 to	150	~ L	

All voltage values are referred to V_{SS} pin voltage

RECOMMENDED OPERATING CONDITIONS

V ₀₀ *	Supply voltage:		3 to	18	V	
V_i	input voltage	E and F types	3 to O to	15 V _{DD}	V	
TA	Operating			00		
	temperature :	G and H types	-55 to	125	۰C	
		E and F types	-40 to	85	°C	

CONNECTION DIAGRAM

BLOCK DIAGRAM

FUNCTIONAL DESCRIPTION

VCO SECTION

The VCO requires one external capacitor C1 and one or two external resistors (R₁ or R₁ and R₂). Resistor R₁ and capacitor C₁ determine the frequency range of the VCO and resistor R₂ enables the VCO to have a frequency offset if required. The high input impedance $(10^{12}~\Omega)$ of the VCO simplifiers the design of low-pass filters by permitting the designer a wide choice of resistor-to-capacitor ratios in order not to load the low pass filter, a source-follower output of the VCO input voltage is provided at terminal 10 (DEMODULATED OUTPUT). If this terminal is used, a load resistor (R_S) of 10K or more should be connected from this terminal to V_{SS}. If unused this terminal should be left open. The VCO can be connected either directly or through frequency dividers to the comparator input of the phase comparators. A full CMOS logic swing is available at the output of the VCO and allows direct coupling to CMOS frequency dividers such as the MMC 4024, MMC 4018, MMC 4020, MMC 4022, MMC4029, MMC4059. One or more MMC 4018 (Presettable Divide-by-N-Counter) or MMC 4029 (presettable Up/Down Counter), together with the MMC 4046, (phase-Locked Loop) can be used to build a micropower low-frequency synthesizer. A logic 0 on the INHIBIT input "enables" the VCO and the source follower, while a logic 1 "turns off" both to minimize standby power consumption.

PHASE COMPARATORS

The phase-comparator signal input (terminal 14) can be direct-coupled provided the signal swing is within CMOS logic levels /logic "0" < 30% (VDD—VSS), logic "1" > 70% (VDD—VSS)/. For smaller swings the signal must be capacitively coupled to the self-biasing amplifier at the signal input. Phase comparator I is an exclusive-OR network; of operates analogously to an over-driver balanced mixer. To maximize the lock range, the signal-and comparator -input frequencies must have a 50% duty cycle. With no signal or noise on the signal input, this phase comparator has an average output voltage equal to $V_{\rm DO}/2$. The low-pass filter connected to the output of phase comparator I supplies the averaged voltage to the VCO input, and causes the VCO to oscillate at the center frequency (f₀). The frequency range of input signals on which the PLL will lock if it was initially out of lock is defined as the frequency capture range (2f₀). The frequency lock range (2f₀). The capture range is <the lock range. With phase comparator I the range of frequencies over which the PLL can acquire lock (capture range) is dependent on the low-pass-filter characteristics, and can be made as large as the lock range. Phase-comparator I enables a PLL system to remain in lock in spite of high amounts of noise in the input signal. One characteristic of this type of phase comparator is that it may lock into input frequencies that are close to harmonics of the VCO center-frequency. A second characteristic is that the phase angle between the signal and the comparator input varies between 0° and 180°, and is 90° at the center frequency. Fig. (a) shows the typical, triangular, phase-to-output response characteristic of phase-comparator I. Typical waveforms for a CMOS phase-locked-loop employing phase comparator I in locked condition f_0 is shown in Fig. (b).

Phase-comparator II is an edge-controlled digital memory network. It consists of four flip-flop stages, control gating, and a three-stage output comprising p-and n-type drivers having a common output node. When the p-MOS or n-MOS drivers are ON they pull the output up to VDD or down to VSS, respectively. This type of phase comparator acts only on the positive edges of the signal and comparator inputs. The duty cycles of the signal and comparator inputs are not important since positive transitions control the PLL system utilizing this type of comparator. If the signal-input frequency is higher than the comparatorinput frequency, the p-type output driver is maintained On most of the time, and both n-and p-drivers OFF (3 state) the remainder of the time. If the signal-input frequency is lower than the comparator-input frequency, the n-type output driver is mainteined ON most of the time, and both the n-and p-drivers OFF (3 state) the remainder of the time. If the signal and comparator-input frequencies are the same, but the signal input lags the comparator input in phase, the n-type output driver is maintained ON for a time corresponding to the phase difference. If the signal and comparator-input frequencies are the same, but the comparator input lags the signal in phase, the p-type output driver is maintained ON for a time corresponding to the phase difference. Subsequently, the capacitor voltage of the low-pass filter connected th this phase comparator is adjusted until the signal and comparator inputs are equal in both phase and frequency. At this stable point both p-and n-type output drivers remain OFF and thus the phase comparator output becomes an open circuit and holds the voltage on the capacitor of the low-pass filter constant. Moreover the signal at the "phase pulses" output is a high level which can be used for indicating a locked condition. Thus, for phase comparator II, no phase difference exists between signal and comparator input over the full VCO frequency range. More-over, the power dissipation due to the low-pass filter is reduced when this type of phase comparator is used because both the p-and n-type output drivers are OFF for most of the signal input cycle.

It should be noted that the PLL lock range for this type of phase comparator is equal to the capture range, independent of the low-pass filter. With no signal present at the signal input, the VCO is adjusted to its lowest frequency for phase comparator II. Fig. (c) shows typical waveforms for a CMOS PLL employing phase comparator II in a locked condition.

Fig. (a) — Phase comparator I characteristics low-pass filter output

Fig. (b) — Typical waveforms for CMOS Phase Locked-Loop empleying phose comparator I in locked condition of fo.

Fig. (c) — Typical waveforms for CMOS Phase-Locked-Loop employing phase comparator II in locked condition

NOTE: DASHED LINE IS AN OPEN-CIRCUIT CONDITION

STATIC ELECTRICAL CHARACTERISTICS

(over recommended operating conditions)

			TE	ST CON	DITION	S			١	/ALUES				
P	ARAMETER		V,	Vo	lo	Voo	Ttc	w		25°C		T ‡ ı	GH	UNIT
			(V)	(V)	(μ A)	(V)	min.	max.	min.	typ	max.	min.	max.	UNI
VCO !	BECTION		<u> </u>											
V _{OH}	Output high voltage		0/ 5 0/10 0/15		< 1 < 1 < 1	5 10 15	4.95 9.95 14.95		4.95 9.95 14.95			4.95 9.95 14.95		٧
V _{OL}	Output low voltage		5 /0 10/0 15/0		< 1 < 1 < 1	5 10 15		0.05 0.05 0.05			0.05 0.05 0.05		0.05 0.05 0.05	٧
J _{OH}	Output drive current	G, H types	0/ 5 0/ 5 0/10 0/15	2.5 4.6 9.5 13.5		5 5 10 15	-2 -0.64 -1.6 -4.2		-1.6 -0.51 -1.3 -3.4	-3.2 -1 -2.6 -6.8		- 1 15 - 0.36 - 0.9 2.4		mΑ
		E, F types	0/ 5 0/ 5 0/10 0/15	2.5 4.6 9.5 13.5		5 5 10 15	1.53 0.52 1.3 3.6		1.36 0.44 1.1 3.0			~1.1 -0.36 ~0.9 -2.4		
a guad 2 Januar Namero	Ostput sink current	G, H types	0/ 5 0/10 0/15	0.4 0.5 1.5		5 10 15	0.64 1.6 4.2		0.51 1.3 3.4	1 2.6 6.8		0.36 0.9 2.4		mΑ
		E, F types	0/ 5 0/10 0/15	0.4 0.5 1.5		5 10 15	0.52 1.3 3.6		0.44 1.1 3.0	1 2.6 6.8		0.36 0.9 2.4		
1,	Input leakage	G, H types	0/18	Any		18		±0.1		± 10 ⁵	±01		±.1	Δμ
	current	E, F	0/15	input		15		±0.3		± 10 ⁵	±0.3		±1	

	Ţ	EST CON	NOITIC	S			١	/ALUE	8	······································		
PARAMETER	V _I	Vo	101	V _{DD}	T <u>t</u>	ow		25°C		T [‡] H	IGH	UNIT
	(V)	(V)	(μΑ)	(V)	min:	max.	min.	typ	max.	min,	max.	DIW.

PHASE COMPARATOR SECTION

			1	T	,		·	,		·			,	
I _{DD}	Total device , current	G, H types	0/ 5 0/10 0/15 0/20			5 10 15 20		5 10 15 100			5 10 20 100		150 300 600 3000	
	Pin 14=V _{SS} or V ₀₀ Pin 5=V ₀₀	E. F types	0/ 5 0/10 0/15			5 10 15		20 40 80			30 60 100		30 0 600 10 00	
Vija	-Input high voltage			0.5/45 1/9 1.5/13.5	< 1 < 1 < 1	5 10 15	3.5 7 11		3.5 7 11			3.5 7 11		>
V _{IL}	—Input low voltage			4.5/0.5 9/1 13.5/1.5	< 1 < 1 < 1	5 10 15		1.5 3 4			1.5 3 4		1.5 3 4	٧
¹ он	-Output drive	G, H types	0/ 5 0/ 5 0/10 0/15	2.5 4.6 9.5 13.5		5 5 10 15	-2 -0.64 -1.6 -4.2	i	-1.6 -0.51 -1.3 -3.4	-3.2 -1 -2.6 -6.8		1.15 -0.36 0.9 2.4		
	current	E, F types	U/ 5 0/ 5 0/10 0/15	2.5 4.6 9.5 13.5		5 5 10 15	-1.53 -0.52 -1.3 -3.6		-1.36 -0.44 -1.1 -3.0	1		-1.1 -0.36 -0.9 2.4		mΑ
lot	—Output sink current	G, H types	0/ 5 0/10 0/15	0.4 0.5 1.5		5 10 15	0.64, 1.6 4.2		0.51 1.3 3.4	1 2.6 6.8		0.36 0.9 2.4		
		types	0/ 5 0/10 0/15	0.4 0.5 1.5		5 10 15	0.52 1.3 3.6		0.44 1.1 3.0	1 2.6 6.8		036 09 24		-mA
l _{IH} , [_{IL} .	—Input Ieakage	G, H types	0/18	Any		18		· () 1		· 10 ⁵	+01		+ 1	Δ
	current	E, F types	0/15	input	ĺ	15		:03		±10 ⁵	±0.3		±1	- μ-
	3—state Output	Lythers	0/18	0/18		18		±0.4		±10 °	± 0.4		±12	
		E.F types	0/15	0/15		15		±1.0		±10 ⁴	±1.0		±7.5	-
	put capacitance		i	Any input						5	7.5			pF
• T _{1.00}	$v = -55^{\circ}C$ for G	vab H	COC:	40°C fon E	C do.	inne					<u>_</u>	l		

The Noise Margin for both "1" and "0" level is:

1 V min. with $V_{DD}\!=\!~5~V$

2 V min. with $V_{00} = 10 \text{ V}$ 2.5 V min. with $V_{00} = 15 \text{ V}$

[•] $T_{LOW} = -55^{\circ}C$ for G, H devices; $-40^{\circ}C$ for E, F devices. • $T_{HIGH} = +125^{\circ}C$ for G, H devices; $+85^{\circ}C$ for E, F devices.

DYNAMIC ELECTRICAL CHARACTERISTICS

 $(T_A=25^{\circ}C;\ C_L=50pF;\ R_L=200K;\ typical\ temperature\ coefficient\ for\ all\ V_{DD}\ values\ is\ 0.3\%/°C,$ all input rise and fall time = 20 ns).

	PARAMETER	TEST CON	TITIONS			VALUES		UNIT
	FARAMETER	TEST CON	פאטוווכ	(V) _{GQ} V	Min.	Тур.	Max.	UIVI
/CO	SECTION							
PD	Operating power dissipation	f _o =10kHz R ₂ =∞	R ₁ =1MΩ C ₁ = 50 pF	5 10 15		1.5 8.0 30.0	3.0 16.0 60.0	mW
fmax	Maximum frequency	R₁=10K R₂=∞	C ₁ =50pF	5 10	0.2 0.4	0.4		
		V _{COIN} =VDD		15	0.6	1.2		МН
	Center frequency	R ₁ =5K R ₂ =∞ V _{COIN=} V _{DD}	C ₁ =50pF	5 10 15 Immable wit	0.3 0.6 1,0	0.6 1.2 2.0	ents	
	(fo) and frequency range f _{max} -f _{min}		,		l ₂ and C			
Nonl	inearity	V _{COIN} =2.5V±0.3	R ₁ =10K	5		6		
		V _{COIN} =5V±1	R ₁ =100K	10		2		
		V _{COIN} =5V±2.5	R,=400K	10		10		Чo
		V _{COIN} =7.5V±1.5	R,=100K	15		2		
		V _{COIN} =7.5V±5	R ₁ =1M	15		18		
'co	Output duty cycle			5,10,15		50		o _j ,
	VCO output transition time			5 10 15		100 50 40	200 100 80	ns
	Source follower output (demodulated output): offset voltage V _{COIN} —V _{DEM}	RS>10k		5,10,15			3.0	
	Source follower:	V _{COIN} =2.5V±0.3	R _S =100K	5			1	
	output (demodulated output):	V _{CDIN} =5V±2.5	A _S =300K	10			2] %
Non	nearity	V _{COIN} =7.5V±5	R _{S=} 500K	15			3	
٧z	Zener diode voltage	12=50µA			5. 7	6.2	6.7	\
R _Z	Zener dynamic resistance	I _Z =2mA	V NAME TO SECURE A SECURITY OF THE SECURITY OF				100	1)

PHASE COMPARATOR S	ECTION	 	·					
R14 Pin 14 (signal in) input rezistance			5 10 15	0.1				MΩ
A.C. coupled signal input voltage sensitivity*{ (peak-to-peak)	f _{IN} =100KHz sine wave		5 10 15	2.4				٧
t _{PHL} , Propagation delay time High to low level Pins 14 to 13			5 10 15	225 100 6 5	0 20	50 00 30		ns
t _{PLH} , Propagation delay time Low to high, level			5 10 15		15	50 50 00	700 300 200	ns
t _{PHZ} , Propagation delay time 3-state High level to High impedance	•		5 10		10	25 00	450 200 130	ns
Pins 14 to 13 PLZ, Low level to high impedance			15 5 10 15		28	35 30 35	570 260 190	ns
t _{fi} Input rise or fall time Comparator Pin 3			5 10 15				50 1 0.3	μS
Signal Pin 14			5 10 15				500 20 2.5	με
_{THL} , Transition time TLH			5 10 15		5	00 50 10	200 100 80	ns

DESIGN INFORMATION

This information is a guide for approximating the values of external components for the 4046 in a Phase -Locked-Loop system. The selected external components must be within the following ranges.

5 k <R₁, R₂, RS<1M

C1>100pF at V_{DO} >5V

C1>50pF at V_{DD}>10V

	USING PHASE	COMPARATOR I	USING PHASE (COMPARATOR II
CHHRHCIERISTICS	VCO WITHOUT OFFSET R2 = ∞	VCO WITH OFFSET	VCO WITHOUT OFFSET R2 = ∞	VCO WITH OFFSET
VCO Frequency	For Voo INPUT VOLTAGE	for the transfer of the transf	Fmax Fmin 256L VCO INPUT VOLTAGE	Facx foo factors and a set of the set of t
For No Signal Input	VCO in PLL systems wi frequency: fo	will adjust to centre	VCO in Pil eystem wit operating frequency,	will adjust to lowest W. fain
Frequency Lock Range. 26		26 = 6011 VCO	forenters of the contract of t	1
frequency Capture Range. Zf <u>C</u>	INO R3			
	z ₁ = R3•C2 = C2	$\frac{12}{2} \sqrt{\frac{\pi}{2}} \sqrt{\frac{2\pi a}{21}}$	H	
	INO R3	— o aut	د	dicina di cumum menenden permenente del
Loop Filter Component Selection		2		
Phase Angle beetwen Signal and Comparator	90° at centre frequency 0° and 180° at ende of lo	'y (f _o), opproximating look range (2f _L)	Always 0°	Ootn lock
Looks on Marsonicz of Centre frequency	, ,	# 	ON	
Signal Input Noise Rejection	1H	High		