5340-pixel × 3-line CCD Linear Sensor (Color)

Description

The ILX558K is a reduction type CCD linear sensor developed for color image scanner. This sensor reads A4-size documents at a density of 600DPI.

Features

• Number of effective pixels: 16020 pixels

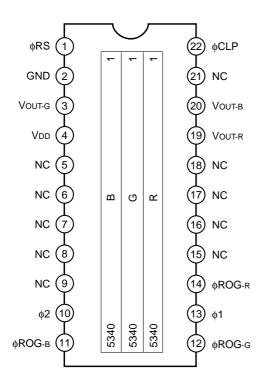
(5340 pixels \times 3)

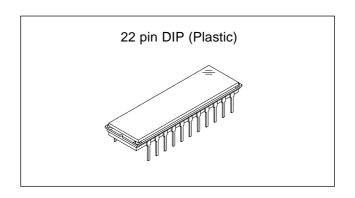
Pixel size: 4μm × 4μm (4μm pitch)
Distance between line: 32μm (8 lines)

· Single-sided readout

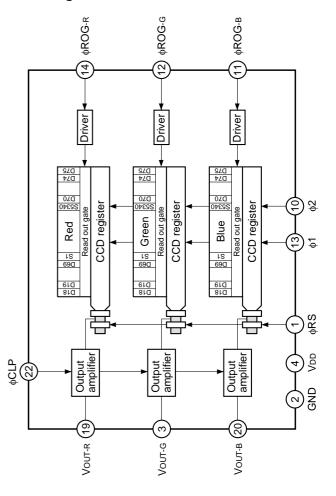
• Ultra low lag/High sensitivity

• Single 12V power supply


Maximum data rate: 10MHz/Color
Input clock pulse: CMOS 5V drive
Number of output: 3 (R, G, B)


Package: 22-pin Plastic DIP (400mil)

Absolute Maximum Ratings


Supply voltage
 Operating temperature
 VDD
 15
 V
 -10 to +55
 °C

Pin Configuration (Top View)

Block Diagram

Sony reserves the right to change products and specifications without prior notice. This information does not convey any license by any implication or otherwise under any patents or other right. Application circuits shown, if any, are typical examples illustrating the operation of the devices. Sony cannot assume responsibility for any problems arising out of the use of these circuits.

Pin Description

Pin No.	Symbol	Description	Pin No.	Symbol	Description
1	φRS	Clock pulse input	12	φ ROG -G	Clock pulse input
2	GND	GND	13	φ1	Clock pulse input
3	Vouт-g	Signal output (green)	14	φ ROG -R	Clock pulse input
4	VDD	12V power supply	15	NC	NC
5	NC	NC	16	NC	NC
6	NC	NC	17	NC	NC
7	NC	NC	18	NC	NC
8	NC	NC	19	Vout-r	Signal output (red)
9	NC	NC	20	Vоит-в	Signal output (blue)
10	φ2	Clock pulse input	21	NC	NC
11	ф ROG -в	Clock pulse input	22	фCLP	Clock pulse input

Recommended Supply Voltage

Item	Min.	Тур.	Max.	Unit
VDD	11.4	12	12.6	V

Clock Characteristics

Item	Symbol	Min.	Тур.	Max.	Unit
Input capacitance of \$1, \$2	Сф1, Сф2	_	500	_	pF
Input capacitance of φRS	Cors	_	10	_	pF
Input capacitance of	СфСLР	_	10	_	pF
Input capacitance of φROG	Сфкоб	_	10	_	pF

Clock Frequency

Item	Symbol	Min.	Тур.	Max.	Unit
Frequency of \$1, \$2, \$RS, \$CLP	fφ1, fφ2, fφRS, fφCLP	_	1	10	MHz

Input Clock Pulse Voltage Conditions

Item	Min.	Тур.	Max.	Unit	
φ1, φ2, φRS, φCLP, φROG	High level	4.75	5.0	5.25	٧
pulse voltage	Low level	_	0	0.1	٧

Electro-optical Characteristics (Note 1)

(Ta = 25°C, VDD = 12V, $f\phi RS = 1MHz$, Input clock = 5Vp-p, Light source = 3200K, IR cut filter CM-500S (t = 1.0mm))

Item		Symbol	Min.	Тур.	Max.	Unit	Remarks	
	Red	RR	1.7	2.6	3.5			
Sensitivity	Green	Rg	2.0	3.1	4.2	V/(lx · s)	Note 2	
	Blue	Rв	1.6	2.5	3.4			
Sensitivity nonuniformity		PRNU	_	4	20	%	Note 3	
Saturation output voltage		Vsat	2.5	3.0		V	Note 4	
	Red	SER	_	1.15		lx · s No		
Saturation exposure	Green	SEG	_	0.97	_		Note 5	
	Blue	SEB	_	1.2	-			
Dark voltage average		Vdrk	_	2	5	mV	Note C	
Dark signal nonuniformity	1	DSNU	_	4	12	mV	Note 6	
Image lag		IL	_	0.02	_	%	Note 7	
Supply current		Ivdd	_	30	50	mA	_	
Total transfer efficiency		TTE	92	98		%	_	
Output impedance	Zo	_	240	_	Ω	_		
Offset level		Vos	_	5.6	_	V	Note 8	

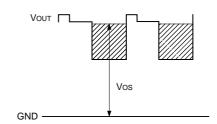
Notes:

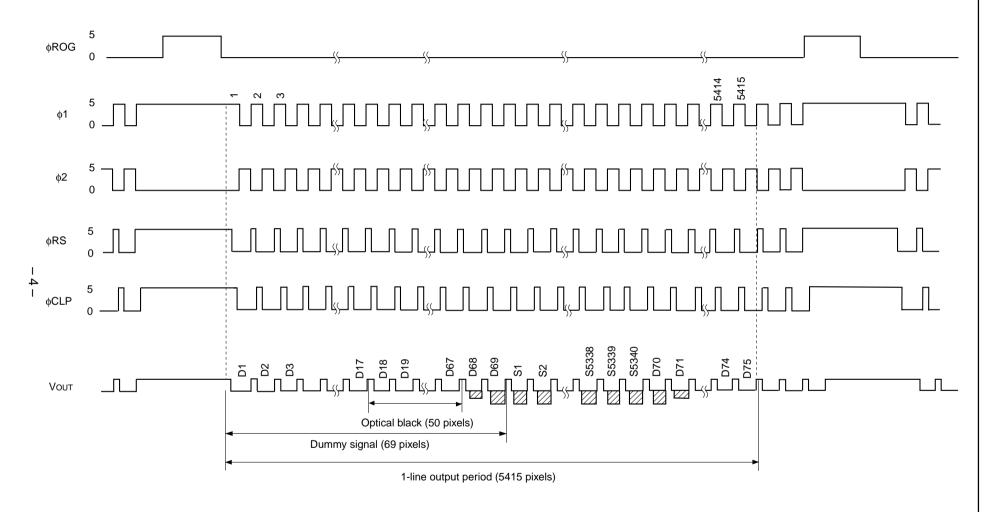
- 1. In accordance with the given electro-optical characteristics, the black level is defined as the average value of D18, D19 to D67.
- 2. For the sensitivity test light is applied with a uniform intensity of illumination.
- 3. PRNU is defined as indicated below. Ray incidence conditions are the same as for Note 2.

Vout =
$$500mV$$
 (typ.)

$$PRNU = \frac{(V_{MAX} - V_{MIN})/2}{V_{AVF}} \times 100 [\%]$$

When the 5340 pixels are divided into blobks of 100, the maximum output of each block is set to VMAX, the minimum output to VMIN and the average output to VAVE.

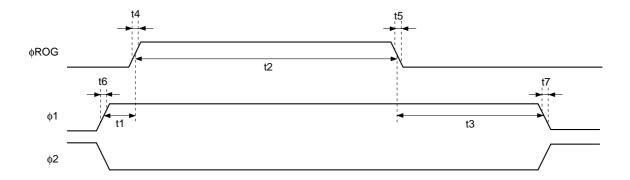

- 4. Use below the minimum value of the saturation output voltage.
- 5. Saturation exposure is defined as follows.


$$SE = \frac{V_{SAT}}{R}$$

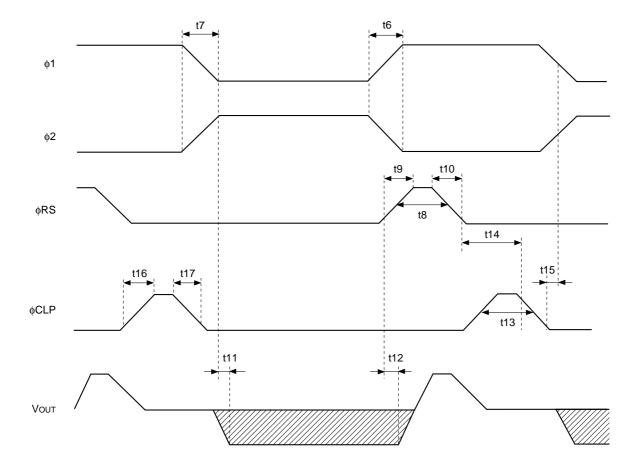
Where R indicates RR, RG, RB, and SE indicates SER, SEG, SEB.

- 6. Optical signal accumulated time τ int stands at 5.5ms.
- 7. Vout-G = 500 mV (typ.)
- 8. Vos is defined as indicated bellow.

 Vout indicates Voute, Voute and Voute.

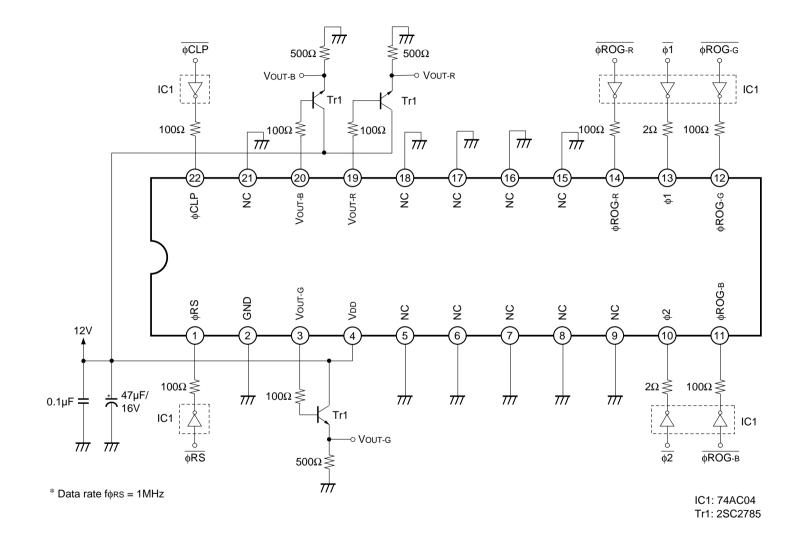


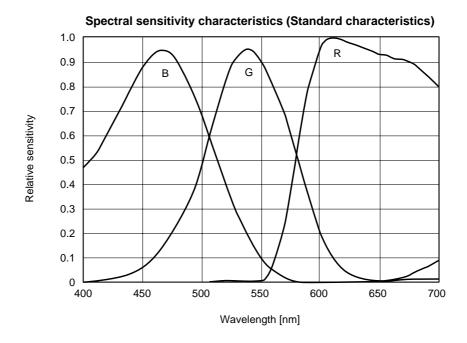
Note) The transfer pulses (φ1, φ2) must have more than 5415 cycles.


Vout indicates Vout-R, Vout-G, Vout-B.

φROG indicates φROG-R, φROG-G, φROG-B.

Clock Timing Chart 2


Clock Timing Chart 3


Clock Pulse Recommended Timing

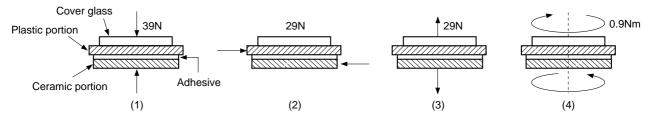
Item	Symbol	Min.	Тур.	Max.	Unit
φROG, φ1 pulse timing	t1	50	100	_	ns
φROG pulse high level period	t2	3	5	_	μs
φROG, φ1 pulse timing	t3	1	2	_	μs
φROG pulse rise time	t4	0	5	_	ns
φROG pulse fall time	t5	0	5	_	ns
φ1 pulse rise time/φ2 pulse fall time	t6	0	20	_	ns
φ1 pulse fall time/φ2 pulse rise time	t7	0	20	_	ns
φRS pulse high level period	t8	30	50*1	_	ns
φRS pulse rise time	t9	0	20	_	ns
φRS pulse fall time	t10	0	20	_	ns
Cional autout deleuties	t11	_	50	_	ns
Signal output delay time	t12	_	20	_	ns
φCLP pulse high level period	t13	30	100	_	ns
LCLD autos timina	t14	10	100	_	ns
♦CLP pulse timing	t15	5	50	_	ns
φCLP pulse rise time	t16	0	20	_	ns
φCLP pulse fall time	t17	0	20	_	ns

^{*1} These timing are the recommended condition under $f\phi RS = 1MHz$.

Example of Representative Characteristics

Notes of Handling

1) Static charge prevention


CCD image sensors are easily damaged by static discharge. Before handling be sure to take the following protective measures.

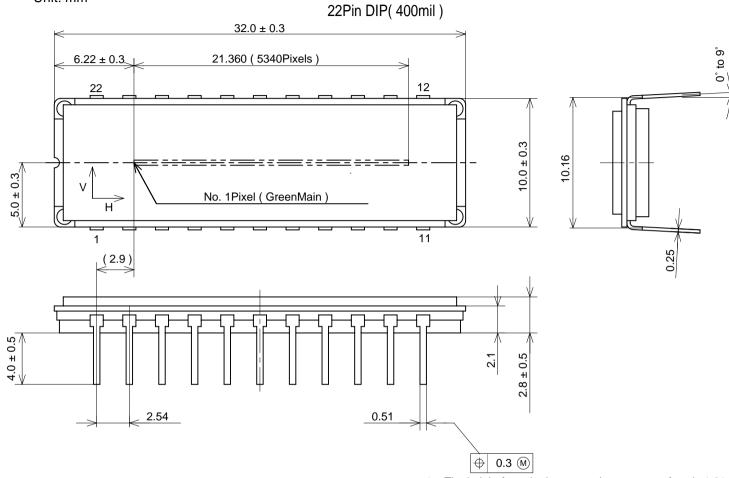
- a) Either handle bare handed or use non chargeable gloves, clothes or material. Also use conductive shoes.
- b) When handling directly use an earth band.
- c) Install a conductive mat on the floor or working table to prevent the generation of static electricity.
- d) Ionized air is recommended for discharge when handling CCD image sensor.
- e) For the shipment of mounted substrates, use boxes treated for prevention of static charges.

2) Notes on Handling CCD Packages

The following points should be observed when handling and installing packages.

- a) Remain within the following limits when applying static load to the package:
 - (1) Compressive strength: 39N/surface (Do not apply load more than 0.7mm inside the outer perimeter of the glass portion.)
 - (2) Shearing strength: 29N/surface
 - (3) Tensile strength: 29N/surface
 - (4) Torsional strength: 0.9Nm

- b) In addition, if a load is applied to the entire surface by a hard component, bending stress may be generated and the package may fracture, etc., depending on the flatness of the ceramic portion. Therefore, for installation, either use an elastic load, such as a spring plate, or an adhesive.
- c) Be aware that any of the following can cause the package to crack or dust to be generated.
 - (1) Applying repetitive bending stress to the external leads.
 - (2) Applying heat to the external leads for an extended period of time with soldering iron.
 - (3) Rapid cooling or heating.
 - (4) Prying the plastic portion and ceramic portion away at a support point of the adhesive layer.
 - (5) Applying the metal a crash or a rub against the plastic portion.
 - Note that the preceding notes should also be observed when removing a component from a board after it has already been soldered.
- d) The notch of the plastic portion is used for directional index, and that can not be used for reference of fixing. In addition, the cover glass and seal resin may overlap with the notch or ceramic may overlap with the notch of the plastic portion.


3) Soldering

- a) Make sure the package temperature does not exceed 80°C.
- b) Solder dipping in a mounting furnace causes damage to the glass and other defects. Use a 30W soldering iron with a ground wire and solder each pin in less then 2 seconds. For repairs and remount, cool sufficiently.
- c) To dismount an imaging device, do not use a solder suction equipment. When using an electric desoldering tool, ground the controller. For the control system, use a zero cross type.

4) Dust and dirt protection

- a) Operate in clean environments.
- b) Do not either touch glass plates by hand or have any object come in contact with glass surfaces. Should dirt stick to a glass surface, blow it off with an air blower. (For dirt stuck through static electricity ionized air is recommended.)
- c) Clean with a cotton bud and ethyl alcohol if the glass surface is grease stained. Be careful not to scratch the glass.
- d) Keep in a case to protect from dust and dirt. To prevent dew condensation, preheat or precool when moving to a room with great temperature differences.
- 5) Exposure to high temperatures or humidity will affect the characteristics. Accordingly avoid storage or usage in such conditions.
- 6) CCD image sensors are precise optical equipment that should not be subject to mechanical shocks.

Package Outline

- 1. The height from the bottom to the sensor surface is 1.61 \pm 0.3mm.
- 2. The thickness of the cover glass is 0.7mm, and the refractive index is 1.5.

PACKAGE STRUCTURE

PACKAGE MATERIAL	Plastic					
LEAD TREATMENT	GOLD PLATING					
LEAD MATERIAL	42 ALLOY					
PACKAGE MASS	2.21g					
DRAWING NUMBER	LS-D19(E)					
	LEAD TREATMENT LEAD MATERIAL PACKAGE MASS					