Dual-Rate Fibre Channel Limiting Amplifiers

Abstract

General Description The MAX3274/MAX3276* dual-rate Fibre Channel limiting amplifiers are optimized for use in dual-rate 2.125Gbps/1.0625Gbps Fibre Channel optical receiver systems. An on-chip selectable fourth-order Bessel Thompson filter offers 15 dB (typ) of attenuation at 2 GHz to suppress the relaxation oscillation (RO) found in legacy transmitters. The amplifiers accept a wide range of input voltages and provide constant-level output voltages with controlled edge speeds. Receivers using the MAX3275/MAX3277 transimpedance amplifiers (TIA) and the MAX3274/MAX3276 dual-rate limiting amplifiers can meet the Fibre Channel receiver sensitivity optical modulation amplitude (OMA) specification of 49mWP-P at 2.125 Gbps and $31 \mathrm{mWP}-\mathrm{P}$ at 1.0625 Gbps . Additional features include a programmable threshold loss-ofsignal (LOS) detector, output squelch, and bandwidth select. The MAX3274/MAX3276 feature current-mode logic (CML) data outputs. The MAX3274/MAX3276 are available in 16-pin QFN packages, making them ideal for GBIC and small form-factor receiver modules. *Future product

Applications
Fibre Channel GBIC Optical Modules
Dual-Rate Fibre Channel SFF/SFP Optical Modules

Features

- Dual-Rate 1.0625Gbps/2.125Gbps Operation
- On-Chip Selectable 4th-Order Filter
- Relaxation Oscillation Suppression of Legacy, CD Laser-Based Transmitters
- Available in 100Ω and 150Ω Output Terminations
- Programmable Loss-of-Signal (LOS) Threshold
- Output Squelch Control
- Power-On Reset Minimizes Inrush Current
- $4 \mathrm{~mm} \times 4 \mathrm{~mm}$ 16-Pin QFN Packages

Ordering Information

PART	TEMP RANGE	DIFF OUTPUT TERMINATION	PIN- PACKAGE
MAX3274UGE	$0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	100Ω	16 QFN
MAX3276UGE	$0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	150Ω	16 QFN

*Future product-contact factory for availability

Typical Operating Circuit

Pin Configurations appear at end of data sheet.

Dual-Rate Fibre Channel Limiting Amplifiers

ABSOLUTE MAXIMUM RATINGS
Supply Voltage (VCC)
\qquad
-0.5 V to +6.0 V
Continuous CML Output Current
(OUT+, OUT-)
\qquad IN-)...
\qquad .-25 mA to +25 mA CML Input Voltage ($\mathrm{IN}+$, $\mathrm{IN}-$)-0.5V to ($\mathrm{V}_{\mathrm{CC}}+0.5 \mathrm{~V}$) Differential Input Voltage (IN+, IN-)....................................2VP-P TTL Input Voltage (BWSEL, SQUELCH, TEST)....................-0.5V to (VCC +0.5 V)

Voltage at TH .. 0.5 V to $\mathrm{V}_{\mathrm{CC}}+0.5 \mathrm{~V}$
Current into TH
.5 .0 mA
Open Collector (LOS, $\overline{\text { LOS }}$) -0.5 V to +5.5 V
Operating Ambient Temperature Range $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Storage Ambient Temperature Range............... $-55^{\circ} \mathrm{C}$ to $+100^{\circ} \mathrm{C}$

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

ELECTRICAL CHARACTERISTICS

($\mathrm{V}_{\mathrm{CC}}=+3.0 \mathrm{~V}$ to $+3.6 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$. Typical values are at $\mathrm{V}_{\mathrm{CC}}=+3.3 \mathrm{~V}$ and $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise noted.)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
Supply Current				78	99	mA
Data Rate		BWSEL = 0		1.0625		Gbps
		BWSEL = 1		2.125		
Small-Signal Bandwidth		-3dB, BWSEL = 0 (Note 1)	0.77	0.89	1.0	GHz
		-15dB, BWSEL = 0 (Note 1)			2.0	
		-3dB, BWSEL = 1 (Note 1)		1.7		
BWSEL Response Time		(Note 2)			10	$\mu \mathrm{s}$
Input Range	VIN	(Notes 2, 3)	10		1200	mVP-P
Deterministic Jitter		BWSEL $=0,10 \mathrm{mV} \leq$ input $\leq 20 \mathrm{mV}$ (Notes 2, 4)		44	61	pSP-P
		BWSEL $=0,20 \mathrm{mV}$ < input $\leq 1200 \mathrm{mV}$ (Notes 2, 4)		37	44	
		BWSEL $=1,10 \mathrm{mV} \leq$ input $\leq 1200 \mathrm{mV}$ (Notes 2, 4)		10	20	
Random Jitter		BWSEL = 0 (Notes 2, 5)		6.1		pSRMS
		BWSEL = 1 (Notes 2, 5)		3.8		
Total Jitter		BWSEL $=0$ (Note 6)		130		PSP-P
		BWSEL = 1 (Note 6)		63		
LOS, $\overline{\text { LOS }}$ Transition Time		10\% to 90\% rise/fall time (Notes 2, 7)	5		350	ns
LOS, $\overline{\text { LOS }}$ Response Time		Figure 1 (Note 2)	1		20	$\mu \mathrm{s}$
LOS, $\overline{\text { LOS }}$ Hysteresis		$\begin{aligned} & 20 \times \log \left(V_{\text {DEASSERT }} / V_{\text {ASSERT }}\right), \mathrm{V}_{\text {TH }}=6 \mathrm{~m} \mathrm{~V}_{\text {P-P }} \\ & (\text { Note 8) } \end{aligned}$	2		8	dB
		$\mathrm{V}_{\text {TH }}=30 \mathrm{mVP-P}$ (Notes 2, 8)	4		8	
LOS Assert (VLOS) Range		$330 \Omega<\mathrm{RTH}^{2} 2.0 \mathrm{k} \Omega$ (Notes 2, 8)	8		30	mV
LOS Assert (VLOS) Error		$330 \Omega<$ RTH < $2.0 \mathrm{k} \Omega$ (Notes 2, 8)	-30		+30	\%
Squelch Input Current					100	$\mu \mathrm{A}$
Single-Ended Input Resistance	RIN	IN+, IN- to VCC	40	50	60	Ω
Data Input VSWR		$\mathrm{f}<2 \mathrm{GHz}$ (Note 2)			2.5	
Differential Output Resistance	Rout	OUT+ to OUT- (MAX3274)	80	100	120	Ω
		OUT+ to OUT- (MAX3276)	120	150	180	Ω
CML Output Voltage	Vout	SQUELCH $=0$ (Note 4)	900	1200	1600	mVP-P
		SQUELCH $=1, \mathrm{~V}_{\text {IN }}<\mathrm{V}_{\text {TH }}$ (Note 4)			30	
Data Output Levels		SQUELCH $=1, \mathrm{~V}_{\text {IN }}<\mathrm{V}_{\text {TH }}($ Note 4)	$V_{\text {cc }}-0.1$		VCC	V

Dual-Rate Fibre Channel Limiting Amplifiers

ELECTRICAL CHARACTERISTICS (continued)

($\mathrm{VCC}=+3.0 \mathrm{~V}$ to $+3.6 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$. Typical values are at $\mathrm{V}_{\mathrm{CC}}=+3.3 \mathrm{~V}$ and $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise noted.)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
Data Output Edge Speed		20\% to 80\%, BWSEL = 0 (Notes 2, 5)		170	220	psp-P
		20\% to 80\%, BWSEL = 1 (Notes 2, 5)		105	140	
LOS Current Sink		LOS asserted	1.0			mA
		LOS not asserted, $\mathrm{V}_{\mathrm{CC}}=0,4.7 \mathrm{k} \Omega$ pullup to $+5.5 \mathrm{~V}$	0		10	$\mu \mathrm{A}$
$\overline{\text { LOS Current Sink }}$		LOS not asserted	1.0		10	mA
		LOS asserted, $\mathrm{V}_{\mathrm{CC}}=0,4.7 \mathrm{k} \Omega$ pullup to +5.5 V	0			$\mu \mathrm{A}$
LOS, $\overline{\text { LOS }}$ Output Low Voltage		LOS, $\overline{\text { LOS }}$ sink current $=1 \mathrm{~mA}$			0.5	V
Supply Noise Tolerance		$10 \mathrm{kHz} \leq \mathrm{f}<1 \mathrm{MHz}$ (Note 9)		40		mVP-P
		$1 \mathrm{MHz} \leq \mathrm{f}<50 \mathrm{MHz}$ (Note 9)		20		

Note 1: Measured with $\mathrm{a} \leq-50 \mathrm{dBm}$ input signal on a network analyzer.
Note 2: Specifications are guaranteed by design and characterization.
Note 3: Using $2^{7}-1$ PRBS pattern. The input bandwidth is limited to $0.75 \times$ (selected data rate) by a 4th-order Bessel Thompson filter.
Note 4: Using a K28.5 pattern at the selected bit rate. Measured differentially into a matched external load.
Note 5: Using a K28.7 or equivalent pattern at the selected bit rate. Measured over the entire input voltage range.
Note 6: Total jitter is estimated as $T J=D J+14 \times R J$, where $D J$ is the peak-to-peak deterministic jitter, and RJ is the RMS random jitter.
Note 7: LOS (open collector) is connected to a +5.5 V supply through a $4.7 \mathrm{k} \Omega$ external resistor.
Note 8: Using K28.7 or equivalent pattern at selected bit rate.
Note 9: Total jitter, deterministic jitter, LOS hysteresis, LOS assert performance verified.

Dual-Rate Fibre Channel Limiting Amplifiers

$\left(\mathrm{V}_{\mathrm{CC}}=+3.3 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}\right.$, unless otherwise noted.)

100ps/div

INPUT = 1.2VP-P, $\mathbf{2}^{7} \mathbf{- 1} 1$ PRBS, BWSEL = 0

200ps/div

Typical Operating Characteristics

100ps/div

INPUT $=10 \mathrm{mV}$ P-P, $\mathbf{2}^{\mathbf{7}} \mathbf{- 1}$ PRBS, BWSEL $=0$

Dual-Rate Fibre Channel Limiting Amplifiers

Typical Operating Characteristics (continued)
$\left(\mathrm{V}_{\mathrm{CC}}=+3.3 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}\right.$, unless otherwise noted. $)$

OUTPUT DIFFERENTIAL RETURN GAIN (SIGNAL LEVEL of -60dBm)

FREQUENCY (Hz)

FORWARD DIFFERENTIAL GAIN

ASSERT/DEASSERT LEVELS vs. RTh (BWSEL = 1, 2.125Gbps, K28.5)

Dual-Rate Fibre Channel Limiting Amplifiers

Pin Description

PIN	NAME	
1	IN+	Foninverted Data Input
2	IN-	Inverted Data Input
$3,7,10$	VCC	Supply Voltage
4	BWSEL	Bandwidth Select Pin. When BWSEL is set to a TTL-low level or left open, a 4th-order Bessel Thompson filter suppresses relaxation oscillations from legacy CD laser transmitters. Connect BWSEL to a TTL-high for operation above 1.0625Gbps.
5	TEST	Test Pin Should Be Connected to Ground
6	SQUELCH	Squelch Input. The squelch function is disabled when SQUELCH is set to a TTL-low. When SQUELCH is set to a TTL-high level, and LOS is asserted, the data outputs (OUT+ and OUT-) are forced to static levels.
$8,13,16$	GND	Supply Ground 11
12	OUT-	Loss-of-Signal Threshold. A resistor connected from this pin to ground sets the input signal level at which the loss-of-signal (LOS) outputs are asserted. See the Typical Operating Characteristics and Design Procedure sections for more information.
14	LOS	Inverted Data Output
15	Noninverted Data Output Inverted Loss-of-Signal Output. $\overline{\text { LOS is high when the level of the input signal is above the preset }}$ threshold set by the TH pin. LOS is asserted low when the input signal level drops below the threshold.	
EP	Exposed	
Pad	Loss-of-Signal Output. LOS is low when the level of the input signal is above the preset threshold set by the TH pin. LOS is asserted high when the input signal level drops below the threshold.	
Ground. The exposed paddle must be soldered to the circuit board ground for proper thermal and electrical performance.		

Dual-Rate Fibre Channel Limiting Amplifiers

Detailed Description

Figure 2 is a functional diagram of the MAX3274/ MAX3276 limiting amplifiers. Typical gain is 46 dB . A linear input drives a bandwidth selector. An offset correction loop with lowpass filtering ensures low deterministic jitter. An integrated RMS signal detector monitors for loss-of-signal conditions. The output buffer provides a limited CML output signal.

Input Buffer

The MAX3274/MAX3276 input buffer (Figure 3) provides a 100Ω input impedance between IN+ and IN-. DCcoupling the inputs is not recommended; doing so prevents proper functioning of DC offset correction circuitry.

Signal Detect and Loss-of-Signal
An RMS signal detector looks at the signal from the input buffer and compares it to a threshold set by a resistor at pin TH. The status of the signal-detect information appears at the LOS outputs. These are opencollector outputs and require external pullup resistors connected to the host power supply. The LOS outputs are high impedance when the power supply to the MAX3274/MAX3276 is OV. ESD protection on the dualrate limiting amplifiers' LOS outputs do not forward-bias when the power supply of the MAX3274/MAX3276 is 0 V or below the host power supply.

Offset Correction

A low-frequency feedback loop is integrated into the limiting amplifiers to reduce input offset and thereby minimize duty-cycle distortion. For proper operation, the input must be externally AC-coupled. The offset correction circuit has been optimized for the Fibre Channel character set, disparity rules, and 8b/10b data encoding. This dictates an average data input mark density of 50% and a maximum run length of five consecutive identical digits (CID) or bits.

CML Output Buffer

The MAX3274/MAX3276 CML outputs (Figure 4) provide high tolerance to impedance mismatches and inductive connectors. The output current is approximately 24 mA for the MAX3274 and 18 mA for the MAX3276. The squelch function is enabled when SQUELCH is set to a TTL-high level or connected to VCC. The squelch function holds OUT+ and OUT- at a static voltage when the input signal level drops below the loss-of-signal threshold. The output buffer can be AC- or DC-coupled to the load. For DC operation, the load must be terminated to VCC of the MAX3274/MAX3276.

Figure 1. LOS Response Time

Design Procedure

Programming the LOS Assert Threshold

External resistor RTH programs the loss-of-signal threshold. See the LOS Threshold vs. RTH graph in the Typical Operating Characteristics section. RTH can be estimated by $\mathrm{RTH}_{\mathrm{T}}=15 / \mathrm{V}_{\mathrm{TH}}$, where V_{TH} is the peak-topeak differential input assert level.

Selecting the AC-Coupling Capacitors

 The input and output AC-coupling capacitors (CIN, COUT) should be selected to minimize the receiver's deterministic jitter. Lowering the low-frequency cutoff reduces deterministic jitter. The low-frequency cutoff can be determined by:$$
f_{C}=\frac{1}{2 \pi \times C \times\left(R_{L}+R_{S}\right)}
$$

where $R L$ is the single-ended load impedance and $R S$ is the single-ended source impedance. CIN, Cout = $0.1 \mu \mathrm{~F}$ is recommended.

Applications Information

Optical Hysteresis

In an optical receiver, the electrical power change at the limiting amplifier is 2 times the optical power change. For example, if a receiver's optical input power (χ) increases by a factor of 2 , and the preamplifier is linear, then the voltage input to the limiting amplifier also increases by a factor of 2. The optical power change is $10 \log (2 \chi / \chi)=10 \log (2)=3 \mathrm{~dB}$. At the limiting amplifier, the electrical power change is:

$$
10 \log \frac{\left(2 V_{I N}\right)^{2} / R_{I N}}{V_{\mathbb{I N}^{2}}{ }^{2} / R_{I N}}=10 \log \left(2^{2}\right)=20 \log (2)=6 \mathrm{~dB}
$$

The typical voltage hysteresis for the MAX3274/ MAX3276 is 6 dB . This provides an optical hysteresis of 3dB.

Dual-Rate Fibre Channel Limiting Amplifiers

Figure 2. Functional Diagram of the MAX3274/MAX3276 Limiting Amplifier

Figure 3. Input Circuit

Figure 4. CML Output Circuit

Dual-Rate Fibre Channel Limiting Amplifiers

Chip Information
DEVICE COUNT: 2855
TRANSISTOR COUNT: 1310
PROCESS: BiPOLAR: SiGe, SOI

Dual-Rate Fibre Channel Limiting Amplifiers

(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information, go to www.maxim-ic.com/packages.)

NOTES:

1. Die thickness allowable is 0.305 mm maximum (.012 inches maximum)
2. DIMENSIONING \& TOLERANCES CONFORM MUST TO ASME Y14.5M. - 1994.
3. N IS THE NUMBER OF TERMINALS Nd IS THE NUMBER OF TERMINALS IN X-DIRECTION \&
Ne IS THE NUMER OF TERMINALS IN Y-DIRECTION.
4. DIMENSION b APPLIES TO PLATED TERMINAL AND IS MEASURED BETWEEN 0.20 AND 0.25 mm FROM TERMINAL TIP.
S. THE PRN \#1 IDENTRIER MUST QE EXISEED ON THE TOP SURFACE OF THE

Exact shape and size or tur mak or ink/aser marke.
7. ALL DIMENSIONS ARE IN MILIMETERS.
8. PACKAGE WARPAGE MAX 0.05 mm
9. APPLIED FOR EXPOSED PAD AND TERMINALS.

期
0. MEETS JEDEC MO220.
11. THIS PACKAGE OUTLINE APPLIES TO ANVIL SINGULATION (STEPPED SIDES) AND TO SAW SINGULATION (STRAIGHT SIDES) OFN STYLES.

Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.

