

LC66556B, 66558B

Four-Bit Single-Chip Microcontrollers with 6 k and 8 k Bytes of On-Chip ROM

Overview

The LC66556B and LC66558B are four-bit single-chip CMOS microcontrollers that integrate on a single chip all the functions required in a microcontroller, including ROM, RAM, I/O ports, two serial interfaces, comparator inputs, three-value inputs, timers and interrupts. These products are provided in a 64-pin package.

These products differ from the earlier LC66558A Series in the power supply voltage range and certain other electrical characteristics.

Features and Functions

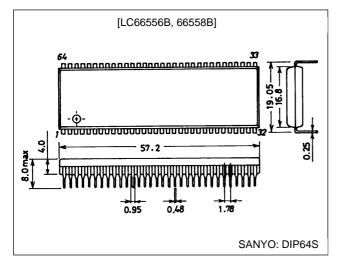
- On-chip ROM and RAM with 6 k (or 8 k) byte and 512 × 4-bit capacities
- The same instruction set (with 127 instructions) as the LC66000 Series (except that the SB instruction is not supported)
- I/O ports: 54 pins
- 8-bit serial interface: two circuits (16-bit cascade connection supported)
- Instruction cycle: 0.92 to 10 μs (at 3 to 5.5 V)

- Powerful timers and prescalers
 12-bit timer: time-limit timer, event counter, pulse width measurement, square wave output
 8-bit timer: time-limit timer, event counter, PWM output, square wave output
- Powerful 11-factor 8-vector interrupt system External interrupts: 6 factors/3 vectors
 Internal interrupts: 5 factors/5 vectors

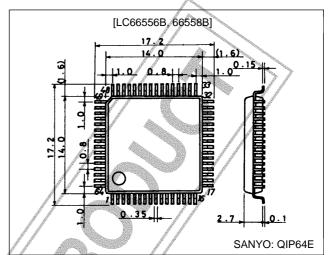
12-bit prescaler; time base functions

- Plexible I/O functions
 Comparator inputs, three-value inputs, 20 mA drive outputs, 15 V breakdown voltage pins, pull-up/opendrain option switching possible
- Runaway detection function (watchdog timer) option
- 8-bit I/O function
- Power saving functions: halt and hold modes Package; DIP64S, QFP64E
- Evaluation LSI: LC66599 (evaluation chip) + EVA850/800-TB665XX LC66E516 (On-chip EPROM microcontrollers) LC66P516 (On-chip OTPROM microcontrollers)

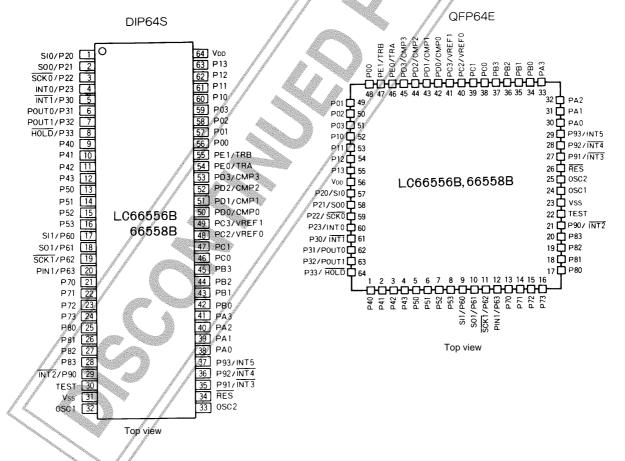
Series Structure


Type No.	Pin count	ROM capacity	RAM capacity	acity Package		Features
LC66304A/306A/308A	42	4 k/6 k/8 kB	512 W	DIP42S	QFP48E	
LC66404A/406A/408A	42	4 k/6 k/8 kB	512 W	DIP42S	QFP48E	Normal versions 4.0 to 6.0 V/0.92 µs
LC66506B/508B/512B/516B	64	6 k/8 k/12 k/16 kB	512 W	DIP64S	QFP64A	1.0 to 0.0 t/0.02 pc
LC66354A/356A/358A	42	4 k/6 k/8 kB	512 W	DIP42S	QFP48E	
LC66354S/356S/358S*	42	4 k/6 k/8 kB	512 W		QFP44M	Low-voltage versions 2.2 to 5.5 V/3.92 µs
LC66556A/558A/562A/566A	64	6 k/8 k/12 k/16 kB	512 W	DIP64S	QFP64E	2.2 to 0.0 v/0.02 po
LC66354B/356B/358B	42	4 k/6 k/8 kB	512 W	DIP42S	QFP48E	
LC66556B/558B 64		6 k/8 k	512 W	DIP64S	QFP64E	Low-voltage high-speed versions 3.0 to 5.5 V/0.92 µs
LC66562B/566B	64	12 k/16 kB	512 W	DIP64S	QFP64E	0.0 to 0.0 1/0.02 pc
LC66E308	42	EPROM 8 kB	512 W	DIC42S (window)	QFC48 (window)	
LC66P308	42	OTPROM 8 kB	512 W	DIC42S	QFP48E	
LC66E408	42	EPROM 8 kB	512 W	DIC42S (window)	QFC48 (window)	Evaluation (window) versions & OTP versions
LC66P408	42	OTPROM 8 kB	512 W	DIC42S	QFP48E	4.5 to 5.5 V/0.92 μs
LC66E516	64	EPROM 16 kB	512 W	DIC64S (window)	QFC64 (window)	
LC66P516	64	OTPROM 16 kB	512 W	DIC64S	QFP64E	

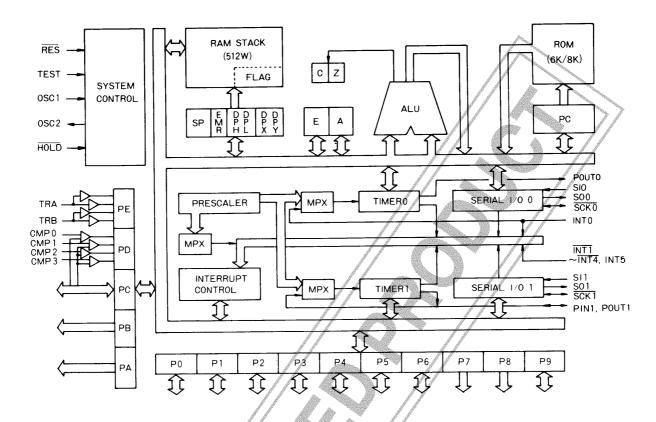
Note: *: Under development


Package Dimensions

unit: mm


3071-DIP64S

unit: mm 3159-QFP64E


Pin Assignments

We recommend using reflow soldering as the QFP solder mounting technique.

Consult your Sanyo representative concerning temperature and other conditions if techniques in which the whole package is to be immersed in a solder dip bath, i.e. solder dip techniques, are to be used.

System Block Diagram

Differences between the LC66556B/LC66558B and the LC66508B Series

Item	LC66508B series (Including the EVA850/800-TB665XX tool)	LC66556B, 66558B
System differences • Hardware wait time (number of cycles) when hold mode is cleared	65536 cycles At 4 MHz (Tcyc = 1 μs); about 64 ms	16384 cycles At 4 MHz (Tcyc = 1 μs): about 16 ms
Value of timer 0 at reset (including the value after hold mode is cleared)	The value FF0 is loaded.	The value FFC is loaded.
Differences in the major characteristics • Operating power supply voltage/operating speed	LC66512B, 516B 4.0 to 6.0 V/0.92 to 10 μs LC66E516, P516 4.5 to 5.5 V/0.92 to 10 μs	3.0 to 5.5V/0.92 to 10 μs

- 1. An RC oscillator cannot be used with the LC66556B and LC66558B
- In addition, certain other output current and comparator input voltage specifications differ.
 For details, see the individual catalogs for the LC66508B, LC66E516 and LC66P516.
 Keep these differences in mind when using the LC66E516 and LC66P516 evaluation chips.

Pin Function Overview

Pin	I/O	Function	Output drive type	Option	Value on reset
P00 P01 P02 P03	I/O	I/O ports P00 to P03 Input or output in 4-bit or 1-bit units P00 to P03 have control functions in HALT mode.	P-channel: pull-up MOS type N-channel: small sink current type	Either with pull-up MOS or N-channel OD output Reset output level	High or low (option)
P10 P11 P12 P13	I/O	I/O ports P10 to P13 • Input or output in 4-bit or 1-bit units	P-channel: pull-up MOS type N-channel: small sink current type	Either with pull-up MOS or N-channel OD output Reset output level	High or low (option)
P20/Si0 P21/SO0 P22/SCK0 P23/INT0	1/0	I/O ports P20 to P23 Input or output in 4-bit or 1-bit units P20 is also used as the serial input SI0 pin. P21 is also used as the serial output SO0 pin. P22 is also used as the serial clock SCK0 pin. P23 is also used as the INT0 interrupt request, as the timer 0 event counter and for pulse width measurement input.	P-channel: CMOS type N-channel: small sink current type +15 V withstand voltage in N-channel OD	Either CMOS or N-channel OD output	High
P30/INT1 P31/POUT0 P32/POUT1	I/O	I/O ports P30 to P32 Input or output in 3-bit or 1-bit units P30 is also used as the INT1 interrupt request. P31 is also used for square wave output from timer 0. P32 is also used for square wave output from timer 1 and PWM output.	P-channel: CMOS type N-channel: small sink current type +15 V withstand voltage in N-channel OD	Either CMOS or N- channel OD output	High
P33/HOLD		Hold mode control input Hold mode is entered if a HOLD instruction is executed when HOLD is fow. When in hold mode, the CPU is reactivated by setting HOLD to the high level. P33 can also be used as an input port together with P30 to P32. When P33/HOLD is low, the CPU will not be reset by a low level on RES. Therefore, RES cannot be used in applications that set P33/HOLD low when power is first applied.			
P40 P41 P42 P43	1/Q	I/O ports P40 to P43 • Input or output in 4-bit or 1-bit units • I/O in 8-bit units when used in conjunction with P50 to P53 • Output of 8-bit ROM data when used in conjunction with P50 to P53	P-channel: pull-up MOS type N-channel: small sink current type	Either CMOS or N- channel OD output	High
P50 P51 P52 P53	I/O	VO ports P50 to P53 Input or output in 4-bit or 1-bit units VO in 8-bit units when used in conjunction with P40 to P43 Output of 8-bit ROM data when used in conjunction with P40 to P43	P-channel: pull-up MOS type N-channel: small sink current type	Either CMOS or N- channel OD output	High

Continued from preceding page.

Pin	I/O	Function	Output drive type	Option	Value on reset
P60/SI1 P61/SO1 P62/SCK1 P63/PIN1	I/O	I/O ports P60 to P63 Input or output in 4-bit or 1-bit units P60 is also used as the serial input S11 pin. P61 is also used as the serial output SO1 pin. P62 is also used as the serial clock SCK1 pin. P63 is also used as the timer 1 event counter input.	P-channel: CMOS type N-channel: small sink current type +15 V withstand voltage in N-channel OD	CMQS or N-channel OD output	High
P70 P71 P72 P73	0	Dedicated output ports P70 to P73 Output in 4-bit or 1-bit units The latched output data can be read with input instructions.	P-channel: pull-up MOS type N-channel: intermediate sink current type +15 V withstand voltage in N- channel OD	With pull-up MOS transistor or N-channel OD output	High
P80 P81 P82 P83	0	Dedicated output ports P80 to P83 Output in 4-bit or 1-bit units The latched output data can be read with input instructions. Ap-channel OD output option is available.	P-channel: CMOS type N-channel: small sink current type	CMOS or P-channel OD output The output level at reset	High or low (option)
P90/INT2 P91/INT3 P92/INT4 P93/INT5	I/O	I/O ports P90 to P93 Input or output in 4-bit or 1-bit units P90 is also used as the INT2 interrupt request. P91 is also used as the INT3 interrupt request. P92 is also used as the INT4 interrupt request. P93 is also used as the INT5 interrupt request.	P-channel: CMOS type N-channel: small sink current type	CMOS or N-channel OD output	High
PA0 PA1 PA2 PA3	0	Dedicated output ports PA0 to PA3 Output in 4-bit or 1-bit units The latched output data can be read with input instructions.	P-channel: pull-up MOS type N-channel: intermediate sink current type	With pull-up MOS or N-channel OD output	High
PB0 PB1 PB2 PB3	0	Dedicated output ports PB0 to PB3 Output in 4-bit or 1-bit units The latched output data can be read with input instructions.	P-channel: CMOS type N-channel: small sink current type	With pull-up MOS or N-channel OD output	High
PC0 PC1 PC2/VREF0 PC3/VREF1	1/0	I/O ports PC0 to PC3 Input or output in 4-bit or 1-bit units PC2 is also used as the VREF0 comparator comparison voltage pin PC3 is also used as the VREF1 comparator comparison voltage pin.		CMOS or N-channel OD output	High
PD0/CMP0 PD1/CMP1 PD2/CMP2 PD3/CMP3	1	Dedicated input ports PD0 to PD3 Can be switched to function as comparator inputs under software control. The comparison voltage for PD0 is VREF0. The comparison voltage for PD1 to PD3 is VREF1. Comparison can be specified in units of PD0, PD1, (PD2, PD3).			Normal input

Continued from preceding page.

Pin	I/O	Function	Output drive type	Option	Value on reset
PE0/TRA PE1/TRB	I	Dedicated input port Can be switched under software control to function as a three-value input port.			Normal input
OSC1 OSC2	0	System clock oscillator connections When an external clock is used, leave OSC2 open and input the signal to OSC1.		Selection of either a ceramic oscillator or external clock input	
RES	I	System reset input • The CPU is initialized (reset) if a low level is input to RES when P33/HOLD is at the high level.			
TEST	I	CPU testing This pin must be connected to V _{SS} during normal operation.			
V _{DD} V _{SS}		Power supply connections			

Note: Pull-up MOS output: An output with a pull-up MOS transistor

CMOS output: A complementary output
OD output: An open drain output

User Option Types

1. Port 0, 1 and 8 reset time output level option

The output levels of I/O ports 0, 1 and 8 at reset can be selected from the following two options in 4-bit units.

Option	Conditions and notes
High level output at reset time	Ports 0, 1 and/or 8 in 4-bit sets
Low level output at reset time	Ports 0, 1 and/or 8 in 4-bit sets

2. Oscillator circuit option

Option	Circuit	Conditions and notes
External clock	OSC1	This input is a Schmitt specification input.
Ceramic oscillator	Ceramic Eresonator OSC2	

Note: There is no RC oscillator option.

3. Watchdog timer option

The presence or absence of a program runaway detection function (watchdog timer) can be selected as an option.

4. Port output type option

• One of the following two output circuit options can be selected for each bit in ports P0, P1, P2, P3 (except for the P33/HOLD pin), P4, P5, P6, P7, P9, PA, PB and PC.

Option	Circuit	Conditions and notes
Open drain output	Output data input data	P7, PA and PB are output only pins. P2, P3, P6 and P9 are Schmitt inputs.
Built-in pull-up resistor output	Output data Input data	P7, PA and PB are output only pins. P2, P3, P6 and P9 are Schmitt inputs. CMOS outputs (P2, P3, P6, P9 and PC) and pull-up MOS outputs (P0, P1, P4, P5, P7, PA and PB) are differentiated.

• The P8 circuits can be selected from the following two options in bit units.

Option	Circuit	Conditions and notes
Open drain output	Output data	
Built-in pull-up resistor output	Output data DSB	

• The PD comparator inputs and the PE three-value inputs are selected in software.

Specifications

Absolute Maximum Ratings at $Ta=25^{\circ}C,\,V_{SS}=0~V$

Parameter	Symbol	Conditions	Ratings	Unit	Note
Maximum supply voltage	V _{DD} max	V_{DD}	-0.3 to +7.0	V	
Input voltage	V _{IN} (1)	P2, P3 (except for the P33/HOLD pin) and P6	-0.3 to +15.0	V	1
input voltage	V _{IN} (2)	Other inputs	-0.3 to V _{DD} + 0.3	V	2
Output voltage	V _{OUT} (1)	P2, P3 (except for the P33/HOLD pin), P6, P7 and PA	-0.3 to +15.0	V	1
	V _{OUT} (2)	Other outputs	–0.3 to V _{DD} + 0.3	V/	2
	I _{ON} (1)	P0, P1, P2, P3 (except for the P33/HOLD pin), P4, P5, P6, P8, P9 and PC	4	mA	3
Output ourrent nor nin	I _{ON} (2)	P7, PA, PB	20	// mA	3
Output current per pin	-I _{OP} (1)	P0, P1, P4, P5, P7, PA, PB	2	mA	4
	-I _{OP} (2)	P2, P3 (except for the P33/HOLD pin), P6, P8, P9 and PC	4	mA	4
	Σl _{ON} (1)	P2, P3 (except for the P33/HOLD pin), P4, P5, P6, P7 and P8	75	mA	3
Total pin aurrent	Σl _{ON} (2)	P0, P1, P9, PA, PB, PC	75	mA	3
Total pin current	–Σl _{OP} (1)	P2, P3 (except for the P33/HOLD pin), P4, P5, P6, P7 and P8	25	mA	4
	–Σl _{OP} (2)	P0, P1, P9, PA, PB, PC	25	mA	4
Allowable power dissipation	Pd max	Ta = -30 to +70°C: DIP64S (QIP64E)	600 (430)	mW	5
Operating temperature	Topr		-30 to +70	°C	
Storage temperature	Tstg		-55 to +125	°C	

- Note: 1. Applies to open drain output specification pins. The rating from the "other pin" entry applies for specifications other than the open drain output specification.
 - 2. Levels up to the free-running oscillation level are allowed for the oscillator input and output pins.
 - 3. Inflow current (For P8, the CMOS output specifications apply.)
 - 4. Outflow current (Applies to pull-up output specification and CMOS output specification pins except P8.)
 - We recommend using reflow soldering methods to mount the QFP package version.
 Contact your Sanyo sales representative to discuss process conditions if techniques in which the whole package is immersed in a solder bath (solder dip or spray techniques) are used.

Allowable Operating Ranges at $Ta = -30 \text{ to} + 70^{\circ}\text{C}$, $V_{SS} = 0 \text{ V}$, $V_{DD} = 3.0 \text{ to} 5.5 \text{ V}$ unless specified otherwise

Parameter	Symbol	Conditions	min	typ	max	Unit	Note
Operating supply voltage	N _{DD}	V _{DD}	3.0		5.5	V	
Memory retention supply voltage	V _{DD} (H)	V _{DD} . In hold mode	1.8		5.5	V	
	V _{IH} (1)	P2, P3 (except for the P33/HOLD pin), P6: With the output n-channel transistor off	0.8 V _{DD}		13.5	V	1
Input high level Voltage	V _{IH} (2)	P33/HOLD, P9, RES, OSC1: With the output n-channel transistor off	0.8 V _{DD}		V _{DD}	V	2
Input high level voltage	V _{IH} (3)	P0, P1, P4, P5, PC, PD, PE: With the output n-channel transistor off	0.75 V _{DD}		V _{DD}	٧	3
	V _{IH} (4)	PE: When three-state input is used	0.8 V _{DD}		V _{DD}	V	
Intermediate level input voltage	V _{IM}	PE: When three-state input is used	0.4 V _{DD}		0.6 V _{DD}	V	
	V _{CMM} (1)	PD0, PC2: When comparator input is used	1.5		V _{DD}	V	
Common-mode input voltage range	V _{CMM} (2)	PD1, PD2, PD3, PC3: When comparator input is used	V _{SS}		V _{DD} – 1.5	V	
	V _{JL} (1)	P2, P3 (except for the P33/HOLD pin), P6, P9, RES, OSC1:N-channel output, transistor off	V _{SS}		0.2 V _{DD}	V	2
	/ V _{IL} (2)	P33/ HOLD : V _{DD} = 1.8 to 5.5 V	V _{SS}		0.2 V _{DD}	V	
Low level input voltage	V _{IL} (3)	P0, P1, P4, P5, PC, PD, PE, TEST: N-channel output, transistor off	V _{SS}		0.25 V _{DD}	V	3
	V _{IL} (4)	PE: When three-state input is used	V _{SS}		0.2 V _{DD}	V	
Operating frequency (instruction cycle time)	fop (T _{CYC})		0.4 (10)		4.35 (0.92)	MHz (µs)	

Note: 1. Applies to open drain specification pins. However, the rating for V_{IH} (2) applies to the P33/HOLD pin. Ports P2, P3 and P6 cannot be used as input pins when CMOS output specifications are used.

- 2. Applies to open drain specification pins. P9, which has CMOS output specifications, can be used as input pins.
- 3. When PE is used as a three-value input, V_{IH} (4), V_{IM} and V_{IL} (4) apply. Port PC cannot be used as input pins when CMOS output specifications are used.

Continued from preceding page.

	Parameter	Symbol	Conditions	min	typ	max	Unit	Note	
[E	[External clock input conditions]								
	Frequency	f _{ext}	OSC1: See Figure 1. With the signal input to OSC1 and with OSC2 open (with external clock input selected for the oscillator circuit option)	0.4		4.35	MHz		
	Pulse width t _{extH} , t _{extL}		OSC1: See Figure 1. With the signal input to OSC1 and with OSC2 open (with external clock input selected for the oscillator circuit option)	100			an s		
	Rise and fall times	t _{extR} , t _{extF}	OSC1: See Figure 1. With the signal input to OSC1 and with OSC2 open (with external clock input selected for the oscillator circuit option)			30	ns		

Electrical Characteristics at Ta = -30 to $+70^{\circ}C$, $V_{SS} = 0$ V, $V_{DD} = 3.0$ to 5.5 V unless otherwise specified

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Parameter	Symbol	Conditions	min	typ	max	Unit	Note
Input high level current Input low level voltage P2, P3 (except for the P33/HOLD pin), P6, P8, P9, VDD - PC: Obt = Input low level voltage P0, P1, P4, P5, P7, PA, PB: IoH = ≠50 μA		I _{IH} (1)				5.0	μA	1
Input low level current Input some property Input some prope	Input high level current	I _{IH} (2)	(except for PD, PE, PC2 and PC3): V _{IN} = V _{DD} , N-channel output, transistor off			1.0	μA	1
Input low level current II_L (1) V_{IN} = V_{SS}, N-charinel output, transistor off -1.0 µA 2		I _{IH} (3)	N-channel output, transistor off	μΑ	1			
II L C PC2, PC3, PD, PE: VIN = VSS, N-channel output, transistor off	Input low lovel current	I _{IL} (1)	Inputs other than PD, PE, PC2, PC3: V _{IN} = V _{SS} , N-channel output, transistor off	-1.0			μΑ	2
VoH (1) PC: I _{OH} = -1 mA P2; P3 (except for the P33/HOLD pin), P6, P8, P9, VoD - 0.5 VoH (2) P0, P1, P4, P5, P7, PA, PB: I _{OH} = -50 μA VoD - 1.0 VoH (2) P0, P1, P4, P5, P7, PA, PB: I _{OH} = -30 μA VoD - 0.5 VoH (2) P0, P1, P4, P5, P7, PA, PB: I _{OH} = -30 μA VoD - 0.5 VoH (2) P0, P1, P4, P5, P7, PA, PB: I _{OH} = -30 μA VoD - 0.5 VoH (2) P0, P1, P2, P3, P4, P5, P6, P8, P9, PC (except for the P33/HOLD pin): I _{OL} = 1.6 mA VoH (2) P7, PA, PB: I _{OL} = 8 mA VoH (2) P7, PA, PB: I _{OL} = 8 mA VoH (2) P7, PA, PB: I _{OL} = 8 mA VoH (2) P2, P3, P6, P7, PA; Vi _N = 13.5 V Soh (except for P2, P3, P6, P7, P8 and PA): Vi _N = V _{DD} 1.0 μA 6 I _{OFF} (2) (except for P2, P3, P6, P7, P8 and PA): Vi _N = V _{DD} 1.0 μA 6 I _{OFF} (2) P01, P02, P03: Vi _N = V _{SS} to V _{DD} - 1.5 V ±50 ±300 mV V _{OFF} (2) P01, P02, P03: Vi _N = 1.5 V to V _{DD} ±50 ±300 mV V _{OFF} (2) P09: Vi _N = 1.5 V to V _{DD} 0.5 V _{DD} 0.5 V _{DD} V I _O = V _{OD} I _O = V _{OD} V I _O = V _{OD} I _O = V _{OD} V I _O = V _{OD} I _O = V _{OD} V I _O = V _{OD} I _O = V _{OD} V I _O = V _{OD} I _O = V _{OD} V I _O = V _{OD} I _O = V _{OD} V I _O = V _{OD} I _O = V _{OD} V I _O = V _{OD} I _O = V _{OD} V I _O = V _{OD} I _O = V _{OD} V I _O = V _{OD} I _O = V _{OD} I _O = V _{OD} V I _O = V _{OD} I _O = V _{OD} I _O = V _{OD} V I _O = V _{OD} I _O = V _{OD} I _O = V _{OD} V I _O = V _{OD} I _O = V _{OD}	Imput low level current	I _{IL} (2)		-1.0			μA	2
Output high level voltage Output high level voltage P2, P8 (except for the P33/HOLD pin), P6, P8, P9, O.5 PC' I _{OH} = -0.1 mA P0, P1, P4, P5, P7, PA, PB: I _{OH} = -50 μA V _{OH} (2) P0, P1, P4, P5, P7, PA, PB: I _{OH} = -30 μA Output pull-up current I _{PO} P0, P1, P4, P5, P7, PA, PB: I _{OH} = -30 μA V _{DD} - 0.5 Output low level voltage Vol. (1) P0, P1, P4, P5, P7, PA, PB: V _{IN} = V _{SS} , V _{DD} = 5.5 V -1.6 mA 4 P0, P1, P2, P3, P4, P5, P6, P8, P9, PC (except for the P33/HOLD pin): I _{OL} = 1.6 mA Vol. (2) P7, PA, PB: I _{OL} = 8 mA I _{OF} (1) P2, P3, P6, P7, P8 and PA): V _{IN} = 13.5 V I _{OF} (2) I _{OF} (3) P8: V _{IN} = V _{SS} -1.0 I _{OF} (3) P8: V _{IN} = V _{SS} -1.0 I _{OF} (3) P0, P1, P2, P3, P6, P7, P8 and PA): V _{IN} = V _{DD} -1.0 I _{OF} (3) P8: V _{IN} = V _{SS} -1.0 I _{OF} (4) PD1, PD2, PD3: V _{IN} = V _{SS} -1.0 I _{OF} (2) PD0; V _{IN} = 1.5 V to V _{DD} -1.5 V -1.6 I _{OF} (3) P3: V _{IN} = V _{SS} -1.0 I _{OF} (2) PD0; V _{IN} = 1.5 V to V _{DD} -1.5 V -1.0 I _O (1) V _{OF} (2) P2, P3, RES, P6, P9, OSC1, (RC, EXT) -1.0 I _O (1) V _O (2) P2, P3, RES, P6, P9, OSC1, (RC, EXT) -1.0 I _O (1) V _O (2) P2, P3, RES, P6, P9, OSC1, (RC, EXT) -1.0 I _O (1) V _O (2) P3 (1) V _O (3) P3 (1) V _O (4) V _O (5) V _O (6) P1, P4, P5, P7, PA, PB: I _{OH} = -30 μA V _O (7) V _O (8) V _O (8) V _O (9) V		\/ (1)		V _{DD} – 1.0			V	3
P0, P1, P4, P5, P7, PA, PB: I _{OH} = -50 μA V _{DD} - 1.0 V 4	Output high level valtege	VOH (1)					V	3
Output pull-up current Ipo P0, P1, P4, P5, P7, PA, PB: IoH = -30 μA VDD = 0.5 V	Output high level voltage	V (2)		V _{DD} – 1.0			W	4
Output low level voltage V _{OL} (1) P0, P1, P2, P3, P4, P5, P6, P8, P9, PC (except for the P33/HOLD pin): I _{OL} = 1.6 mA 0.4 V 5 Output low level voltage V _{OL} (2) P7, PA, PB: I _{OL} = 8 mA 1.5 V Output off leakage current I _{OFF} (1) P2, P3, P6, P7, P8: V _{IN} = 13.5 V 5.0 μA 6 Output off leakage current I _{OFF} (2) P2, P3, P6, P7, P8: V _{IN} = 13.5 V 5.0 μA 6 Comparator offset voltage V _{IN} = V _{SS} O V _{DD} - 1.5 V ±50 ±300 mV Comparator offset voltage V _{IN} = V _{SS} to V _{DD} - 1.5 V ±50 ±300 mV Estimate of the position of the po		VOH (2)	P0, P1, P4, P5, P7, PA, PB: I _{OH} = -30 μA	V _{DD} – 0.5			V	7
Output low level voltage VOL (1) (except for the P33/HOLD pin): I _{OL} = 1.6 mA 0.4 V 5 VOL (2) P7, PA, PB: I _{OL} = 8 mA 1.5 V Output off leakage current I _{OFF} (1) P2, P3, P6, P7, PA: V _{IN} = 13.5 V 5.0 μA 6 Output off leakage current I _{OFF} (2) (except for P2, P3, P6, P7, P8 and PA): V _{IN} = V _{DD} 1.0 μA 6 I _{OFF} (3) P8: V _{IN} = V _{SS} -1.0 μA 7 Comparator offset voltage V _{OFF} (1) PD1, PD2, PD3: V _{IN} = V _{SS} to V _{DD} - 1.5 V ±50 ±300 mV [Schmitt characteristics] Hysteresis voltage V _{HIS} V _I P2, P3, RES, P6, P9, OSC1, (RC, EXT) 0.5 V _{DD} 0.8 V _{DD} V Low level threshold voltage V _I H P2, P3, RES, P6, P9, OSC1, (RC, EXT) 0.5 V _{DD} 0.5 V _{DD} V [Ceramic oscillator] J _{CF} OSC1, OSC2: See Figure 2, 4 MHz 4.0 MHz	Output pull-up current	l _{PO}	P0, P1, P4, P5, P7, PA, PB: V _{IN} = V _{SS} , V _{DD} = 5.5 V	-1.6			mA	4
Vol (2) P7, PA, PB: I _{OL} = 8 mA 1.5 V	Output low level voltage	V _{OL} (1)				0.4	٧	5
Output off leakage current I _{OFF} (2) (except for P2, P3, P6, P7, P8 and PA): V _{IN} = V _{DD} 1.0 μA 6 I _{OFF} (3) P8: V _{IN} = V _{SS} -1.0 μA 7 Comparator offset voltage V _{OFF} (1) PD1, PD2, PD3: V _{IN} = V _{SS} to V _{DD} - 1.5 V ±50 ±300 mV [Schmitt characteristics] Hysteresis voltage V _{HIS} 0.1 V _{DD} V High level threshold voltage Vt H P2, P3, RES, P6, P9, OSC1, (RC, EXT) 0.5 V _{DD} 0.8 V _{DD} V [Ceramic oscillator] Oscillator frequency f _{CF} OSC1, OSC2: See Figure 2, 4 MHz 4.0 MHz		V _{OL} (2)	P7, PA, PB: I _{OL} = 8 mA			1.5	V	
OFF (3) P8: V _{IN} = V _{SS} -1.0 µA 7	11	I _{OFF} (1)	P2, P3, P6, P7, PA: V _{IN} = 13.5 V			5.0	μA	6
Comparator offset voltage	Output off leakage current	I _{OFF} (2)	(except for P2, P3, P6, P7, P8 and PA): V _{IN} = V _{DD}			1.0	μA	6
Vortice Vort		I _{OFF} (3)	P8: V _{IN} = V _S S	-1.0			μA	7
Voff (2) PD0; V _{IN} = 1.5 V to V _{DD} ±50 ±300 mV	Comparator offset voltage	V _{OFF} (1)	PD1, PD2, PD3: $V_{IN} = V_{SS}$ to $V_{DD} - 1.5 \text{ V}$		±50	±300	mV	
Hysteresis voltage	Comparator chock voltage	V _{OFF} (2)	PD0: V _{IN} = 1.5 V to V _{DD}		±50	±300	mV	
High level threshold voltage	[Schmitt characteristics]							
High level threshold voltage	Hysteresis voltage	V _{HIS}			0.1 V _{DD}		V	
[Ceramic oscillator] Oscillator frequency fCF OSC1, OSC2: See Figure 2, 4 MHz 4.0 MHz	High level threshold voltage		P2, P3, RES, P6, P9, OSC1, (RC, EXT)	0.5 V _{DD}		0.8 V _{DD}	V	
Oscillator frequency fCF OSC1, OSC2: See Figure 2, 4 MHz 4.0 MHz	Low level threshold voltage	Vt 🇷		0.2 V _{DD}		0.5 V _{DD}	V	
	[Ceramic oscillator]							
Oscillator stabilization time t _{CFS} See Figure 3, 4 MHz 10 ms	Oscillator frequency	fcF	OSC1, OSC2: See Figure 2, 4 MHz		4.0		MHz	
	Oscillator stabilization time	t _{CFS}	See Figure 3, 4 MHz			10	ms	

Note: 1. Common input and output ports with open-drain output specifications are specified for the state with the output N-channel transistor turned off.
These pins cannot be used for input when the CMOS output specification option is selected.

- Common input and output ports with open-drain output specifications are specified for the state with the output N-channel transistor turned off. Ratings for pull-up output specification pins are stipulated for the output pull-up current IPO. These pins cannot be used for input when the CMOS output specification option is selected.
- 3. Stipulated for CMQS output specifications with the output N-channel transistor in the off state. (This also applies to P8 when P-channel open drain is selected.)
- 4. Stipulated for pull-up output specifications with the output N-channel transistor in the off state.
- Stipulated for P8 with CMOS output specifications.
- 6. Stipulated for open drain output specifications with the output N-channel transistor in the off state.
- 7. Stipulated for open drain output specifications with the output P-channel transistor in the off state.

Continued from preceding page.

Param	neter	Symbol	Conditions	min	typ	max	Unit	Note		
[Serial clock]					_					
Cycle time	Input			0.9	100		μs			
Cycle time	Output	tckcy		2.0	//~	The state of the s	T _{CYC}			
Low level/high	Input	t _{CKL}	SCK0, SCK1: With the timing from Figure 4 and the test load from Figure 5	SCK0, SCK1: With the timing from Figure 4 and 0.4						
level pulse widths	Output	t _{CKH}	the test load from Figure 5	1.0		***************************************	T _{CYC}			
Rise/fall times	Output	t _{CKR} , t _{CKF}				0.1	μs	>		
[Serial input]							-//	ř		
Data setup time	Э	t _{ICK}	S10, SI1, SI0, SI1: With the timing in Figure 4. Stipulated with respect to the rising edge	0.3			μs			
Data hold time		t _{CKI}	for SCK0 and SCK1.	0.3			μs			
[Serial output]										
Output delay tir	me	^t cko	SO0, SO1: With the timing from Figure 5 and the test load from Figure 5. Stipulated with respect to the falling edge for SCK0 and SCK1.			0.3	μs			
Pulse input condition	ons]	•								
INT0 High and low le	evel pulse widths	t _{IOH} , t _{IOL}	INT0, See Figure 6: Conditions such that the INT0 interrupt is accepted Conditions such that timer 0 event counter and pulse width measurement inputs are accepted	2			T _{CYC}			
High and low lev	vel pulse widths for other than INT0	t _{I1H,} t _{I1L}	INT1, INT2, INT3, INT4, INT5, See Figure 6: Conditions such that all interrupts are accepted	2			T _{CYC}			
PIN1 High and low le	evel pulse widths	t _{PINH} , t _{PINL}	PIN1, See Figure 6: Conditions such that timer 1 event counter inputs are accepted	2			T _{CYC}			
RES High and low le	evel pulse widths	t _{RSH} , t _{RSL}	RES, See Figure 6: Conditions such that reset can occur	3			T _{CYC}			
Comparator respon	se speed	T _{RS}	PD, See Figure 7			20	ms			
			V _{DD} : 4 MHz ceramic oscillator		3.0	5.0	mA	8		
	perating mode current drain I _{DD} op		V _{DD} ; 4 MHz external clock		3.0	5.0	mA	0		
IALT mode current drain		l===	V _{DD} : 4 MHz ceramic oscillator		1.0	2.0	mA			
TIALT HIOUE CUITEIN	. urairi	IDDHALT	V _{DD} : 4 MHz external clock		1.0	2.0	mA			
Hold mode current	drain	IDDHOLD	V_{DD} : $V_{DD} = 1.8 \text{ to } 5.5 \text{ V}$		0.01	10	μΑ			

Note: 8. Reset state

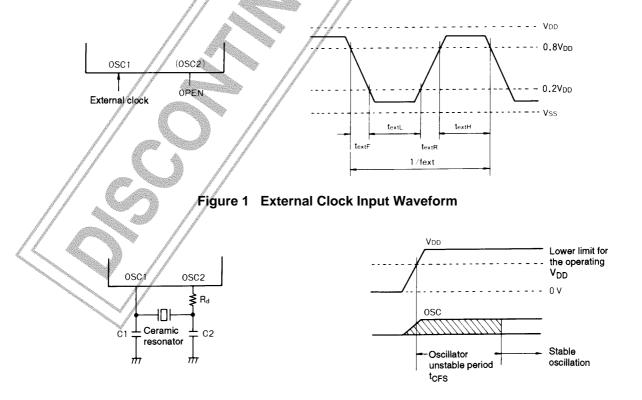


Figure 2 Ceramic Oscillator Circuit

Figure 3 Oscillator Stabilization Period

Table 1 Ceramic Oscillator Guaranteed Constants

External capacitance		C1 = 33 pF ± 10%		C1 = 33 pF ± 10%
	4 MHz (Murata Mfg. Co., Ltd.) CSA4.00MG	C1 = 33 pF ± 10%	4 MHz (Kyocera Corporation) KBR4.0 MS	C1 = 33 pF ± 10%
		$Rd = 0 \Omega$		$Rd = 0 \Omega$
Internal capacitance	4 MHz (Murata Mfg. Co., Ltd.) CST4.00MG		4 MHz (Kyocera Corporation) KBR4.0MES	

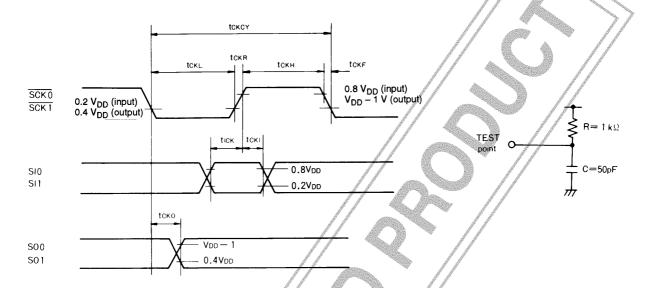


Figure 4 Serial I/O Timing

Figure 5 Timing Load

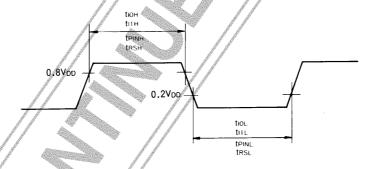


Figure 6 Input Timing for INT0, INT1, INT2, INT3, INT4, INT5, PIN1 and RES

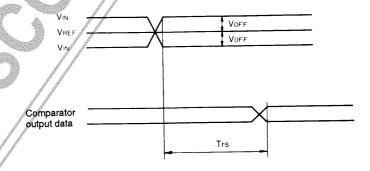
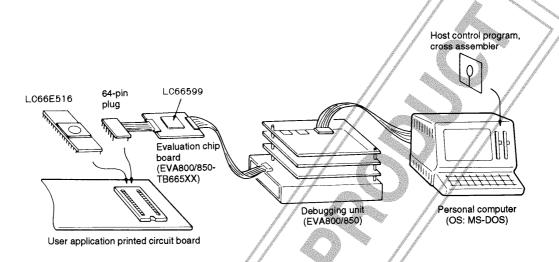



Figure 7 Comparator Response Speed Trs Timing

Application Development Tools

Programs for the LC66556B and LC66558B microprocessors are developed on an IBM-PC compatible personal computer running the MS-DOS operating system. A cross assembler and other tools are available. To make application development more convenient, Sanyo also provides a program debugging unit (EVA850/800), an evaluation board (EVA850/800-TB665XX), an evaluation chip (LC66599) and an on-chip EPROM microprocessor (LC66E516).

Structure of the Application Development Tools

- 1. Program debugging unit (EVA850/800)
 - This is an emulator that provides functions for EPROM writing and serial data communications with external equipment (such as a host computer). It supports application development in machine language and program modification. Its main debugging functions include breaking, stepping and tracing. (The MPM665XX is used for the EVA850/800 monitor ROM.)
- 2. Evaluation chip board (EVA800/850-TB665XX)

The evaluation chip signals and ports are output to the 64-pin connector and when the output cable is connected, the evaluation chip board converts these signals to the same pin assignments as those on the mass production chip. The evaluation chip board includes jumpers for setting options and other states and these jumper settings allow the evaluation chip to implement the same I/O circuit types and functions as the mass production chip. However, there are differences in the hold mode clear timing and the electrical characteristics.

Jumpers

Type	OSC //	Reset method	Power supply to the user application board			
Jumper Jui	imper 1 (J1)	Jumper 2 (J2:RES)		Jumper 3 (J3:V _{DD})		
I I I I I I I I I I I I I I I I I I I	nal oscillator nal clock) INT (a	Reset by a RUN instruction from the host computer.	ON (a)	V _{DD} is supplied to the user application printed circuit board through the evaluation chip board.		
RC RC osc	EXT (b	Reset by the reset circuit on the user application printed circuit board.	OFF (b)	Separate power supplies on the user application printed circuit board and the evaluation chip board		

Switches (SW1)

Туре		III F	Port 0, 1 a	dog timer presence or ce setting					
Switch		P0S		P1S		P8S	WDC		
Switch setting	ON	Port 0 high	ON	Port 1 high	ON	Port 8 high	ON	Watchdog timer present	
and mode	OFF	Port 0 low	OFF	Port 1 low	Port 8 low	OFF	Watchdog timer absent		

Note: Switches RC0 and RC1 must both be set to the on position.

Switches SW2 to SW14: Pull-up resistor option settings

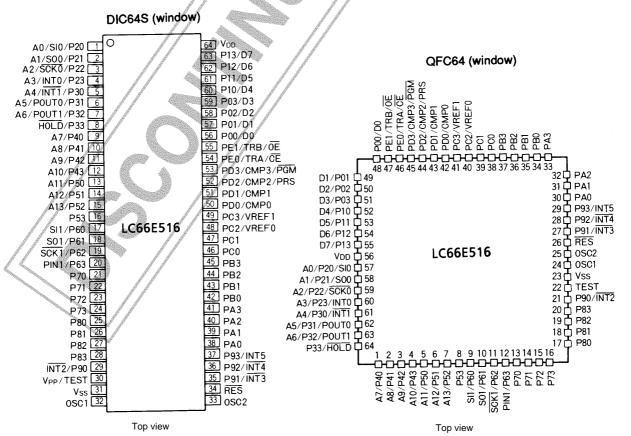
- 1. Set the corresponding switch to the on position for built-in pull-up resistors and set the switch to the off position for open drain output. (SW10 is used for the port 8 pull-down resistor setting.)
- 2. These settings can be specified for individual pins.
- 3. Cross assembler

Cross assembler (file name)	Object microprocessors	Limitations on program creation
		SB instruction limitations
	LC66562B/566B	LC66556B: SB0, SB1, SB2 and SB3 cannot be used.
LC66S. EXE	(LC66E516/P516)	LC66558B: SB0, SB1, SB2 and SB3 cannot be used
	(LC66599)	• LC66E516/P516: SB0, SB1, SB2 and SB3 can be used
		LC66599: \$B0, SB1, SB2 and SB3 can be used.

4. Simulation chip (See the LC66E516 individual product catalog for more details.)

The LC66E516 simulation chip is an on-chip EPROM microprocessor. Mounted configuration operation can be confirmed in the application product by using a dedicated conversion board (the W66E516DH for DIC products and the W66E516QH for QFP products) and writing programs with a commercial PROM writer.

• Form


The LC66E516 has a pin assignment and functions identical to those of the LC66556B and LC66558B. However, there are differences in the hold mode clear timing and the electrical characteristics. The figure below shows the pin assignment.

The figure below shows the pin assignment.

• Options

The options (the port 0, 1 and 8 levels at reset, the watchdog timer and the port output circuit types) for the microprocessor to be evaluated can be specified by EPROM data. This allows evaluation with the same peripheral circuits as those that will be used in the mass production product.

Pin Assignments

LC665XX Series Instruction Table (by function)

Abbreviations:

AC: Accumulator
E: E register
CF: Carry flag
ZF: Zero flag

HL: Data pointer DPH, DPL XY: Data pointer DPX, DPY

M: Data memory

M (HL): Data memory pointed to by the DPH, DPL data pointer

M (XY): Data memory pointed to by the DPX, DPY auxiliary data pointer

M2 (HL): Two words of data memory (starting on an even address) pointed to by the DPH, DPL data pointer

SP: Stack pointer

M2 (SP): Two words of data memory pointed to by the stack pointer M4 (SP): Four words of data memory pointed to by the stack pointer

in: n bits of immediate datat2: Bit specification

t2	11	10	01	00
Bit	2 ³	22	21	20

PCh: Bits 8 to 11 in the PC
PCm: Bits 4 to 7 in the PC
PCl: Bits 0 to 3 in the PC
Fn: User flag, n = 0 to 15

TIMER0: Timer 0
TIMER1: Timer 1
SIO: Serial register

P: Port

P (i4): Port indicated by 4 bits of immediate data

INT: Interrupt enable flag

(), []: Indicates the contents of a location

←: Transfer direction, result

∀: Exclusive or
∧: Logical and
∀: Logical or
+: Addition
-: Subtraction

—: Taking the one's complement

	Mnemonic	Instructi	on code D ₃ D ₂ D ₁ D ₀	mber of	Number of cycles	Operation	Description	Affected status	Note
			$D_3 D_2 D_1 D_0$	N Syte	S OLI			bits	
[Accumula	ator manipulation instru	ctions]			I	AC ← 0		7000	Has a vertical
CLA	Clear AC	1 0 0 0	0 0 0 0	1	1	(Equivalent to LAI 0.)	Clear AC.	ZF	skip function.
DAA	Decimal adjust AC in addition	1 1 0 0 0 0 1 0	1 1 1 1 0	2	2	AC ← (AC) + 6 (Equivalent to ADI 6.)	Add six to AC.	ZF	
DAS	Decimal adjust AC in subtraction	1 1 0 0 0 0 0 1 0	1 1 1 1 1 1 1 0 1 0	2	2	AC ← (AC) + 10 (Equivalent to ADI 0AH.)	Add 10 to AC.	ZF	
CLC	Clear CF	0 0 0 1	1 1 1 0	1	1	CF ← 0	Clear CF to 0.	CF	
STC	Set CF	0 0 0 1	1 1 1 1	1	1	CF ← 1	Set CF to 1.	CF	
CMA	Complement AC	0 0 0 1	1 0 0 0	1	1	$AC \leftarrow \overline{(AC)}$	Take the one's complement of AC.	ZF	
IA	Increment AC	0 0 0 1	0 1 0 0	1	1	AC ← (AC) + 1	Increment AC.	ZF, CF	
DA	Decrement AC	0 0 1 0	0 1 0 0	1	1	AC ← (AC) – 1	Decrement AC.	ZF, CF	
RAR	Rotate AC right through CF	0 0 0 1	0 0 0 0	1	1	$\begin{array}{l} AC_3 \leftarrow (CF), \\ ACn \leftarrow (ACn + 1), \\ CF \leftarrow (AC_0) \end{array}$	Shift AC (including CF) right.	CF	
RAL	Rotate AC left through CF	0 0 0 0	0 0 0 1	1	1	$AC_0 \leftarrow (CF)$, $ACn + 1 \leftarrow (ACn)$, $CF \leftarrow (AC_3)$	Shift AC (including CF) left.	CF, ZF	
TAE	Transfer AC to E	0 1 0 0	0 1 0 1	1	1	E←(AC)	Move the contents of AC to E.		
TEA	Transfer E to AC	0 1 0 0	0 1 1 0	1	1	AC ← (E)	Move the contents of E to AC.	ZF	
XAE	Exchange AC with E	0 1 0 0	0 1 0 0	1	1	(AC) ↔ (E)	Exchange the contents of AC and E.		
[Memory i	manipulation instructior	ns]							
IM	Increment M	0 0 0 1	0 0 1 0	1	1	M (HL) ← [M (HL)] + 1	Increment M (HL).	ZF, CF	
DM	Decrement M	0 0 1 0	0010	1	1	M (HL) ← [M (HL)] – 1	Decrement M (HL).	ZF, CF	
IMDR i8	Increment M direct	1 1 0 0 I ₇ I ₆ I ₅ I ₄	0 1 1 1 ₃ ₂ ₁ ₀	2	2	M (i8) ← [M (i8)] + 1	Increment M (i8).	ZF, CF	
DMDR i8	Decrement M direct	1 1 0 0 I ₇ I ₆ I ₅ I ₄	0 0 1 1	2	2	M (i8) ← [M (i8)] – 1	Decrement M (i8).	ZF, CF	
SMB t2	Set M data bit	0000	1 1 t ₁ t ₀	1	1	[M (HL), t2] ← 1	Set the bit in M (HL) specified by t0 and t1 to 1.		
RMB t2	Reset M data bit	0/0/1 0	1 1 t ₁ t ₀	1	1	[M (HL), t2] ← 0	Clear the bit in M (HL) specified by t0 and t1 to 0.	ZF	
[Arithmetic	c, logic and comparisor	instructions]	-	r	1	Y			
AD	Add M to AC	0 0 0 0	0 1 1 0	1/	1	AC ← (AC) + [M (HL)]	Add the contents of AC and M (HL) as two's complement values and store the result in AC.	ZF, CF	
ADDR i8	Add M direct to AC	1 1 0 0 I ₇ I ₆ I ₅ I ₄	1 0 0 1 I ₃ I ₂ I ₁ I ₀	2	2	AC ← (AC) + [M (i8)]	Add the contents of AC and M (i8) as two's complement values and store the result in AC.	ZF, CF	
ADC	Add M to AC with CF	0 0 0 0	0 0 1 0	1	1	AC ← (AC) + [M (HL)] + (CF)	Add the contents of AC, M (HL) and CF as two's complement values and store the result in AC.	ZF, CF	
ADI 14	Add immediate data to AC	1 1 0 0 0 0 1 0	1 1 1 1 I ₃ I ₂ I ₁ I ₀	2	2	$AC \leftarrow (AC) + l_3, l_2, l_1, l_0$	Add the contents of AC and the immediate data as two's complement values and store the result in AC.	ZF	
SUBC	Subtract AC from M with CF	0 0 0 1	0 1 1 1	1	1	AC ← [M (HL)] − (AC) − (CF)	Subtract the contents of AC and \overline{CF} from M (HL) as two's complement values and store the result in AC.	ZF, CF	CF will be zero in there was a borrow and one otherwise.
ANDA	And M with AC then store AC	0 0 0 0	0 1 1 1	1	1	AC ← (AC) ∧ [M (HL)]	Take the logical and of AC and M (HL) and store the result in AC.	ZF	
ORA	Or M with AC then store AC	0 0 0 0	0 1 0 1	1	1	$\begin{array}{l} AC \leftarrow (AC) \ \lor \\ [M \ (HL)] \end{array}$	Take the logical or of AC and M (HL) and store the result in AC.	ZF	

Continued from preceding page.

	Mnemonic		on code	Number of bytes	Number of cycles	Operation	Description	Affected status	Note
ΓΛ with me ati	a logic and comparison		D ₃ D ₂ D ₁ D ₀	N S	2 5			bits	
EXL	c, logic and comparison Exclusive or M with AC then store AC	0 0 0 1	0 1 0 1	1	1	$\begin{array}{c} AC \leftarrow (AC) \forall \\ [M \; (HL)] \end{array}$	Take the logical exclusive or of AC and M (HL) and store the result in AC	ZF	
ANDM	And M with AC then store M	0 0 0 0	0 0 1 1	1	1	M (HL) ← (AC) ∧ [M (HL)]	Take the logical and of AC and M (HL) and store the result in M (HL).	ZF	//
ORM	Or M with AC then store M	0 0 0 0	0 1 0 0	1	1	M (HL) ← (AC) ∨ [M (HL)]	Take the logical or of AC and M (HL) and store the result in M (HL).	ZF	
СМ	Compare AC with M	0 0 0 1	0 1 1 0	1	1	[M (HL)] + (AC) + 1	Compare the contents of AC and M (HL) and set or clear CF and ZF according to the result. Magnitude CF ZF [M (HL)] > (AC) 0 0 [M (HL)] = (AC) 1 1 [M (HL)] < (AC) 1 0	ZF, CF	
Cl i4	Compare AC with immediate data	1 1 0 0 1 0		2	2	13 12 11 10 + (AC) + 1	Compare the contents of AC and the immediate data $l_3 \ l_2 \ l_1 \ l_0$ and set or clear CF and ZF according to the result. Magnitude comparison CF ZF $l_3 \ l_2 \ l_1 \ l_0 > AC \qquad 0 \qquad 0$ $l_3 \ l_2 \ l_1 \ l_0 = AC \qquad 1 \qquad 1$ $l_3 \ l_2 \ l_1 \ l_0 < AC \qquad 1 \qquad 0$	ZF, CF	
CLI i4	Compare DP _L with immediate data	1 1 0 0 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	2	2	$ZF \leftarrow 1$ if $(DP_L) = l_3 l_2 l_1 l_0$ $ZF \leftarrow 0$ if $(DP_L) \neq l_3 l_2 l_1 l_0$	Compare the contents of DP _L with the immediate data. Set ZF if identical and clear ZF if not.	ZF	
CMB t2	Compare AC bit with M data bit	1 1 0 0 1	1 1 1 1 9 0 t ₁ t ₀	2	2	$ZF \neq 1$ if $(AC, 12) = [M (HL), 12]$ $ZF \leftarrow 0$ if $(AC, 12) \neq [M (HL), 12]$	Compare the corresponding bits specified by t0 and t1 in AC and M (HL). Set ZF if identical and clear ZF if not.	ZF	
[Load and	store instructions]								
LAE	Load AC and E from M2 (HL)	0 1 0 1	1 1 0 0		1	$AC \leftarrow M (HL),$ $E \leftarrow M (HL + 1)$	Load the contents of M2 (HL) into AC, E.		
LAI i4	Load AC with immediate data	1000	l ₃ l ₂ l ₁ l ₀	1	1	AC ← I ₃ I ₂ I ₁ I ₀	Load the immediate data into AC.	ZF	Has a vertical skip function
LADR i8	Load AC from M direct	1 1 0 0 I ₇ I ₆ I ₅ I ₄		2	2	AC ← [M (i8)]	Load the contents of M (i8) into AC.	ZF	
s	Store AC to M	0 1 0 0	11	1	1	M (HL) ← (AC)	Store the contents of AC into M (HL).		
SAE	Store AC and E to M2 (HL)	0 1 0 1	1 1 1 0	1	1	M (HL) ← (AC) M (HL + 1) ← (E)	Store the contents of AC, E into M2 (HL).		
LA reg	Load AC from M (reg)	0 1 0 0	1 0 t ₀ 0	1	1	AC ← [M (reg)]	Load the contents of M (reg) into AC. The reg is either HL or XY depending on t_0 .	ZF	

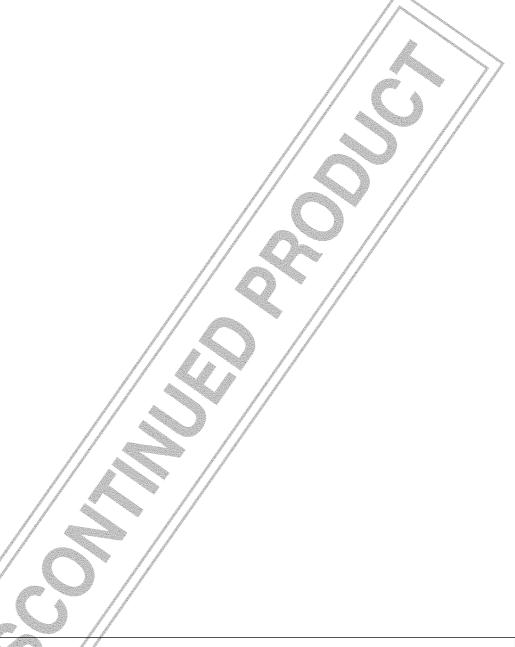
Continued from preceding page.

		Instructi	on code	er of	er of	0 "	2	Affected	
	Mnemonic	D ₇ D ₆ D ₅ D ₄	on code D ₃ D ₂ D ₁ D ₀	Numb bytes	Numb cycles	Operation	Description	status bits	Note
[Load and	store instructions]							illan.	
LA reg, I	Load AC from M (reg) then increment reg	0 1 0 0	1 0 t ₀ 1	1	2	$\begin{aligned} &AC \leftarrow [M\ (reg)] \\ &DP_L \leftarrow (DP_L) + 1 \\ ∨\ DP_Y \leftarrow (DP_Y) + 1 \end{aligned}$	Load the contents of M (reg) into AC. (The reg is either HL or XY.) Then increment the contents of either DP _L or DP _Y . The relationship between t ₀ and reg is the same as that for the LA reg instruction.	ZF	ZF is set according to the result of incrementing DP _L or DP _Y .
LA reg, D	Load AC from M (reg) then decrement reg	0 1 0 1	1 0 t ₀ 1	1	2	$\begin{array}{c} AC \leftarrow [M \ (reg)] \\ DP_L \leftarrow (DP_L) - 1 \\ or \ DP_Y \leftarrow (DP_Y) - 1 \end{array}$	Load the contents of M (reg) into AC. (The reg is either HL or XY.) Then decrement the contents of either DP _L or DP _Y . The relationship between t ₀ and reg is the same as that for the LA reg instruction.	ZF	ZF is set according to the result of decrementing DP _L or DP _Y .
XA reg	Exchange AC with M (reg)	0 1 0 0	1 1 t ₀ 0	1	1	(AC) ← [M (reg)]	Exchange the contents of M (reg) and AC. The reg is either HL or XY depending on to. reg to HL 0 XY 1		
XA reg, I	Exchange AC with M (reg) then increment reg	0 1 0 0	1 1 to 1	1	2	$(AC) \leftarrow [M \text{ (reg)}]$ $DP_L \leftarrow (DP_L) + 1$ $OP_Y \leftarrow (DP_Y) + 1$	Exchange the contents of M (reg) and AC. (The reg is either HL or XY.) Then increment the contents of either DP _L or DP _Y . The relationship between t ₀ and reg is the as that for the XA reg instruction.	ZF	ZF is set according to the result of incrementing DP _L or DP _Y .
XA reg, D	Exchange AC with M (reg) then decrement reg	0 1 0 1	1 1 10 1	1	2	$(AC) \leftarrow [M \text{ (reg)}]$ $DP_L \leftarrow (DP_L) - 1$ or $DP_Y \leftarrow (DP_Y) - 1$	Exchange the contents of M (reg) and AC. (The reg is either HL or XY.) Then decrement the contents of either DP $_{\rm L}$ or DP $_{\rm Y}$. The relationship between t $_{\rm 0}$ and reg is the as that for the XA reg instruction.	ZF	ZF is set according to the result of decrementing DP _L or DP _Y .
XADR i8	Exchange AC with M direct		1 0 0 0 l ₃ l ₂ l ₁ l ₀	2	2	(AC) ← [M (i8)]	Exchange the contents of AC and M (i8).		
LEAI i8	Load E & AC with immediate data	1 1 0 0	0 1 1 0 l ₃ l ₂ l ₁ l ₀	2	2	$E \leftarrow I_7 I_6 I_5 I_4$ $AC \leftarrow I_3 I_2 I_1 I_0$	Load the immediate data i8 into E, AC.		
RTBL	Read table data from program ROM	0 1 0 1	1 0 1 0	1	2	E, AC ← [ROM (PCh, E, AC)]	Load into E, AC the ROM data at the location determined by replacing the lower 8 bits of the PC with E, AC.		
RTBLP	Read table data from program ROM then output to P4, 5	0 1 0 1	1 0 0 0	1	2	Port 4, 5 ← [ROM (PCh, E, AC)]	Output from ports 4 and 5 the ROM data at the location determined by replacing the lower 8 bits of the PC with E, AC.		
Data poin	ter manipulation instru	ctions]			1	I			
LDZ 14	Load DP _H with zero and DP _L with immediate data respectively	0 1 1 0	l ₃ l ₂ l ₁ l ₀	1	1	$\begin{array}{c} DP_H \leftarrow 0 \\ DPL \leftarrow I_3 I_2 I_1 I_0 \end{array}$	Load zero into DP _H and the immediate data i4 into DP _L .		
LHI i4	Load DP _H with immediate data	1 1 0 0 0 0 0 0	0 - 0	2	2	$DP_H \leftarrow I_3 \; I_2 \; I_1 \; I_0$	Load the immediate data i4 into DP _H .		
LLI i4	Load DP _L with immediate data	1 1 0 0 0 0 1	0 2 1 0	2	2	$DP_L \leftarrow I_3I_2I_1I_0$	Load the immediate data i4 into DP _L .		
LHLI i8	Load DP _H , DP _L with immediate data		l ₃ l ₂ l ₁ l ₀	2	2	$\begin{array}{c} DP_H \leftarrow I_7 \; I_6 \; I_5 \; I_4 \\ DP_L \leftarrow I_3 \; I_2 \; I_1 \; I_0 \end{array}$	Load the immediate data into DL _H , DP _L .		
LXYI i8	Load DP _X , DP _Y with immediate data	1 1 0 0 I ₇ I ₆ I ₅ I ₄		2	2	$\begin{array}{c} DP_X \leftarrow I_7 I_6 I_5 I_4 \\ DP_Y \leftarrow I_3 I_2 I_1 I_0 \end{array}$	Load the immediate data into DL_X , DP_Y .		

Continued from preceding page.

	Magazia	Instructi	on code	er of	s of	Operation	Description	Affected	Note
	Mnemonic	D ₇ D ₆ D ₅ D ₄	on code D ₃ D ₂ D ₁ D ₀	Numb bytes	Numb cycles	Operation	Description	status bits	Note
[Data poin	nter manipulation instru							No. of Street, or other Persons	
IL	Increment DP _L	0 0 0 1	0 0 0 1	1	1	$DP_L \leftarrow (DP_L) + 1$	Increment the contents of DP _L .	ZF	
DL	Decrement DP _L	0 0 1 0	0 0 0 1	1	1	$DP_L \leftarrow (DP_L) - 1$	Decrement the contents of DP _L .	ŻF	77
IY	Increment DP _Y	0 0 0 1	0 0 1 1	1	1	$DP_Y \leftarrow (DP_Y) + 1$	Increment the contents of DP _Y .	ZF	//
DY	Decrement DP _Y	0 0 1 0	0 0 1 1	1	1	$DP_Y \leftarrow (DP_Y) - 1$	Decrement the contents of DP _Y	ZF	
TAH	Transfer AC to DP _H	1 1 0 0	1 1 1 1 0 0 0 0	2	2	DP _H ← (AC)	Transfer the contents of AC to DP _H .		
THA	Transfer DP _H to AC	1 1 0 0 1 1 1 0	1 1 1 1 0 0 0 0	2	2	$AC \leftarrow (DP_H)$	Transfer the contents of DP _H to AC.	ZF	
XAH	Exchange AC with DP _H	0 1 0 0	0 0 0 0	1	1	(AC) ↔ (DP _H)	Exchange the contents of AC and DP _H .		
TAL	Transfer AC to DP _L	1 1 0 0	1 1 1 1 0 0 0 1	2	2	DP _L ← (AC)	Transfer the contents of AC to DP _L .		
TLA	Transfer DP _L to AC	1 1 0 0 1 1 1 0	1 1 1 1 0 0 0 1	2	2	AC ← (ĎP _L)	Transfer the contents of DP _L to AC.	ZF	
XAL	Exchange AC with DP _L	0 1 0 0	0 0 0 1	1	1	$(AC) \leftrightarrow (DPL)$	Exchange the contents of AC and DP _L .		
TAX	Transfer AC to DP _X	1 1 0 0 1 1 1 1		2	2	$DP_X \leftarrow (AC)$	Transfer the contents of AC to DPx.		
TXA	Transfer DP _X to AC	1 1 0 0 1 1 1 0	1 1 1 1 0 0 1 0	2	2	$AC \leftarrow (DP_X)$	Transfer the contents of DP _X to AC.	ZF	
XAX	Exchange AC with DP _X	0 1 0 0	0 0 1 0	1	1	$(AC) \leftrightarrow (DPX)$	Exchange the contents of AC and DP _X .		
TAY	Transfer AC to DP _Y	1 1 0 0 1 1 1 1	3 //	2	2	DP _Y ← (AC)	Transfer the contents of AC to DP _Y .		
TYA	Transfer DP _Y to AC	1 1 0 0 1 1 1 0	1 1 1 1 0 0 1 1	2	2	AC ← (DPY)	Transfer the contents of DP _Y to AC.	ZF	
XAY	Exchange AC with DP _Y	0 1 0 0	0 0 1 1	1	1	(AC) ↔ (DP _Y)	Exchange the contents of AC and DP_Y .		
[Flag man	ipulation instructions]				18/7				
SFB n4	Set flag bit	0/1/1 1	n ₃ n ₂ n ₁ n ₀	1	1	Fn ← 1	Set the flag specified by n4 to 1.		
RFB n4	Reset flag bit	-	n ₃ n ₂ n ₁ n ₀	1	1/	Fn ← 0	Reset the flag specified by n4 to 0.	ZF	
[Jump and	d subroutine instruction	s]		//	f I				
JMP addr	Jump in the current bank	1 1 1 0 P ₇ P ₆ P ₅ P ₄	P ₁₁ P ₁₀ P ₉ P ₈ P ₃ P ₂ P ₁ P ₀	2	2	PC13, 12 \leftarrow PC13, 12 PC11 to 0 \leftarrow P ₁₁ to P ₀	Jump to the location in the same bank specified by the immediate data P12.		This becomes PC12 + (PC12) immediately following a BANK instruction.
JPEA	Jump to the address stored at E and AC in the current page	0 0 1 0	0 1 1 1	1	1	PC13 to 8 ← PC13 to 8, PC7 to 4 ← (E), PC3 to 0 ← (AC)	Jump to the location determined by replacing the lower 8 bits of the PC by E, AC.		
CALaddr	Call subroutine	0 1 0 1 P ₇ P ₆ P ₅ P ₄	0 P ₁₀ P ₉ P ₈ P ₃ P ₂ P ₁ P ₀	2	2	$\begin{array}{l} \text{PC13 to } 11 \leftarrow 0, \\ \text{PC10 to } 0 \leftarrow \\ \text{P}_{10} \text{ to } \text{P}_{0}, \\ \text{M4 (SP)} \leftarrow \\ (\text{CF, ZF, PC13 to 0)}, \\ \text{SP} \leftarrow (\text{SP)-4} \end{array}$	Call a subroutine.		
CZP addr	Call subroutine in the zero page	1 0 1 0	P ₃ P ₂ P ₁ P ₀	1	2	$\begin{array}{l} \text{PC13 to 6,} \\ \text{PC10} \leftarrow \text{0,} \\ \text{PC5 to 2} \leftarrow \text{P}_{3} \text{ to P}_{0}, \\ \text{M4 (SP)} \leftarrow \\ (\text{CF, ZF, PC12 to 0),} \\ \text{SP} \leftarrow \text{SP-4} \end{array}$	Call a subroutine on page 0 in bank 0.		
BANK	Change bank	0 0 0 1	1 0 1 1	1	1		Change the memory bank and register bank.		

Continued from preceding page.


	Mnemonic	Instructi	on code	Number of bytes	ber of	Operation	Description	Affected status	Note
		$D_7 D_6 D_5 D_4$	$D_3 D_2 D_1 D_0$	Nun byte	Sycia			bits	
PUSH reg	Push reg on M2 (SP)		1 1 1 1 1 i ₁ i ₀ 0	2	2	$\begin{array}{c} M2(SP) \leftarrow (reg) \\ SP \leftarrow (SP)\text{-}2 \end{array}$	Store the contents of reg in M2 (SP). Subtract 2 from SP after the store. Teg i ₁ i ₀ HL 0 0 XY 0 1 AE 1 0 Illegal 1 1		
POP reg	Pop reg off M2 (SP)	1 1 0 0 1 1 1 0	1 1 1 1 1 i ₁ i ₀ 0	2	2	$SP \leftarrow (SP) + 2$ $reg \leftarrow [M2 (SP)]$	Add 2 to SP and then load the contents of M2(SP) into reg. The relation between i1i0 and reg is the same as that for the PUSH reg instruction.		
RT	Return from subroutine	0 0 0 1	1 1 0 0	1	2	SP ← (SP) + 4 PC ← [M4 (SP)]	Return from a subroutine or interrupt handling routine. ZF and CF are not restored.		
RTI	Return from interrupt routine	0 0 0 1	1 1 0 1	1	2	SP ← (\$P) + 4 PC ← [M4 (\$P)] CF, ZF ← [M4 (\$P)]	Return from a subroutine or interrupt handling routine. ZF and CF are restored.	ZF, CF	
[Branch ir	nstructions]								
BAt2 addr	Branch on AC bit	1 1 0 1 P ₇ P ₆ P ₅ P ₄	0 0 t ₁ t ₀ P ₃ P ₂ P ₁ P ₀	2	2	PC7 to $0 \leftarrow$ $P_7 P_6 P_5 P_4$ $P_3 P_2 P_1 P_0$ if (AC, t2) = 1	Branch to the location in the same page specified by P_7 to P_0 if the bit in AC specified by the immediate data t_1 t_0 is 1.		
BNAt2 addr	Branch on no AC bit	1 0 0 1 P ₇ P ₆ P ₅ P ₄	0 0 t ₁ t ₀ P ₃ P ₂ P ₁ P ₀	2	2	PC7 to $0 \leftarrow$ $P_7 P_6 P_5 P_4$ $P_3 P_2 P_1 P_0$ if (AC, t2) = 0	Branch to the location in the same page specified by P_7 to P_0 if the bit in AC specified by the immediate data t_1 t_0 is 0.		
BMt2 addr	Branch on M bit	1 1 0 1 P ₇ P ₆ P ₅ P ₄	0 1 t ₁ t ₀ P ₃ P ₂ P ₁ P ₀	2	2	PC7 to 0 ← P ₇ P ₆ P ₅ P ₄ P ₃ P ₂ P ₁ P ₀ if [M (HL),t2] = 1	Branch to the location in the same page specified by P_7 to P_0 if the bit in M (HL) specified by the immediate data t_1 t_0 is 1.		
BNMt2 addr	Branch on no M bit	1 0 0 1 P ₇ P ₆ P ₅ P ₄	0 1 t ₁ t ₀ P ₃ P ₂ P ₁ P ₀	2	2	$\begin{array}{c} \text{PC7 to } 0 \leftarrow \\ \text{P}_7 \text{P}_6 \text{P}_5 \text{P}_4 \\ \text{P}_3 \text{P}_2 \text{P}_1 \text{P}_0 \\ \text{if [M (HL),t2]} \\ = 0 \end{array}$	Branch to the location in the same page specified by P_7 to P_0 if the bit in M (HL) specified by the immediate data t_1 t_0 is 0.		
BPt2 addr	Branch on Port bit	1 1 0 1 P ₇ P ₆ P ₅ P ₄	1 0 th to P ₃ P ₂ P ₁ P ₀	2	2	$PC7 \text{ to } 0 \leftarrow \\ P_7 P_6 P_5 P_4 \\ P_3 P_2 P_1 P_0 \\ \text{if } [P (DP_L), 12] \\ = 1$	Branch to the location in the same page specified by P_7 to P_0 if the bit in port (DP _L) specified by the immediate data t_1 t_0 is 1.		Internal control registers can also be tested by executing this instruction immediately after a BANK instruction. However, this is limited to registers that can be read out.
BNPt2 addr	Branch on no Port bit	1 0 0 1 P ₇ P ₆ P ₅ P ₄	1 0 t ₁ t ₀ P ₃ P ₂ P ₁ P ₀	2	2	PC7 to $0 \leftarrow$ P7 P6 P5 P4 P3 P2 P1 P0 if [P (DPL), t2] = 0	Branch to the location in the same page specified by P_7 to P_0 if the bit in port (DP _L) specified by the immediate data t_1 t_0 is 0.		Internal control registers can also be tested by executing this instruction immediately after a BANK instruction. However, this is limited to registers that can be read out.

Continued from preceding page.

	Mnemonic	Instructi	on code	ber of	ber of	Operation	Description	Affected status	Note
		D ₇ D ₆ D ₅ D ₄	D ₃ D ₂ D ₁ D ₀	Num byte	Number of cycles	.,		bits	
[Branch ir	nstructions]	Г	1		I	//_`			
BC addr	Branch on CF	1 1 0 1 P ₇ P ₆ P ₅ P ₄	1 1 0 0 P ₃ P ₂ P ₁ P ₀	2	2	PC7 to $0 \leftarrow P_7 P_6 P_5 P_4 P_3 P_2 P_1 P_0$ if (CF) = 1	Branch to the location in the same page specified by P ₇ to P ₀ if CF is 1		
BNC addr	Branch on no CF	1 0 0 1 P ₇ P ₆ P ₅ P ₄		2	2	PC7 to $0 \leftarrow P_7 P_6 P_5 P_4 P_3 P_2 P_1 P_0$ if (CF) = 0	Branch to the location in the same page specified by P ₇ to P ₀ if CF is 0.		
BZ addr	Branch on ZF	1 1 0 1 P ₇ P ₆ P ₅ P ₄	1 1 0 1 P ₃ P ₂ P ₁ P ₀	2	2	PC7 to $0 \leftarrow P_7 P_6 P_5 P_4 P_3 P_2 P_1 P_0$ if $(ZF) = 1$	Branch to the location in the same page specified by P ₇ to P ₀ if ZF is 1.		
BNZ addr	Branch on no ZF	1 0 0 1 P ₇ P ₆ P ₅ P ₄	1 1 0 1 P ₃ P ₂ P ₁ P ₀	2	2	PC7 to $0 \leftarrow P_7 P_6 P_5 P_4 P_3 P_2 P_1 P_0$ if (ZF) = 0	Branch to the location in the same page specified by P ₇ to P ₀ if ZF is 0.		
BFn4 addr	Branch on flag bit	1 1 1 1 P ₇ P ₆ P ₅ P ₄	n ₃ n ₂ n ₁ n ₀ P ₃ P ₂ P ₁ P ₀	2	2	PC7 to 0 ← P7 P6 P5 P4 P3 P2 P1 P0 if (Fn) = 1	Branch to the location in the same page specified by P_0 to P_7 if the flag (of the 16 user flags) specified by n_3 n_2 n_1 n_0 is 1.		
BNFn4 addr	Branch on no flag bit	1 0 1 1 P ₇ P ₆ P ₅ P ₄	n ₃ n ₂ n ₁ n ₀ P ₃ P ₂ P ₁ P ₀	2	2	PC7 to $0 \leftarrow P_7 P_6 P_5 P_4 P_3 P_2 P_1 P_0$ If (Fn) = 0	Branch to the location in the same page specified by P_0 to P_7 if the flag (of the 16 user flags) specified by $n_3 n_2 n_1 n_0$ is 0.		
[I/O instructions]						<u> </u>			
IP0	Input port 0 to AC	0 0 1 0	0 0 0 0	1	1	AC ← (P0)	Input the contents of port 0 to AC.	ZF	
IP	Input port to AC	0 0 1 0	0/1/10	1	1	$AC \leftarrow [P(DP_L)]$	Input the contents of port P (DP _L) to AC.	ZF	
IPM	Input port to M	0001	1001	-1	1	M (HL)← [P (DP _L)]	Input the contents of port P (DP _L) to M (HL).		
IPDR i4	Input port to AC direct	1 1 0 0	1 1 1 1 I ₃ I ₂ I ₁ I ₀	2	2	AQ ← [P (i4)]	Input the contents of P (i4) to AC.	ZF	
IP45	Input port 4, 5 to E, AC respectively	1 1 0 0		2	2	E ← [P (4)] AC ← [P (5)]	Input the contents of ports P (4) and P (5) to E and AC respectively.		
ОР	Output AC to port	0 0 1 0	0 1 0 1	1	/1	$P (DP_L) \leftarrow (AC)$	Output the contents of AC to port P (DP _L).		
ОРМ	Output M to port	0 0 0 1	1 0 1 0	1	1	$P \; (DP_L) \leftarrow [M \; (HL)]$	Output the contents of M (HL) to port P (DP _L).		
OPDR i4	Output AC to port direct	1 1 0 0 0 0 1 1 1	1 1 1 1 1 ₃ 1 ₂ 1 ₁ 1 ₀	2	2	P (i4) ← (AC)	Output the contents of AC to P (i4).		
OP45	Output E, AC to port 4, 5 respectively	1 1 0 0	1/1/11	2	2	P (4) ← (E) P (5) ← (AC)	Output the contents of E and AC to ports P (4) and P (5) respectively.		
SPB t2	Set port bit	0000	1 0 t ₁ t ₀	1	1	[P (DP _L), t2] ← 1	Set to one the bit in port P (DP _L) specified by the immediate data t ₁ t ₀ .		
RPB t2	Reset port bit	0 0 1 0	1 0 t ₁ t ₀	1	1	$[P (DP_L), t2] \leftarrow 0$	Clear to zero the bit in port P (DP _L) specified by the immediate data t ₁ t ₀ .	ZF	
ANDPDR i4, p4	And port with immediate data then output	1 1 0 0 I ₃ I ₂ I ₁ I ₀	0 1 0 1 P ₃ P ₂ P ₁ P ₀	2	2	$P (P_3 \text{ to } P_0) \leftarrow \\ [P (P_3 \text{ to } P_0)] \lor \\ I_3 \text{ to } I_0$	Take the logical and of P (P_3 to P_0) and the immediate data I_3 I_2 I_1 I_0 and output the result to P (P_3 to P_0).	ZF	
ORPDR i4, p4	Or port with immediate data then output	1 1 0 0 I ₃ I ₂ I ₁ I ₀	0 1 0 0 P ₃ P ₂ P ₁ P ₀	2	2	$P (P_3 \text{ to } P_0) \leftarrow \\ [P (P_3 \text{ to } P_0)] \lor \\ I_3 \text{ to } I_0$	Take the logical or of P (P ₃ to P ₀) and the immediate data $I_3 I_2 I_1 I_0$ and output the result to P (P ₃ to P ₀).	ZF	

Continued from preceding page.

Instruction code Description Descript										
WTTMU Write timer 0										
WTTM1										
RTIM0 Read timer 0	<i>₹</i>									
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$										
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$										
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$										
Stop timer 1										
MSET Set interrupt master enable flag										
MRESET Reset interrupt master enable flag	[Interrupt control instructions]									
EiH i4 Enable interrupt high 0 1 0 1 $\frac{1}{3}$ $\frac{1}{2}$ $\frac{1}{1}$ $\frac{1}{0}$ 2 2 EDIH \leftarrow (EDIH) \vee i4 to 1. EiL i4 Enable interrupt low 0 1 0 0 $\frac{1}{3}$ $\frac{1}{2}$ $\frac{1}{1}$ $\frac{1}{0}$ 2 2 EDIH \leftarrow (EDIL) \vee i4 to 1. DIH i4 Disable interrupt high 1 1 0 0 1 1 0 0 1 $\frac{1}{3}$ $\frac{1}{2}$ $\frac{1}{1}$ $\frac{1}{0}$ 2 2 EDIH \leftarrow (EDIH) \wedge i4 Clear the interrupt enable flag to 0. DIL i4 Disable interrupt low 1 1 0 0 1 1 0 1 0 1 0 0 0 0 0 0 0 0 0										
EiL i4										
DIL i4 Disable interrupt night 1 0 0 1 $\frac{1}{18} \frac{1}{12} \frac{1}{14} \frac{1}{10} \frac{1}{10$										
DIL i4 Disable interrupt low 1 0 0 0 13 12 14 10 2 2 EDIL ← (EDIL) ∧ i4 flag to 0. If age to 0. WTSP Write SP 1 1 0 0 1 1 1 1 1 1 0 1 0 1 0 2 2 SP ← (E), (AC) Transfer the contents of E, AC to SP. DSD Dead SP 1 1 0 0 1 1 1 1 1 0 0 0 1 1 1 1 1 0 0 0 1 1 1 1 1 0 0 0 0 1 1 1 1 1 0										
WTSP Write SP										
RSP Read SP 1 1 0 0 1 1 1 1 2 2 F AC (SP) Transfer the contents of SP										
RSP Read SP 1 1 0 1 1 2 2 F, AC ← (SP) to E, AC.										
[Standby control instructions]										
HALT HALT 1 1 0 0 1 1 1 1 1 2 2 HALT Enter halt mode.										
HOLD HOLD 1 1 0 0 1 1 1 1 2 2 HOLD Enter hold mode.										
[Serial I/O control instructions]										
STARTS Start Serial I O 1 1 0 0 1 1 1 1 0 2 2 START SI O Start SIO operation.										
WTSIO Write serial I O										
RSIO Read serial I O 0 1 1 1 1 1 2 2 E, AC ← (SIO) Read the contents of SIO into E, AC.										
[Other instructions]										
NOP No operation 0 0 0 0 0 0 1 1 No operation Consume one machine cycle without performing any operation.										
SB i2 Select bank 1 1 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	ruction									

- No products described or contained herein are intended for use in surgical implants, life-support systems, aerospace equipment, nuclear power control systems, vehicles, disaster/crime-prevention equipment and the like, the failure of which may directly or indirectly cause injury, death or property loss.
- Anyone purchasing any products described or contained herein for an above-mentioned use shall:
 - D Accept full responsibility and indemnify and defend SANYO ELECTRIC CO., LTD., its affiliates, subsidiaries and distributors and all their officers and employees, jointly and severally, against any and all claims and litigation and all damages, cost and expenses associated with such use:
 - ② Not impose any responsibility for any fault or negligence which may be cited in any such claim or litigation on SANYO ELECTRIC CO., LTD., its affiliates, subsidiaries and distributors or any of their officers and employees jointly or severally.
- Information (including circuit diagrams and circuit parameters) herein is for example only; it is not guaranteed for volume production. SANYO believes information herein is accurate and reliable, but no guarantees are made or implied regarding its use or any infringements of intellectual property rights or other rights of third parties.

This catalog provides information as of March, 1995. Specifications and information herein are subject to change without notice.