CMOS LSI

Preliminary

Overview

The LC86P4448 is a CMOS 8-bit single chip microcontroller with one-time PROM for the LC864400 series. This microcontroller has the same function and the pin description as the LC864400 series mask ROM version, and the 48K-byte PROM. It is suitable for developing programs.

Package Dimensions

unit : mm

3071-DIP64S

Features

- Option switching by PROM data The option function of the LC864400 series can be specified by the PROM data. The functions of the trial pieces can be evaluated using the mass production board.
- (2) Internal PROM capacity : 49152 bytes
- (3) Internal RAM capacity : 384 bytes

Mask ROM version	PROM capacity	RAM capacity
LC864448	49152 bytes	384 bytes
LC864444	45056 bytes	384 bytes
LC864440	40960 bytes	384 bytes
LC864436	36864 bytes	384 bytes
LC864432	32768 bytes	384 bytes
LC864428	28672 bytes	384 bytes
LC864424	24576 bytes	384 bytes
LC864420	20480 bytes	384 bytes

- (4) Operating supply voltage : 4.5 V to 5.5 V
- (5) Instruction cycle time : $0.99 \ \mu s$ to $366 \ \mu s$
- (6) Operating temperature : -30° C to $+70^{\circ}$ C
- (7) The pin and package compatible with the LC864400 series mask ROM devices
- (8) Applicable mask ROM version : LC864448/LC864444/LC864440/LC864436/LC864432
 - LC864428/LC864424/LC864420

(9) Factory shipment

: DIP64S

SANYO Electric Co., Ltd. Semiconductor Bussiness Headquarters TOKYO OFFICE Tokyo Bldg., 1-10, 1 Chome, Ueno, Taito-ku, TOKYO, 110-8534 JAPAN

Usage Notes

The LC86P4448 is proveded for the first release and small shipping of the LC864400 series. At using, take notice of the followings.

(1) Differences between the LC86P4448 and the LC864400 series

Item	LC86P4448	LC864448/44/40/36/32/28/24/20
Operation after reset releasing	The option is specified by degrees until 3 ms after going to a 'H' level to the reset terminal. The program is executed from 00H of the program counter.	The program is executed from 00H of the program counter immediately after going to a 'H' level to the reset terminal.
Operating supply voltage range (V _{DD})	4.5 V to 5.5 V	2.7 V to 5.5 V
Power dissipation	Refer to 'electrical characteristics' on the semico	nductor news.

The LC86P4448 uses 256 bytes addressed on FF00H to FFFFH in the program memory as the option configuration data area. All options of the LC864400 series can be specified.

(2) Option

The option data is written with the option specifying program "SU86K.EXE". The option data is linked to the program area by the linkage loader "L86K.EXE".

(3) ROM space

0000H

LC864424

LC864420

The LC86P4448 and LC864400 series use 256 bytes addressed on FF00H to FFFFH in the program memory as the option specified data area. The program memory capacity of this series is, at most, 49152 bytes addressed on 0000H to BFFFH.

How to Use

(1) Create a programming data for LC86P4448

Programming data for EPROM of the LC86P4448 is required.

Debugged evaluation file (EVA file) must be converted to an INTEL-HEX formatted file (HEX file) with the file converter program EVA2HEX.EXE. The HEX file is used as the programming data for the LC86P4448.

(2) How to program for the PROM

The LC86P4448 can be programmed by the EPROM programmer with attachment W86EP4448D.

• Recommended EPROM programmer

Manufacturer	EPROM programmer
Advantest	R4945, R4944, R4943
Andou	AF-9704
AVAL	PKW-1100, PKW-3000
Minato electronics	MODEL1890A

• "27010 (Vpp = 12.5 V) Intel high speed programming" mode should be adopted. The address must be set to 13FFFH" and the jumper (DASEC) must be set to 'OFF' at programming.

(3) How to use the data security function

"Data security" is the function to disable the EPROM data from being read out.

The following is the process in order to execute data security function.

1. Set the jumper of attachment 'ON'.

2. Program again. The EPROM programmer will display an error. The error means that the data security functions normally. It is not trouble of the EPROM programmer or the LSI.

Notes

- Data security is not executed when the data of all addresses have 'FF' at procedure 2 above.
- Data security cannot be executed by programming the sequential operation "BLANK=>PROGRAM=>VERIFY" at procedure 2 above.
- Set the jumper to 'OFF' after executing the data security.

Pin Assignment

	Γ			1		
P10/SO0	Ц	1	\bigcirc	64	þ	P07
P11/SI0/SB0	Ц	2		63	þ	P06
P12/SCK0	þ	3		62	þ	P05
P13	Ц	4		61	þ	P04
P14	q	5		60	þ	P03
P15	q	6		59	þ	P02
P16	q	7		58	þ	P01
P17/PWM	q	8		57	þ	P00
XT1	q	9		56	þ	P25
XT2	q	10		55	þ	P24
DVSS	þ	11		54	þ	P23
CF1	þ	12		53	þ	P22
CF2	þ	13		52	þ	P21
DVDD	þ	14		51	þ	P20
P90/AN0	þ	15		50	þ	P73/INT3/TOIN
P91/AN1	þ	16		49	þ	P72/INT2/T0IN
P92/AN2	þ	17		48	þ	P71/INT1
P93/AN3	q	18		47	þ	P70/INT0
P94/AN4	Ę	19		46	þ	PWM9
P95/AN5	q	20		45	þ	PWM8
P96/AN6	q	21		44	þ	PWM7
P97/AN7	q	22		43	þ	PWM6
RES	q	23		42	þ	PWM5
LC1	q	24		41	þ	PWM4
LC2	q	25		40	þ	PWM3
FILT	q	26		39	þ	PWM2
AVDD	q	27		38	þ	PWM1
AVSS	q	28		37		PWMO
CVIN	q	29		36	þ	BL
VS	q	30		35	þ	В
HS	q	31		34	þ	G
I	þ	32		33		R

Top view

System Block Diagram

Pin Description

- Port option can be specified by bit units.
- At port 0, 'Pull-up resistor provided' when specifying CMOS output. 'Pull-up resistor not provided' when specifying N-ch open drain output.
- At port 1 and 2, 'Programmable pull-up resistor provided' when specifying either CMOS or N-ch open drain output.

Pin Description Table

Pin name	Pin No.	I/O	Function description	Option	PROM mode
DVSS	11	_	Negative power supply for digital circuit		
XT1	9	Ι	Input pin for the crystal oscillation		
XT2	10	0	Output pin for the crystal oscillation		
CF1	12	Ι	Input terminal for ceramic resonator		
CF2	13	0	Output terminal for ceramic resonator		
DVDD	14	_	Positive power supply for digital circuit		
RES	23	Ι	Reset terminal		
LC1	24	Ι	LC oscillation circuit input terminal		
LC2	25	0	LC oscillation circuit output terminal		
FILT	26	0	Filter terminal for PLL		
AVDD	27	_	Positive power supply for analog circuit		
AVSS	28	_	Negative power supply for analog circuit		
CVIN	29	Ι	Video signal input terminal		
VS	30	Ι	Vertical synchronization signal input terminal		
HS	31	Ι	Horizontal synchronization signal input terminal		
Ι	32	0	Image intensity output		
R	33	0	Red (R) output terminal of RGB image output		A4 (*1)
G	34	0	Green (G) output terminal of RGB image output		A5 (*1)
В	35	0	Blue (B) output terminal of RGB image output		A6 (*1)
BL	36	0	Fast blanking control signal Switch TV image signal and caption/ OSD image signal		A7 (*1)
PWM0 to PWM9	37 to 46	0	PWM0 to 9 output terminal 15 V withstand		PWM 0 to 8 : A8 to A16 (*1) PWM 9 : "L" fixed
Port 0 P00 to P07	57 to 64	I/O	8-bit Input/output port Input/output can be specified in nibble units HOLD release input Interrupt input	Pull-up resistor Provided/not provided (in bit units) Output Format CMOS/Nch-OD (in bit units)	
Port 1 P10 to P17	1 to 8	I/O	8-bit Input/output port Input/output can be specified in bit units. Other function	Output Format CMOS/Nch-OD (in bit units)	D0 to D7 (*2)
			P10SIO0 data outputP11SIO0 data input /bus input/outputP12SIO0 clock input/outputP17Timer 1 (PWM) output		
Port 2 P20 to P25	51 to 56	I/O	6-bit Input/output port Input/output can be specified in bit units.	Output Format CMOS/Nch-OD (in bit units)	

LC86P4448

Pin name	Pin No.	I/O		Fund	tion descrip	tion	Or	otion		PROM mode
Port 7 P70 P71 to P73	47 48 to 50	I/O I	Other fur P70 P71 P72 P73	Other function P70 NT0 input/HOLD release input/Nch- transistor output for watchdog timer P71 INT1 input/HOLD release input P72 INT2 input/timer 0 event input				sistor ed s)	P71 : P72 :	VPP (*3) DASEC (*4) OE (*5) CE (*6)
			INT0 INT1 INT2 INT3	Rise enable enable enable enable	Fall enable enable enable enable	Rise/Fall disable disable enable enable	H level enable enable disable disable	L level enable enable disable disable	Vector 03H 0BH 13H 1BH	-
Port 9 P90 to P97	15 to 22	I	8-bit inpu Other fur AD cor	nction	t port (8 line	s)			P90 t	o P93 : A0 to A3 (*1)

*1 An \rightarrow Address input

*2 Data I/O

*3 Power for programming

*4 Memory select input/output for data security

*5 Output Enable input

*6 Chip Enable input

• Port state during reset

Terminal	I/O	Pull-up resistor status at selecting pull-up option
Port 0	Input	Pull-up resistor OFF, ON after reset release
Port 1, 2	Input	Programmable pull-up resistor OFF
Port 7	Input	Fixed pull-up resistor provided

* AVDD and AVSS are the power supply terminals for the analog operation block. DVDD and DVSS are the power supply terminals for the digital operation block. Connect them like the following figure to reduce the mutual noise influence.

Specifications

1. Absolute Maximum Ratings at Ta = 25°C, V_{SS} = 0 V

Parar	meter	Symbol	Pins	Conditions			Ratin	igs	Unit
					V _{DD} [V]	min	typ	max	
Supply v	oltage	V _{DD} max	DVDD, AVDD	DVDD = AVDD		-0.3		+7.0	Unit V mA mW
Input vol	nput voltage V _I (1)		• P71, 72, 73 • Port 9 • RES, HS, VS, CVIN			-0.3		V _{DD} +0.3	
Output N	voltage	V₀(1)	R, G, B, BL, I, FILT			-0.3		V _{DD} +0.3	
		V ₀ (2)	PWM0 to PWM9			-0.3		+15	
Input/out voltage	tput	V ₁₀ (1)	Ports 0, 1, 2, P70			-0.3		V _{DD} +0.3	
High- Peak level output output current	I _{ОРН} (1)	Ports 0, 1, 2	 Pull-up MOS transistor output At each pin 		-2			mA	
current	rrent	I _{ОРН} (2)	Ports 0, 1, 2	• CMOS output • At each pin		-4			
	I _{ОРН} (3)	R, G, B, BL, I	• CMOS output • At each pin		-5			-	
	Total	ΣI _{OAH} (1)	Port 1	The total of all pins		-10			
	output	$\Sigma I_{OAH}(2)$	Ports 0, 2	The total of all pins		-10			
	current	ΣI_{OAH} (3)	R, G, B, BL, I	The total of all pins		-15			
Low-	Peak	Iopl (1)	Ports 0, 1, 2	At each pin				20	
level	output	I _{OPL} (2)	P70	At each pin				30	
output current	current	I _{OPL} (3)	• R, G, B, BL, I • PWM0 to PWM9	At each pin				5	
	Total	$\Sigma I_{OAL}(1)$	Port 0, 2	The total of all pins				40	
	output current	ΣI_{OAL} (2)	Port 1, P70	The total of all pins				40	
	Current	Σ I _{OAL} (3)	R, G, B, BL, I	The total of all pins				15	
		$\Sigma I_{OAL}(4)$	PWM0 to PWM9	The total of all pins				30	
Maximur dissipatio	-	Pd max	DIP64S	Ta = −30 to +70°C				720	mW
Operatin temperat range	•	Topr				-30		+70	°C
Storage temperat range	ture	Tstg				-55		+125	

* DVSS and AVSS must be supplied the same voltage, V_{SS} . DVDD and AVDD must be supplied the same voltage, V_{DD} .

2.	Recommended	Operating	Range at 7	$\Gamma a = -30^{\circ}C$ to	$+70^{\circ}C, V_{SS} = 0 V$
----	-------------	-----------	------------	------------------------------	------------------------------

Parameter	Symbol	Pins	Conditions			Ratings		Unit
				V _{DD} [V]	min	typ	max	
Operating supply	$V_{DD}(1)$	DVDD, AVDD	0.97 μs ≤ tCYC ≤ 1.02 μs		4.5		5.5	V
voltage range	V _{DD} (2)		$0.97~\mu s \leq tCYC \leq 400~\mu s$		4.5		5.5	
Hold voltage	V_{HD}	DVDD, AVDD	RAMs and the registers hold data at HOLD mode.		2.0		5.5	
Input	V⊪(1)	Port 0 (Schmitt)	Output disable	4.5 to 5.5	0.6 V _{DD}		VDD	
high-level voltage	V⊪(2)	•Ports 1, 2 (Schmitt) •P72, 73 •HS, VS	Output disable	4.5 to 5.5	0.75 V _{DD}		VDD	
	V⊪(3)	P70 port input / interrupt P71 RES (Schmitt)	Output N-channel transistor OFF	4.5 to 5.5	0.75 V _{DD}		V _{DD}	
	V⊪(4)	P70 Watchdog timer input	Output N-channel transistor OFF	4.5 to 5.5	V _{DD} -0.5		V _{DD}	
	V⊪(5)	Port 9 port input		4.5 to 5.5	0.7 V _{DD}		V _{DD}	
Input low-level	V⊫(1)	Port 0 (Schmitt)	Output disable	4.5 to 5.5	Vss		0.2 V _{DD}	
voltage	V _{IL} (2)	•Porst 1, 2 (Schmitt) •P72, 73 •HS, VS •Port 9	Output disable	4.5 to 5.5	Vss		0.25 V _{DD}	
	V _{IL} (3)	P70 port input / interrupt P71 RES (Schmitt)	N-channel transistor OFF	4.5 to 5.5	V _{SS}		0.25 V _{DD}	
	Vı∟(4)	P70 Watchdog timer input	N-channel transistor OFF	4.5 to 5.5	Vss		0.6 V _{DD}	
	Vı∟(5)	Port 9 port input		4.5 to 5.5	Vss		0.3 V _{DD}	
CVIN input amplitude	VCVIN	CVIN		5.0	1Vp-p–3dB	1Vp-p	1Vp-p+3dB	Vp-p
Operation	tCYC(1)		OSD function	4.5 to 5.5	0.97	1	1.02	μs
cycle time	tCYC(2)		Except OSD function	4.5 to 5.5	0.97		400	

* Vp-p : Peak-to-peak voltage

Parameter	Symbol	Pins	Conditions			Rating	gs	Unit
				VDD [V]	min	typ	max	
Oscillation frequency range (Note 1)	FmCF(1)	CF1, CF2	12 MHz (ceramic resonator oscillation) Refer to Figure 1.	4.5 to 5.5	11.76	12	12.24	MHz
	FmCF(2)		12.08 MHz (ceramic resonator oscillation) Refer to Figure 1.	4.5 to 5.5	11.84	12.08	12.32	
	FmLC	LC1, LC2	14.11 MHz (LC oscillation) Refer to Figure 2.	4.5 to 5.5		14.11		
	FmRC		RC oscillation	4.5 to 5.5	0.4	0.8	3.0	
	FsXtal	XT1, XT2	32.768 kHz (crystal resonator oscillation) Refer to Figure 3.	4.5 to 5.5		32.768		kHz
Oscillation stable time period	tmsCF(1)	CF1, CF2	12 MHz (ceramic resonator oscillation) Refer to Figure 4.	4.5 to 5.5		0.02	0.2	ms
(Note 2)	tmsCF(2)		12 MHz (ceramic resonator oscillation) Refer to Figure 4.	4.5 to 5.5		0.02	0.2	
	tssXtal	XT1, XT2	32.768 kHz (crystal resonator oscillation) Refer to Figure 4.	4.5 to 5.5		1.0	5.0	S

(Note 1) Refer to tables 1, 2 and 3 for oscillation constant.

(Note 2) The oscillation stable time period refers to the time it takes to oscillate stably after the following conditions.

1. Applying the first supply voltage.

Release of the HOLD mode.
 Release of the stopping of the main-clock oscillation. (Refer to Figure 4)

3. Electrical Characteristics at Ta = $-30^{\circ}C$ to $+70^{\circ}C$, V_{SS} = 0 V

Parameter	Symbol	Pins	Conditions			Ratings		Unit
				VDD [V]	min	typ	max	
Input high-level current	l⊩(1)	• Ports 1, 2 • Port 0 without pull-up MOS transistor	 Output disable Pull-up MOS transistor OFF V_{IN} = V_{DD} (including the off-leak current of the output transistor) 	4.5 to 5.5			1	μA
	l⊪(2)	Port 7 without pull-up MOS transistor Port 9 RES HS, VS	V _{IN} = V _{DD}	4.5 to 5.5			1	
Input Iow-Ievel current	lı∟(1)	• Ports 1, 2 • Port 0 without pull-up MOS transistor	 Output disable Pull-up MOS transistor OFF V_{IN} = V_{SS} (including the off-leak current of the output transistor) 	4.5 to 5.5	-1			
	lı∟(2)	Port 7 without pull-up MOS transistor Port 9	VIN = VSS	4.5 to 5.5	-1			
	I _{IL} (3)	• RES • HS, VS	VIN = VSS	4.5 to 5.5	-1			
Output high-level voltage	Vон(1)	CMOS output of ports 0, 1, 2	I _{OH} = −1.0 mA	4.5 to 5.5	VDD-1			V
	Vон(2)	R, G, B, BL, I	I _{ОН} = -0.1 mA	4.5 to 5.5	V _{DD} -0.5			
Output low-level	V₀∟(1)	Ports 0, 1, 2	I _{OL} = 10 mA	4.5 to 5.5			1.5	
voltage	V _{OL} (2)	Ports 0, 1, 2	 I_{OL} = 1.6 mA The total current of the ports 0, 1 is 40 mA or less. 	4.5 to 5.5			0.4	
	V _{OL} (3)	• R, G, B, BL, I • PWM0 to PWM9	 I_{OL} = 3.0 mA The current of any unmeasured pin is 3 mA or less. 	4.5 to 5.5			0.4	
	Vo∟(4)	P70	I _{OL} = 1 mA	4.5 to 5.5			0.4	
Pull-up MOS transistor resistance	Rpu	• Ports 0, 1, 2 • Port 7	V _{OH} = 0.9V _{DD}	4.5 to 5.5	13	38	80	kΩ
Output off-leakage current	IOFF	PWM0 to PWM9	V _{OUT} = 13.5 V	4.5 to 5.5			5	μA
Hysteresis voltage	V _{HIS}	• Ports 0, 1, 2 • Port 7 • RES • HS, VS	Output disable	4.5 to 5.5		0.1V _{DD}		V

Parameter	Symbol	Pins	Conditions		Ratings			Unit
				VDD [V]	min	typ	max	
Input clamp voltage	VCLMP	CVIN		5.0	2.3	2.5	2.7	V
Pin capacitance	CP	All pins	• f = 1 MHz • Unmeasured terminals for the input are set to V _{SS} level. • Ta = 25°C	4.5 to 5.5		10		рF

4. Serial Input/Output Characteristics at Ta = $-30^\circ C$ to $+70^\circ C$, V_{SS} = 0 V

F	Parameter		Symbol	Pins	Conditions			Ratings	3	Unit
						V _{DD} [V]	min	typ	max	
		Cycle	tCKCY(1)	• SCK0	Refer to Figure 6.	4.5 to 5.5	2			tCYC
	Input clock	Low- level pulse width	tCKL(1)	•SCLK0			1			
Serial clock		High- Ievel pulse width	tCKH(1)				1			
ena		Cycle	tCKCY(2)	• SCK0 • SCLK0	• Use a pull-up resistor	4.5 to 5.5	2			
S	Output clock	Low- level pulse width	tCKL(2)		drain output	(1 kΩ) when open drain output • Refer to Figure 6.			1/2tCKCY	
	B High- tCKHi level pulse width	tCKH(2)					1/2tCKCY			
nput	Dat time	a set-up e	tICK	• SI0	Data set-up to SCK0 rising	4.5 to 5.5	0.1			μs
Serial input	Dat time	a hold Ə	tCKI	-	• Data hold from SCK0 rising • Refer to Figure 6.		0.1			
output	Output del time (External ty serial cloc		tCKO(1)	• SO0	 Use a pull-up resistor (1 kΩ) when open drain output. Data set-up to SCK0 	4.5 to 5.5			7/12tCYC +0.2	
Serial (ਲੋਂ time (Inte	put delay e ernal al clock)	tCKO(2)		falling • Data hold from SCK0 falling • Refer to Figure 6.	4.5 to 5.5			1/3tCYC +0.2	

5. Pulse Input Conditions at Ta = -30° C to $+70^{\circ}$ C,	$V_{SS} = 0 V$
---	----------------

Parameter	Symbol	Pins	Conditions	Conditions		Ratings		
				V _{DD} [V]	min	typ	max	
High/low level pulse width	tPIH(1) tPIL(1)	•INT0, INT1 •INT2/T0IN	 Interrupt acceptable Timer0-countable 	4.5 to 5.5	1			tCYC
	tPIH(2) tPIL(2)	INT3/T0IN (The noise rejection clock is set to 1/1)	Interrupt acceptable Timer0-countable	4.5 to 5.5	2			
	tPIH(3) tPIL(3)	INT3/T0IN (The noise rejection clock is set to 1/16)	Interrupt acceptable Timer0-countable	4.5 to 5.5	32			
	tPIL(4)	RES	Reset acceptable	4.5 to 5.5	200			μs
	tPIH(5) tPIL(5)	HS, VS	Display position controllable Each active edge of HS, VS must be more than 1tCYC. Refer to Figure 8.	4.5 to 5.5	10			tCYC
Rising/falling time	tTHL tTLH	HS	Refer to Figure 8.	4.5 to 5.5			500	ns
Horizontal pull-in range	FH	ĦS	The monitor point in Figure 11 is 1/2 V _{DD} .	4.5 to 5.5	15.23	15.73	16.23	kHz

6. A/D Converter Characteristics at $Ta=-30\,^{\circ}C$ to +70 $^{\circ}C,~V_{SS}=0~V$

Parameter	Symbol Pins		Conditions		Ratings			Unit
				V _{DD} [V]	min	typ	max	
Resolution				4.5 to 5.5		5		bit
Absolute precision			(Note 3)	4.5 to 5.5		±1/4	±3/4	LSB
Conversion time	tCAD	From Vref selection to when the result is produced	1 bit conversion time = 2tCYC	4.5 to 5.5		2		μs
Reference current	I _{REF}		(Regulate the ladder resistor)	4.5 to 5.5		1.0	2.0	mA
Analog input voltage range	V_{AIN}	AN0 to AN7		4.5 to 5.5	V _{SS}		VDD	V
Analog port input	I _{AINH}		$V_{AIN} = V_{DD}$	4.5 to 5.5			1	μA
current	I _{AINL}		V _{AIN} = V _{SS}	4.5 to 5.5	-1			

(Note 3) Absolute precision excepts quantizing error ($\pm 1/2$ LSB).

7. Current Drain Characteristics at $Ta=-30\,^{\circ}\mathrm{C}$ to +70 $^{\circ}\mathrm{C}$, $~V_{SS}$ = 0 V

Parameter	Symbol	Pins	Conditions		Ratings			Unit
					min typ max			
Current drain during basic operation (Note 4)	Iddop(1)	DVDD, AVDD	 FmCF = 12 MHz or FmCF = 12.08 MHz when ceramic resonator oscillation FsXtal = 32.768 kHz when crystal oscillation FmLC = 14.11 MHz LC oscillation System clock : CF oscillation Internal RC oscillation stops 	4.5 to 5.5		25	38	mA
	IDDOP(2)		 FmCF = 0 Hz (when oscillation stops) FmLC = 0 Hz (when oscillation stops) FsXtal = 32.768 kHz when crystal oscillation System clock : LC oscillation Internal RC oscillation stops 	4.5 to 5.5		8	16	
Current drain in HALT mode (Note 4)	Iddhalt (1)	DVDD, AVDD	 HALT mode FmCF = 12 MHz or FmCF = 12.08 MHz when ceramic resonator oscillation FmLC = 0 Hz (when oscillation stops) FsXtal = 32.768 kHz when crystal oscillation System clock : CF oscillation Internal RC oscillation stops. 	4.5 to 5.5		5	10	mA
	Iddhalt (2)	DVDD, AVDD	 HALT mode FmCF = 0 Hz (when oscillation stops) FmLC = 0 Hz (when oscillation stops) FsXtal = 32.768 kHz when crystal oscillation System clock : Internal RC 	4.5 to 5.5		400	1600	μA
	Iddhalt (3)	DVDD, AVDD	 FmCF = 0 Hz (when oscillation stops) FmLC = 0 Hz (when oscillation stops) FsXtal = 32.768 kHz when crystal oscillation System clock : LC oscillation Internal RC oscillation stops 	4.5 to 5.5		25	100	
Current drain in HOLD mode (Note 4)	Iddhold	DVDD, AVDD	•HOLD mode •All oscillation stops.	4.5 to 5.5		0.05	30	μA

(Note 4) The currents of the output transistors and the pull-up MOS transistors are ignored.

Oscillation types	Manufacturer	Oscillator	C1	C2	
12 MHz ceramic resonator	Murata	CSA12.0MTZ	33 pF	33 pF	
oscillation		CST12.0MTW	on c	hip	
	Kyocera	KBR-12.0M	33 pF	33 pF	
12 MHz ceramic resonator	Murata	CSA12.0MTZ021	33 pF	33 pF	
oscillation		CST12.0MTW021	on c	hip	
	Kyocera	KBR-12.08M	33 pF	33 pF	

* Both C1 and C2 must use K rank $(\pm 10\%)$ and SL characteristics.

Table 1. Ceramic Resonator Oscillation Guaranteed Constant (main-clock)

Oscillation types	L	СЗ	C4
14.11 MHz LC oscillation	4.7 μH	33 pF	45 pF (Trimmer)
	4.7 μH±10%	33 pH	33 pH
	(Variable)		

* See Figures 11 and 12.

Table 2. LC oscillation Guaranteed Constant (OSD clock)

Oscillation types	Manufacturer	Oscillator	C5	C6	Rd
32.768 MHz crystal oscillation	Seiko Epson	C-002RX	10 pF	10 pF	0 kΩ

* Both C5 and C6 must use a J rank $(\pm 5\%)$ and CH characteristics.

For applications which do not require accurate oscillation, use K rank $(\pm 10\%)$ with SL characteristics.

Table 3. Crystal Oscillation Guaranteed Constant (sub-clock)

(Notes) • Since the circuit pattern affects the oscillation frequency, place the oscillation-related parts as close to the oscillation

- pins as possible with the shortest possible pattern length.
- If you use other oscillators herein, we provide no guarantee for the characteristics.
- Adjust the voltage of monitor point in Figure 11 to $1/2V_{DD}\pm 10\%$ by the LC oscillation constant 'L' or 'C' to lock the PLL circuit.

main clock
Figure 1 Ceramic Resonator Oscillation

main clock
Figure 3 Crystal Resonator Oscillation

OSD clock
Figure 2 LC Resonator Oscillation

Figure 4 Oscillation Stable Time

Figure 5 Reset Circuit

Figure 6 Serial Input/output Test Condition

Figure 7 Pulse Input Timing Condition - 1

(a) In case of active low

(b) In case of active high

Figure 8 Pulse Input Timing Condition - 2

Figure 9 Recommended Interface Circuit

Figure 10 CVIN Recommended Circuit

Figure 11 FILT Recommended Circuit

(Note) • Place the parts connected FILT terminal as close to the FILT as possible with the shortest pattern length on the board.

Figure 12 FILT-LC Oscillation Frequency(1)

Figure 13 FILT-LC Oscillation Frequency(2)

Requirements Prior to Mounting

Notes on Handling

- The construction of one-time microcontrollers in which the PROM is not programmed precludes Sanyo from fully testing them before they are shipped. The screening procedure described below is recommended in order to attain higher reliability after programming the PROM.
- The nature of one-time microcontrollers in which the PROM is not programmed precludes us from fully testing them by writing all of the bits. Therefore, it is not possible for us to guarantee a write yield of 100%.
- Storage in moisture-proof packaging (unopened)
 While they are still in the moisture-proof packaging, these devices should be stored at a temperature of 30°C and a humidity of no more than 70%.
- After opening the moisture-proof packaging

These devices should be mounted and soldered as soon as possible after the moisture-proof packaging is opened. Once the moisture-proof packaging is opened, the devices should be stored at a temperature of 30°C and a humidity of no more than 70% for no more than 96 hours.

a. In the case of models that are programmed by the user (models that are shipped with the PROM not programmed)

b. Requirements prior to mounting for models that are programmed by Sanyo (models that are shipped with the PROM already programmed)

- No products described or contained herein are intended for use in surgical implants, life-support systems, aerospace equipment, nuclear power control systems, vehicles, disaster/crime-prevention equipment and the like, the failure of which may directly or indirectly cause injury, death or property loss.
 - Anyone purchasing any products described or contained herein for an above-mentioned use shall:
 - ① Accept full responsibility and indemnify and defend SANYO ELECTRIC CO., LTD., its affiliates, subsidiaries and distributors and all their officers and employees, jointly and severally, against any and all claims and litigation and all damages, cost and expenses associated with such use
 - (2) Not impose any responsibility for any fault or negligence which may be cited in any such claim or litigation on SANYO ELECTRIC CO., LTD., its affiliates, subsidiaries and distributors or any of their officers and employees jointly or severally.
- Information (including circuit diagrams and circuit parameters) herein is for example only; it is not guaranteed for volume production. SANYO believes information herein is accurate and reliable, but no guarantees are made or implied regarding its use or any infringements of intellectual property rights or other rights of third parties.

This catalog provides information as of February, 1998. Specifications and information herein are subject to change without notice.