

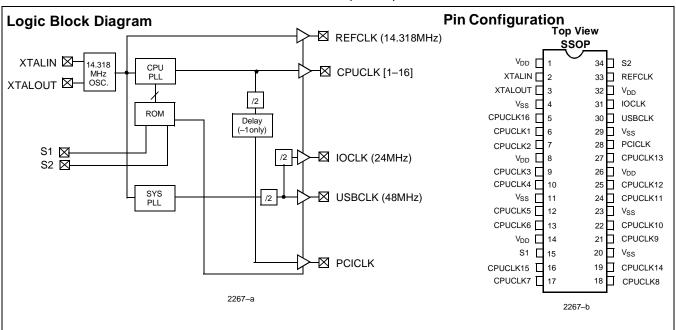
Pentium®, Pentium® Pro, and Cyrix® 6x86 Compatible Clock Synthesizer/Driver

Features

- Complete clock solution to meet requirements of Pentium®, Pentium® Pro, or Cyrix® 6x86 motherboards including dual-processor and SDRAM designs
 - Sixteen CPU clock outputs, up to 66.66 MHz (see Function Table)
 - One synchronous PCI clock output
 - One USB clock at 48 MHz, meets Intel's accuracy, jitter, as well as rise and fall time requirements
 - One I/O clock at 24 MHz
 - One Ref. clock at 14.318 MHz
- Two dedicated, independent Frequency Select inputs (internal pull-up) ease system design, enable in-system frequency changes, and support OE control
- Low CPU clock jitter ≤ 200 ps cycle-to-cycle
- · Low skew outputs
 - —≤ 250 ps between CPU clocks
 - 1ns-3ns skew between CPU and PCI clocks for compatibility with SiS 55XX as well as Intel 82430TX, 82430HX, and 82430VX chipsets (CY2267-1)
- · Improved output drivers are designed for low EMI
- Meets Pentium and Pentium Pro power-up stabilization requirements
- 3.3V operation, 5V tolerant inputs
- Available in space-saving 34-pin SSOP package

Functional Description

The CY2267 is a low-cost Clock Synthesizer/Driver chip for a Pentium, Pentium Pro, or Cyrix 6x86-based motherboard.


The CY2267 outputs sixteen CPU clocks, twelve of which can be used to support up to three SDRAM modules. The PCI clock output can be buffered with an external, low-cost Zero Delay Buffer (CY2305/9), thus providing a complete solution for 82430TX desktop systems.

The CPU clocks of the CY2267 have less than 200 ps cycle-to-cycle jitter. Both the CPU and PCI clocks have a slew rate of greater than 1V/ns. The USB clock meets Intel's accuracy, jitter, and rise and fall time requirements.

All CPU clocks support fast clock stabilization on power-up (< 2 ms). Additionally, two dedicated Frequency Select inputs are used for Output Enable control and setting the CPU clock output frequencies.

The CY2267 clock outputs are designed for low EMI emissions. Controlled rise and fall times, unique output driver circuits, and innovative circuit layout techniques enable the CY2267 to have lower EMI than clock devices from other manufacturers. Please refer to the application note "Layout and Termination Techniques for Cypress Clock Generators" for more information on recommended system layout techniques.

The CY2267 accepts a 14.318 MHz reference crystal or clock as its input and runs off a 3.3V supply. The CY2267 is available in a space-saving, low-cost 34-pin SSOP package and is pin-compatible with the CY2264 and CY2265.

Intel and Pentium are registered trademarks of Intel Corporation. Cyrix is a registered trademark of Cyrix Corporation.

Pin Summary

Pin	Description
1	Voltage supply
2	Reference crystal input
3	Reference crystal feedback
4	Ground
5	CPU clock output
6	CPU clock output
7	CPU clock output
8	Voltage supply
9	CPU clock output
10	CPU clock output
11	Ground
12	CPU clock output
13	CPU clock output
14	Voltage supply
15	CPU clock select input, bit 1 (internal pull-up resistor to V _{DD})
16	CPU clock output
17	CPU clock output
18	CPU clock output
19	CPU clock output
20	Ground
21	CPU clock output
22	CPU clock output
23	Ground
24	CPU clock output
25	CPU clock output
26	Voltage supply
27	CPU clock output
28	PCI clock output
29	Ground
30	USB clock output, 48 MHz
31	I/O clock output, 24 MHz
32	Voltage supply
33	Reference clock output (14.318 MHz) for ISA slots (drives C _{LOAD} = 45 pF)
34	CPU clock select input, bit 2 (internal pull-up resistor to V _{DD})
	1 2 3 4 5 6 6 7 8 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 33

Notes:

^{1.} For best accuracy, use a parallel-resonant crystal, C_{LOAD} = 17 pF.

Function Table

S2	S1	XTALIN	CPUCLK[1-16]	PCICLK	REFCLK	USBCLK	IOCLK
0	0	14.318 MHz	Hi-Z	Hi-Z	Hi-Z	Hi-Z	Hi-Z
0	1	14.318 MHz	66.67 MHz	33.33 MHz	14.318 MHz	48 MHz	24 MHz
1	0	14.318 MHz	50.0 MHz	25.0 MHz	14.318 MHz	48 MHz	24 MHz
1	1	14.318 MHz	60.0 MHz	30.0 MHz	14.318 MHz	48 MHz	24 MHz

Actual Clock Frequency Values

Clock Output	Target Frequency (MHz)	Actual Frequency (MHz)	PPM
CPUCLK	50.0	49.93	-1399
CPUCLK	66.67	66.56	-1597
CPUCLK	60.0	60.0	0
USBCLK ^[2]	48.0	48.008	167
IOCLK	24.0	24.004	167

Notes:

CPU and PCI Clock Driver Strengths

- Matched impedances on both rising and falling edges on the output drivers
- Output impedance: 25Ω (typical) measured at 1.5V.

Maximum Ratings

(Above which the useful life may be impaired. For user guidelines, not tested.)

Operating Conditions^[3]

Parameter	Description		Max.	Unit	
V_{DD}	Supply Voltage	3.135	3.6	V	
T _A	Operating Temperature, Ambient	0	70	°C	
CL	Max. Capacitive Load on CPUCLK PCICLK USBCLK IOCLK REFCLK		30 30 20 20 45	pF	
f _(REF)	Reference Frequency, Oscillator Nominal Value	14.318	14.318	MHz	

Note:

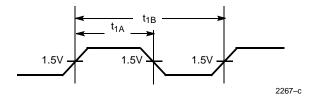
^{2.} Meets Intel USB clock requirements.

 $^{{\}it 3.} \quad {\it Electrical parameters are guaranteed with these operating conditions.}$

Electrical Characteristics $V_{DD} = 3.135V$ to 3.6V, $T_A = 0$ °C to +70°C

Parameter	Description	Test Conditions			Min.	Max.	Unit
V _{IH}	High-level Input Voltage	Except Crystal Inputs			2.0		V
V _{IL}	Low-level Input Voltage	Except Crystal In	puts			0.8	V
V _{OH}	High-level Output Voltage	$V_{DD} = V_{DD} Min.$	I _{OH} = 12 mA	CPUCLK	2.4		V
			I _{OH} = 12 mA	PCICLK			
			I _{OH} = 8 mA	USBCLK			
			I _{OH} = 8 mA	IOCLK			
			I _{OH} = 12 mA	REFCLK			
V _{OL}	Low-level Output Voltage	$V_{DD} = V_{DD} Min.$	I _{OL} = 12 mA	CPUCLK		0.4	V
			I _{OL} = 12 mA	PCICLK			
			I _{OL} = 8 mA	USBCLK			
			I _{OL} = 8 mA	IOCLK			
			I _{OL} = 12 mA	REFCLK			
I _{IH}	Input High Current	$V_{IH} = V_{DD}$	•	•		10	μΑ
I _{IL}	Input Low Current	$V_{IL} = 0V$	$V_{IL} = 0V$			100	μΑ
I _{OZ}	Output Leakage Current	Three-state			-10	+10	μΑ
I _{DD}	Power Supply Current	V_{DD} = 3.6V, V_{IN} = 0 or V_{DD} , Loaded Outputs, CPU clocks = 66.67 MHz				180	mA
I _{DD}	Power Supply Current	$V_{DD} = 3.6V, V_{IN} =$	= 0 or V _{DD} , Unload	ded Outputs		120	mA

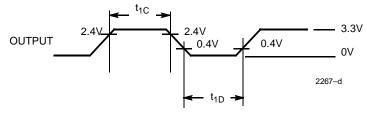
Switching Characteristics^[4]

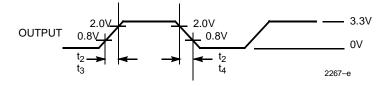

Parameter	Output	Description	Test Conditions	Min.	Тур.	Max.	Unit
t ₁	All	Output Duty Cycle ^[5]	$t_1 = t_{1A} \div t_{1B}$	45	50	55	%
t _{1C}	CPUCLK	CPU Clock HIGH Time	Measured at 2.4V, 66.67 MHz	5.0			ns
t _{1C}	PCICLK	PCI Clock HIGH Time ^[6]	Measured at 2.4V, 33.33 MHz	12.0			ns
t _{1D}	CPUCLK	CPU Clock LOW Time	Measured at 0.4V, 66.67 MHz	5.0			ns
t _{1D}	PCICLK	PCI Clock LOW Time ^[6]	Measured at 0.4V, 33.33 MHz	12.0			ns
t ₂	CPUCLK	CPU Clock Rising and Falling Edge Rate	Measured between 0.8V and 2.0V	1.0		4.0	V/ns
t ₂	PCICLK	PCI Clock Rising and Falling Edge Rate	Measured between 0.8V and 2.0V	1.0		4.0	V/ns
t ₂	REFCLK	Reference Clock Rising and Falling Edge Rate	Measured between 0.8V and 2.0V	0.5			V/ns
t ₃	CPUCLK	CPU Clock Rise Time	Measured between 0.8V and 2.0V	0.3		1.2	ns
t ₃	USBCLK, IOCLK	USB Clock and I/O Clock Rise Time	Measured between 0.8V and 2.0V			1.2	ns
t ₄	CPUCLK	CPU Clock Fall Time	Measured between 2.0V and 0.8V	0.3		1.2	ns
t ₄	USBCLK, IOCLK	USB Clock and I/O Clock Fall Time	Measured between 2.0V and 0.8V			1.2	ns
t ₅	CPUCLK	CPU-CPU Clock Skew	Measured at 1.5V		100	250	ps
t ₆	CPUCLK, PCICLK	CPU-PCI Clock Skew (CY2267-1)	Measured at 1.5V	1.0	2.0	3.0	ns
t ₇	CPUCLK	Cycle-Cycle Clock Jitter	CPU Clock jitter			200	ps
t ₇	USBCLK, IOCLK, PCICLK	Cycle-Cycle Clock Jitter	USB Clock, I/O Clock, and PCI Clock jitter			500	ps
t ₈	CPUCLK	Power-up Time	CPU clock stabilization from power-up			2	ms
t ₈	PCICLK	Power-up Time	PCI clock stabilization from power-up			2	ms

Notes:

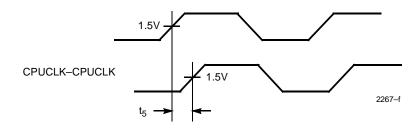
- All parameters specified with loaded outputs.
 Duty cycle is measured at 1.5V.
 A LOW and HIGH time of 12 ns corresponds to a PCICLK frequency of 33.33 MHz. For PCICLK frequencies of 30 MHz and 25 MHz, the LOW and HIGH times are each respectively 13.33 ns and 16 ns.

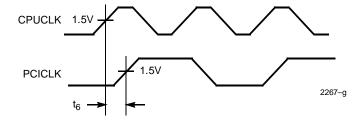
Switching Waveforms


Duty Cycle Timing



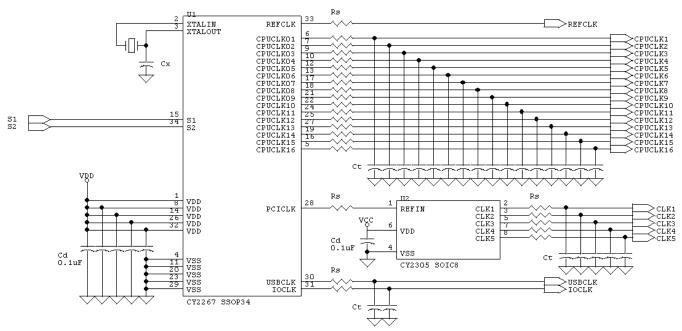
Switching Waveforms (continued)


CPUCLK Outputs HIGH/LOW Time


All Outputs Rise/Fall Time

Clock Skew

CPU-PCI Clock Skew



Application Information

Clock traces must be terminated with either series or parallel termination, as they are normally done.

The Application Circuit is shown below.

Application Circuit

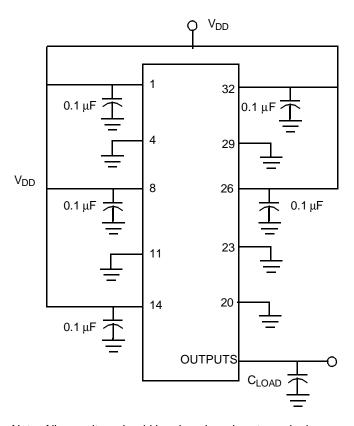
Cd = DECOUPLING CAPACITORS

Ct = OPTIONAL EMI-REDUCING CAPACITORS

Cx = OPTIONAL LOAD MATCHING CAPACITOR

Rs = SERIES TERMINATING RESISTORS

Summary


- A parallel-resonant crystal should be used as the reference to the clock generator. The operating frequency and C_{LOAD} of
 this crystal should be as specified in the data sheet. Optional trimming capacitors may be needed if a crystal with a different
 C_{LOAD} is used. Footprints must be laid out for flexibility.
- Surface mount, low-ESR, ceramic capacitors should be used for filtering. Typically, these capacitors have a value of 0.1 μF.
 In some cases, smaller value capacitors may be required.
- The value of the series terminating resistor satisfies the following equation, where R_{trace} is the loaded characteristic impedance
 of the trace, R_{out} is the output impedance of the clock generator (specified in the data sheet), and R_{series} is the series terminating
 resistor.

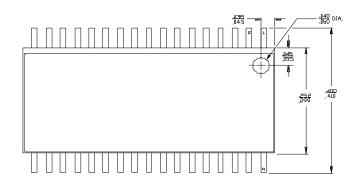
$$R_{\text{series}} \ge R_{\text{trace}} - R_{\text{out}}$$

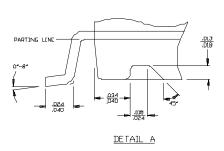
- Footprints must be laid out for optional EMI-reducing capacitors, which should be placed as close to the terminating resistor as is physically possible. Typical values of these capacitors range from 4.7 pF to 22 pF.
- A Ferrite Bead may be used to isolate the Board V_{DD} from the clock generator V_{DD} island. Ensure that the Ferrite Bead offers greater than 50Ω impedance at the clock frequency, under loaded DC conditions. Please refer to the application note "Layout and Termination Techniques for Cypress Clock Generators" for more details.
- If a Ferrite Bead is used, a 10 μF– 22 μF tantalum bypass capacitor should be placed close to the Ferrite Bead. This capacitor prevents power supply droop during current surges.

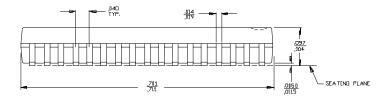
Test Circuit

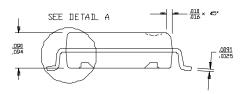
Note: All capacitors should be placed as close to each pin as possible.

Ordering Information


Ordering Code	Package Name	Package Type	Operating Range
CY2267PVC-1	O34	34-Pin SSOP	Commercial


Document #: 38-00534-A




Package Diagram

34-Pin Shrunk Small Outline Package O34

