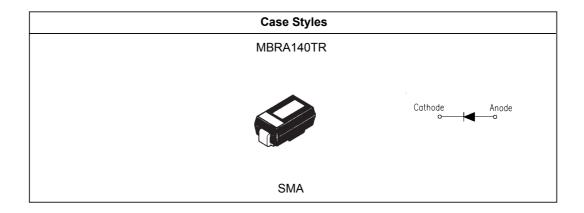
International Rectifier

MBRA140TR

SCHOTTKY RECTIFIER

1.0 Amp

$$I_{F(AV)} = 1 \text{ Amp}$$
 $V_R = 40V$


Major Ratings and Characteristics

Characteristics	Value	Units
I _{FAV} Rect. Waveform	1.0	Α
V _{RRM}	40	V
I _{FSM} @ tp = 5 μs sine	120	Α
V _F @1.0Apk, T _J =125°C	0.49	V
T _J range	- 55 to 150	°C

Description/ Features

The MBRA140TR surface mount Schottky rectifier has been designed for applications requiring low forward drop and very small foot prints on PC boards. Typical applications are in disk drives, switching power supplies, converters, free-wheeling diodes, battery charging, and reverse battery protection.

- Small foot print, surface mountable
- Low forward voltage drop
- High frequency operation
- Guard ring for enhanced ruggedness and long term reliability

Voltage Ratings

Part number	MBRA140TR
V _R Max. DC Reverse Voltage (V)	40
V _{RWM} Max. Working Peak Reverse Voltage (V)	40

Absolute Maximum Ratings

	Parameters	Value	Units	Conditions		
I _{F(AV)}	Max. Average Forward Current *See Fig. 4	1.0	Α	50% duty cycle @ T _L = 118 °C, rectangular wave form. On PC board 9mm ² island (.013mm thick copper pad area)		
I _{FSM}	Max. Peak One Cycle Non-Repetitive	120	Α	5μs Sine or 3μs Rect. pulse	Following any rated load condition and	
	Surge Current * See Fig. 6	30		10ms Sine or 6ms Rect. pulse	with rated V _{RRM} applied	
E _{AS}	Non-Repetitive Avalanche Energy	3.0	mJ	T _J =25 °C, I _{AS} = 1A, L = 6mH		
I _{AR}	Repetitive Avalanche Current	1.0	Α			

Electrical Specifications

	Parameters	Value	Units		Conditions
V _{FM}	Max. Forward Voltage Drop (1)	0.55	V	@ 1A	T 05 %0
	* See Fig. 1	0.71	V	@ 2A	$T_J = 25 ^{\circ}\text{C}$
		0.5	V	@ 1A	T = 400 °C
		0.65	V	@ 2A	T _J = 100 °C
		0.49	V	@ 1A	T - 405 °C
		0.63	V	@ 2A	$T_J = 125 ^{\circ}\text{C}$
I _{RM}	Max. Reverse Leakage Current (1)	0.5	mA	T _J = 25 °C	
	* See Fig. 2	10	mA	T _J = 100 °C	$V_R = \text{rated } V_R$
		26	mA	T _J = 125 °C	
V _{F(TO}	Threshold Voltage	0.36	V	$T_J = T_J \text{ max.}$	
r _t	Forward Slope Resistance	104	mΩ		
C _T	Typical Junction Capacitance	38	pF	$V_R = 10V_{DC}$, $T_J = 25^{\circ}C$, test signal = 1Mhz	
L _S	Typical Series Inductance	2.0	nH	Measured lead to lead 5mm from package body	
dv/dt	Max. Voltage Rate of Change	10000	V/ µs	(Rated V _R)	

⁽¹⁾ Pulse Width < 300 μ s, Duty Cycle < 2%

Thermal-Mechanical Specifications

	Parameters	Value	Units	Conditions		
T _J	Max. Junction Temperature Range (*)	-55 to 150	°C			
T _{stg}	Max. Storage Temperature Range	-55 to 150	°C			
R _{thJL}	Max. Thermal Resistance Junction to Lead (**)	35	°C/W	DC operation (* See Fig. 4)		
R _{thJA}	Max. Thermal Resistance Junction to Ambient	80	°C/W	DC operation		
wt	Approximate Weight	0.07(0.002)	g (oz.)			
	Case Style	SMA IR14		Similar D-64		
	Device Marking					

 $[\]frac{\text{dPtot}}{\text{dTj}} < \frac{1}{\text{Rth}(j\text{-a})}$ thermal runaway condition for a diode on its own heatsink

^(**) Mounted 1 inch square PCB, Thermal Probe connected to lead 2mm from Package

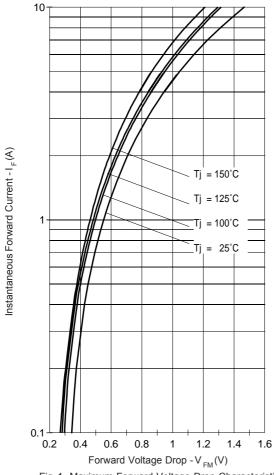


Fig. 1 - Maximum Forward Voltage Drop Characteristics

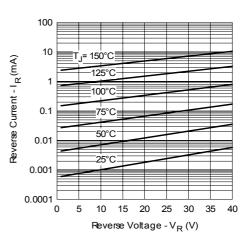


Fig. 2 - Typical Peak Reverse Current Vs. Reverse Voltage

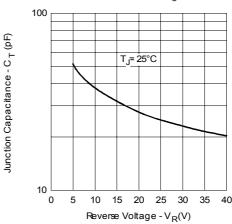


Fig. 3 - Typical Junction Capacitance Vs. Reverse Voltage

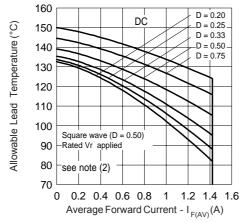


Fig. 4 - Maximum Average Forward Current Vs. Allowable Lead Temperature

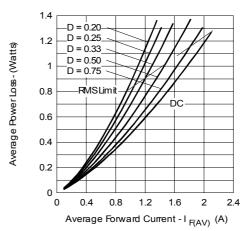
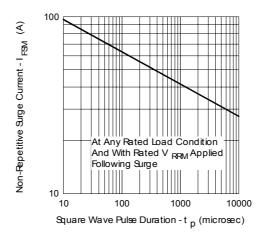
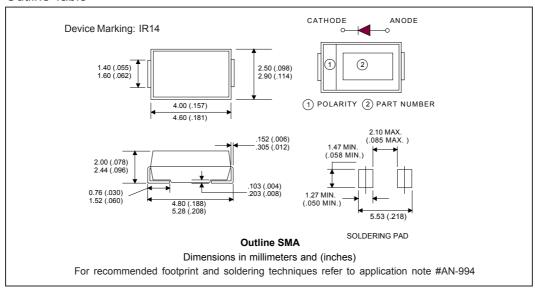
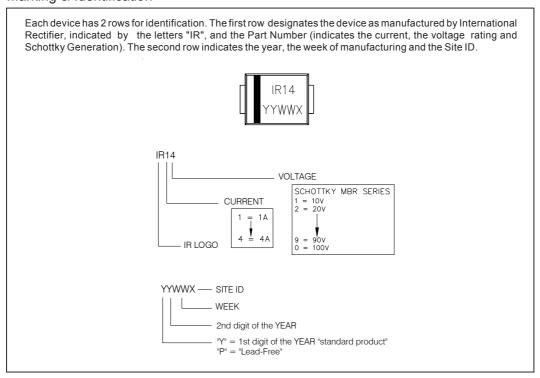
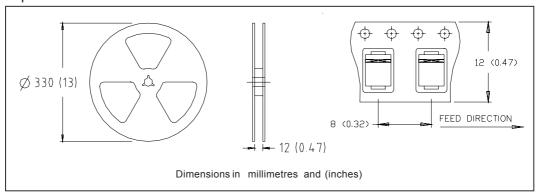


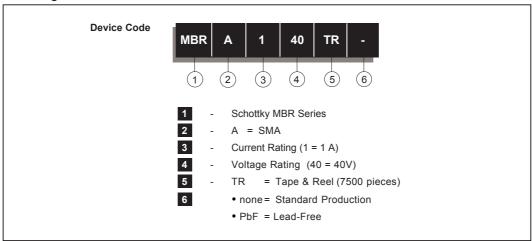
Fig. 5 - Maximum Average Forward Dissipation Vs. Average Forward Current


Fig. 6 - Maximum Peak Surge Forward Current Vs. Pulse Duration

 $\begin{aligned} \textbf{(2)} \ \ &\text{Formula used:} \ \textbf{T}_{\text{C}} = \textbf{T}_{\text{J}} - (\textbf{Pd} + \textbf{Pd}_{\text{REV}}) \textbf{x} \ \textbf{R}_{\text{thJC}}; \\ & \textbf{Pd} = \textbf{Forward Power Loss} = \textbf{I}_{\text{F(AV)}} \textbf{x} \ \textbf{V}_{\text{FM}} \textcircled{@} \ (\textbf{I}_{\text{F(AV)}} / \textbf{D}) \ \ (\text{see Fig. 6}); \\ & \textbf{Pd}_{\text{REV}} = \textbf{Inverse Power Loss} = \textbf{V}_{\text{R1}} \textbf{x} \ \textbf{I}_{\text{R}} (\textbf{1} - \textbf{D}); \ \textbf{I}_{\text{R}} \textcircled{@} \ \textbf{V}_{\text{R1}} = \textbf{80} \% \ \text{rated} \ \textbf{V}_{\text{R}} \end{aligned}$


Outline Table


Marking & Identification

Tape & Reel Information

Ordering Information Table

Data and specifications subject to change without notice. This product has been designed and qualified for Industrial Level.

Qualification Standards can be found on IR's Web site.

IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105
TAC Fax: (310) 252-7309
Visit us at www.irf.com for sales contact information. 07/04