ZL10036

Features

- QPSK tuner for quadrature down conversion from L-band to Zero IF
- Compatible with DSS and DVB formats (QPSK)
- Symbol rate range 1 to 45 MSps
- Power \& forget, fully integrated, alignment free, local oscillator
- Integrated baseband filters with bandwidth adjust from 4 to 40 MHz
- Good immunity to strong adjacent undesired channels
- Selectable RF bypass
- $I^{2} \mathrm{C}$ bus interface with 3 V 3 compatible logic levels
- Integrated RF loop through for cascaded tuner applications
- Power saving mode/hardware power down
- Optimized front end solution when partnered with Zarlink ZL10312 demodulator

Applications

- Satellite receiver systems

July 2004

Ordering Information

ZL10036LDG	40-pin QFN	(trays)
ZL10036LDF	40-pin QFN	(tape and reel)
ZL10036LDG1	40-pin QFN*	(trays)
ZL10036LDF1	40-pin QFN*	(tape and reel)
	${ }^{*} \mathrm{~Pb}$ free	
$\mathbf{- 1 0}^{\circ} \mathbf{C}$ to $\mathbf{+ 8 5}^{\circ} \mathbf{C}$		

Description

The ZL10036 is a single chip wideband direct conversion tuner, with integral RF bypass, optimized for application in digital satellite receiver systems.

The device offers a highly integrated solution to a satellite tuner function, incorporating an $I^{2} \mathrm{C}$ bus interface controller, a low phase noise PLL frequency synthesizer, a quadrature phase split tuner, a fully integrated local oscillator which requires no production set up, and adjustable baseband channel filters.

The $I^{2} \mathrm{C}$ bus interface controls all of the tuner functionality including the PLL frequency synthesizer, the bypass disable and the baseband gain and bandwidth adjust.

Figure 1 - Basic Block Diagram

Figure 2 - Typical Application Circuit ZLE10532 (SNIM-9r2) using ZL10312 Demodulator

Table of Contents

1.0 Overview 11
1.1 Conventions in this Manual 11
2.0 Functional Description 12
2.1 Quadrature Down-Converter 12
2.2 AGC Functions 12
2.2.1 RF 13
2.2.2 Baseband 15
2.3 RF bypass 16
2.4 Baseband Filter 17
2.5 Local Oscillator 18
2.6 PLL Frequency Synthesizer 18
2.7 Control Logic 19
3.0 User Control 19
3.1 I/O Pins 19
3.1.1 LOCK - Pin 25 19
3.1.2 SLEEP - Pin 11 19
3.1.3 Output Ports, P1 \& P0 - Pins 39 \& 24 19
3.2 Device Address Selection 20
3.3 Read Register 20
3.3.1 Power-On Reset Indicator (POR bit) 20
3.3.2 Frequency \& Phase Lock (FL bit). 20
3.3.3 Internal Operation Indicators (X Bits). 21
3.4 Write Registers 21
3.4.1 Register Sub-Addressing 21
3.4.2 Register Mapping 22
3.4.3 Synthesizer Division Ratio ($2^{14}: 2^{0}$ Bits) 23
3.4.4 RF Gain (RFG Bit) 23
3.4.5 Baseband Pre-Filter Gain Adjust (BA1:0 Bits) 23
3.4.6 Baseband Post-Filter Gain (BG1:0 Bits) 23
3.4.7 RF Bypass Disable (LEN Bit) 24
3.4.8 Output Port Controls (P1 \& P0 Bits) 24
3.4.9 Power Down (PD Bit) 24
3.4.10 Logic Reset (CLR Bit) 24
3.4.11 Charge Pump Current (C1 \& C0 Bits) 24
3.4.12 Reference Division Ratios (R4:0 Bits) 25
3.4.13 Baseband Filter Resistor Switching (RSD) 25
3.4.14 Baseband Filter Bandwidth (BF6:1 \& BR4:0 Bits) 25
3.4.15 LO Test (TL Bit) 25
4.0 Software 26
4.1 Power-on Software Initialization 26
4.2 Changing Channel 26
4.3 Symbol Rate and Filter Calculations 26
4.3.1 Determining the Filter Bandwidth from the Symbol Rate 26
4.3.2 Calculating the Filter Bandwidth. 27
4.3.3 Determining the Values of BF and BR 27
4.3.3.1 Calculating the Value of BR 27
4.3.3.2 Calculating the Value of BF 27
4.3.4 Filter Bandwidth Programming Examples 28
4.4 Programming Sequence for Filter Bandwidth Changes 28
5.0 Application Notes 29
5.1 Thermal Considerations 29
5.2 Crystal Oscillator Notes 30

Table of Contents

6.0 Electrical characteristics 31
6.1 Test Conditions 31
6.2 Absolute Maximum Ratings 31
6.3 Recommended Operating Conditions 32
6.4 DC Characteristics 32
6.5 AC Characteristics 33

List of Figures

Figure 1 - Basic Block Diagram 1
Figure 2 - Typical Application Circuit ZLE10532 (SNIM-9r2) using ZL10312 Demodulator 2
Figure 3 - Functional Block Diagram 12
Figure 4 - AGC Control Structure 13
Figure 5 - Typical First Stage RF AGC Response 13
Figure 6 - Variation in IIP2 with AGC setting 14
Figure 7 - Variation in IIP3 with AGC setting 14
Figure 8 - Variation in NF with Input Amplitude (typical) 15
Figure 9 - RF input and Output (bypass) Return Losses 16
Figure 10 - Normalized Filter Transfer Characteristic (Setting 20 MHz) 17
Figure 11 - LO Phase Noise Performance 18
Figure 12 - Copper Dimensions for Optimum Heat Transfer 29
Figure 13 - Paste Mask for Reduced Paste Coverage 29
Figure 14 - Typical Oscillator Arrangement with Optional Output 30
Figure 15 - Typical Arrangement for External Oscillator 30

List of Tables

Table 1 - Pins by Number Order 7
Table 2 - Pins by Name Order 7
Table 3 - Address Selection 20
Table 4 - Read Data Bit Format (MSB is Transmitted First). 20
Table 5 - Byte Address Allocation in Write Mode 21
Table 6 - Bit Allocations in the Write Registers 22
Table 7 - Key to Table 6 22
Table 8 - RFG Register Bit Function 23
Table 9 - BA1/0 Register Bits Function 23
Table 10 - BG1/0 Register Bits Function 23
Table 11 - Port Control Bits 24
Table 12 - Charge Pump Currents 24
Table 13 - Division Ratios Set with Bits R4-R0 25
Table 14 - Crystal Capacitor Values for 4 MHz and 10.111 MHz Operation 30

Pin Listings

No.	Name	No.	Name	No.	Name	No.	Name
1	QDC	11	SLEEP	21	PUMP	31	RFIN
2	$\overline{\text { QDC }}$	12	SCL	22	N/C	32	$\overline{\text { RFIN }}$
3	QOUT	13	SDA	23	Vvar	33	N/C
4	$\overline{\text { QOUT }}$	14	XTAL	24	P0	34	RFAGC
5	VccBB	15	XTALCAP	25	LOCK	35	PTEST
6	VccBB	16	ADD	26	VccRF	36	VccLO
7	$\overline{\text { IOUT }}$	17	DIGDEC	27	RFBYPASS	37	VccLO
8	IOUT	18	VccDIG	28	$\overline{\text { RFBYPASS }}$	38	LOTEST
9	$\overline{\text { IDC }}$	19	VccTUNE	29	VccRF	39	P1
10	IDC	20	DRIVE	30	N/C	40	CNT

Table 1 - Pins by Number Order

Name	No.	Name	No.	Name	No.	Name	No.
ADD	16	N/C	22	$\overline{\text { QOUT }}$	4	VccBB	6
CNT	40	N/C	30	RFAGC	34	VccDIG	18
DIGDEC	17	N/C	33	RFIN	31	VccLO	36
DRIVE	20	P0	24	$\overline{\text { RFIN }}$	32	VccLO	37
$\overline{\text { IDC }}$	9	P1	39	RFBYPASS	27	VccRF	26
IDC	10	PTEST	35	$\overline{\text { RFBYPASS }}$	28	VccRF	29
IOUT	7	PUMP	21	SCL	12	VccTUNE	19
IOUT	8	QDC	1	SDA	13	Vvar	23
LOCK	25	$\overline{\text { QDC }}$	2	SLEEP	11	XTAL	14
LOTEST	38	QOUT	3	VccBB	5	XTALCAP	15

Table 2 - Pins by Name Order

Pin Description

Pin	Symbol	Direction	Function	Schematics
14	XTAL	In	Reference oscillator crystal inputs. Selected crystal frequency must be programmed in BR4 to BRO for correct baseband filter bandwidth operation. XTAL pin is used for external reference input via 10 nF capacitor.	
15	XTALCAP	Out		
16	ADD	In	Variable $I^{2} \mathrm{C}$ address selection allowing the use of more than one device per $I^{2} \mathrm{C}$ bus system by the voltage on this pin. See Table 3 for programming details.	
17	DIGDEC	Out	Decouple pin for internal digital 3.3 V regulator	
18	VccDIG		+5 V voltage supply for digital logic	
19	VccTune		Varactor tuning +5 V supply	
20	DRIVE	10	Loop amplifier output and input pins	
21	PUMP	10		
22	N/C		Not connected. Ground externally.	
23	Vvar	In	LO tuning voltage input	

Pin	Symbol	Direction	Function	Schematics
24	P0	Out	Switching port PO . ' 0 ' = disabled (high impedance). ' 1 ' = enabled.	
25	LOCK	Out	Output which indicates that phase comparator phase and frequency lock has been obtained and that the varactor voltage is within 'tune unlock' window. This powers up in logic ' 0 ' state.	CMOS Digital Output
26	VccRF		+5 V voltage supply for RF	
27	RFBYPASS	Out	RF Bypass differential outputs. AC couple outputs. Matching circuitry as per applications diagram (Figure 2). In applications where RF Bypass is not required, pins should not be connected.	
28	$\overline{\text { RFBYPASS }}$	Out		
29	VccRF		+5 V voltage supply for RF	
30	N/C		Not connected. Ground externally.	
31	RFIN	In	RF differential inputs. AC couple input. Matching circuitry as per applications diagram.	
32	$\overline{\text { RFIN }}$	In		
33	N/C		Not connected. Ground externally.	
34	RFAGC	In	RF analogue gain control input	

Pin	Symbol	Direction	Function	Schematics
35	PTEST	In	Connected to internal circuit for monitoring die temperature	
36	VccLO		+5 V voltage supply for LO	
37	VccLO		+5 V voltage supply for LO	
38	LOTEST	10	Bi-directional test port for accessing internal LO AC couple input.	
39	P1	Out	Switching port P1 ' 0 ' = disabled (high impedance) ' 1 ' = enabled	Same configuration as pin 24, P0
40	CNT		Bonded to paddle. Production continuity test for paddle soldering	
Note: Exposed paddle on rear of package must be connected to GND				

1.0 Overview

1.1 Conventions in this Manual

Hexadecimal values are typically shown as 0xABCDEF. Binary values (usually of register bits) are shown as 01100_{2}. All other numbers should be considered to be decimal values unless specified otherwise.

2.0 Functional Description

Figure 3 - Functional Block Diagram

2.1 Quadrature Down-Converter

In normal applications the tuner RF input frequency of $950-2150 \mathrm{MHz}$ is fed directly to the ZL10036 RF input preamplifier stage, through an appropriate impedance match. The input preamplifier is optimized for NF, S11 and signal handling.

The signal handling of the front end is designed such that no tracking filter is required to offer immunity to input composite overload.

2.2 AGC Functions

The ZL10036 contains an analogue RF AGC combined with digitally controlled gain for RF, baseband pre-filter and post-filter, as described in Figure 4. The baseband AGC is controlled by the $I^{2} \mathrm{C}$ bus and is divided into pre- and post-baseband filter stages, each of which have 12.6 dB of gain adjust in 4.2 dB steps.

The RF AGC is provided as the dynamic system gain adjust under control of the baseband analogue AGC output function whereas the digitally controlled gains are provided to maximize performance under different signal conditions. The total AGC gain range will guarantee an operating dynamic range of -92 to -10 dBm .

The digitally controlled RF gain adjust and the baseband pre-filter stage can be adjusted in sympathy to maintain a fixed overall conversion gain. The lower RF gain setting would be used in situations where for example there is a high degree of cable tilt or high desired to undesired ratio, whereas the higher RF gain setting would be used in situations where for example it is desirable to minimize NF.

The baseband post-filter gain stage can be used to provide additional gain to maintain desired output amplitude with lower symbol rate applications.

Figure 4 - AGC Control Structure

Normalized gain range in dB:	$0-72$	0 or +4	0 to 12.6 in 4.2 dB steps	0 to 12.6 in 4.2 dB steps
Gain function:	RF AGC	Stepped	Stepped	Stepped
Control function:	Analogue voltage	$\mathrm{I}^{2} \mathrm{C}$ bus	$\mathrm{I}^{2} \mathrm{C}$ bus	$\mathrm{I}^{2} \mathrm{C}$ bus

2.2.1 RF

The RF input amplifier feeds an AGC stage, which provides for RF gain control.

Figure 5 - Typical First Stage RF AGC Response
The RF AGC is divided into two stages. The first stage is a continually variable gain control stage, which is controlled by the AGC sender and provides the main system AGC set under control of the analogue AGC signal generated by the demodulator section. The second stage is a bus programmable, two position gain set previous to the quadrature mixer and provides for 4 dB of gain adjust under software control.

The analogue RF AGC is optimized for S / N and S / l performance across the full dynamic range. The RF AGC characteristic, variation of IIP2, IIP3 and NF are contained in Figure 6, Figure 7 \& Figure 8 respectively.

The RF preamplifier is also coupled to the selectable RF bypass, which is described in "RF bypass" on page 16. The specified electrical parameters of the RF input are unaffected by the RF bypass state.

Figure 6 - Variation in IIP2 with AGC setting
$($ RF gain adjust $=+0 \mathrm{~dB}$, prefilter $=+4.2 \mathrm{~dB}$ and postfilter $=4.2 \mathrm{~dB}$, baseband filter bandwidth $=22 \mathrm{MHz})$

Figure 7 - Variation in IIP3 with AGC setting
(RF gain adjust $=+0 \mathrm{~dB}$, prefilter $=+4.2 \mathrm{~dB}$ and postfilter $=4.2 \mathrm{~dB}$, baseband filter bandwidth $=22 \mathrm{MHz})$

Figure 8 - Variation in NF with Input Amplitude (typical)
The output of the RF AGC stage is coupled to the quadrature mixer where the RF input is mixed with quadrature LO (local oscillator) signals generated by the on-board LO.

2.2.2 Baseband

The mixer outputs are coupled to the baseband quadrature channel amplifier and filter stage, which is of 7th order topology. Operation and control of the baseband filter is contained in "Baseband Filter" on page 17.

The baseband paths are DC coupled, and include a DC correction loop. The high pass characteristic for the DC correction loop is defined by the off chip capacitor connected to pins 'IDC/IDC' and 'QDC/ $\overline{Q D C}$ '. The output of each channel stage is designed for low impedance drive capability and low intermodulation and can be loaded either differentially or single-ended; in the case of single-ended load the unused output should be unloaded. The maximum output load is defined in the electrical characteristics table.

2.3 RF bypass

The ZL10036 provides an independent bypass function, which can be used for driving a second receiver module. The electrical characteristics of the RF input are unchanged by the state of the RF bypass.

The bypass provides a differential buffered output from the input signal with a nominal 3.5 dB gain. The unused output should be terminated as in Figure 2 on page 2.

The bypass function is enabled by a single register bit and is not disabled by either the PD bit or the SLEEP pin. When disabled the bypass function is in a 'power-down' state. On power up the bypass function is enabled.

Figure 9 - RF input and Output (bypass) Return Losses

2.4 Baseband Filter

The filter bandwidth is controlled by a Frequency Locked Loop (FLL) the timing of which is derived from the reference crystal source by a reference divider. Five control bits set the system reference division ratio and the baseband filter bandwidth can be programmed with a further six control bits for a nominal range of $4-40 \mathrm{MHz}^{1}$.

Figure 10 - Normalized Filter Transfer Characteristic (Setting 20 MHz)
The $-3 d B$ bandwidth of the filter $(H z)$ is given by the following expression: $f-3 d B=\frac{f x t a l}{B R} \times(B F+1) \times \frac{1}{K}$ Where:
$\mathrm{f}_{-3 \mathrm{~dB}}=$ Baseband filter -3 dB bandwidth (Hz) which should be within the range $8 \mathrm{MHz} \leq \mathrm{f}_{-3 \mathrm{~dB}} \leq 35 \mathrm{MHz}$.
$\mathrm{f}_{\mathrm{xta}}=$ Crystal oscillator reference frequency (Hz).
$\mathrm{K}=1.257$ (constant).
$\mathrm{BF}=$ Decimal value of the register bits $\mathrm{BF} 6: \mathrm{BF} 1$, range $0-62$.
$B R=$ Decimal value of the bits BR4:BR0 (baseband filter reference divider ratio), range 4-27.
$\frac{f_{\text {xtal }}}{B R}=575 \mathrm{kHz}$ to 2.5 MHz .
Methods for determining the values of BR and BF are given in the section on software, please see 4.3, "Symbol Rate and Filter Calculations" on page 26.

[^0]
2.5 Local Oscillator

The LO on the ZL10036 is fully integrated and consists of three oscillator stages. These are arranged such that the regions of operation for optimum phase noise are contiguous over the required tuning range of 950 to 2150 MHz and over the specified operating ambient conditions and process spread.

The local oscillators operate at a harmonic of the required frequency and are divided down to the required LO conversion frequency. The required divider ratio is automatically selected by the LO control logic, hence programming of the required conversion frequency across the oscillator bands is automatic and requires no intervention by the user.

Figure 11 - LO Phase Noise Performance
The oscillators are designed to deliver good free running phase noise at 10 kHz offset, therefore the required integrated phase jitter from the LO can be achieved without the requirement for running with a high comparison frequency and hence large tuning increment and wide loop bandwidth.

2.6 PLL Frequency Synthesizer

The PLL frequency synthesizer section contains all the elements necessary, with the exception of a frequency reference and loop filter to control a varicap tuned LO, so forming a complete PLL frequency synthesized source. The device allows for operation with a high comparison frequency and is fabricated in high speed logic, which enables the generation of a loop with good phase noise performance. The loop can also be operated up to comparison frequencies of 2 MHz enabling application of a wide loop bandwidth for maximizing the close in phase noise performance. The LO conversion frequency is coupled to the 15 -bit divider in the PLL frequency synthesizer.

The output of the programmable divider is fed to the phase comparator where it is compared with the comparison frequency. This frequency is derived either from the on-board crystal controlled oscillator or from an external reference source. In both cases the reference frequency is divided down to the comparison frequency by the reference divider, which is programmable into one of 29 ratios as detailed in Table 13 on page 25.

The typical application for the crystal oscillator is contained in Figure 2 on page 2. The output of the phase detector feeds a charge pump and loop amplifier section. This combined with an external loop filter integrates the current pulses into the varactor line voltage with an output range of Vee to VccTUNE. The varactor line voltage is externally coupled to the oscillator section through the input Vvar, enabling application of a third order loop.

Control of the charge pump current can be made as described in Table 12 on page 24.

2.7 Control Logic

The ZL10036 is controlled by an $I^{2} \mathrm{C}$ data bus and can function as a slave receiver or slave transmitter compatible with 3 V 3 or 5 V levels.

Data and Clock are input on the SDA and SCL lines respectively as defined by ${ }^{2} \mathrm{C}$ bus standard. The device can either accept data (slave receiver, write mode), or send data (slave transmitter, read mode). The LSB of the address byte (R / \bar{W}) sets the device into write mode if it is logic ' 0 ', and read mode if it is logic ' 1 '. Table 4 and Table 6 illustrate the format of the read and write data respectively. The device can be programmed to respond to one of four addresses, which enables the use of more than one device in an $I^{2} \mathrm{C}$ bus system if required for use in PVR ${ }^{1}$ systems, for example. Table 3 shows how the address is selected by applying a voltage to the address, 'ADD', input. When the device receives a valid address byte, it pulls the SDA line low during the acknowledge period, and during following acknowledge periods after further data bytes are received. When the device is programmed into read mode, the controller accepting the data must pull the SDA line low during all status byte acknowledge periods to read another status byte. If the controller fails to pull the SDA line low during this period, the device generates an internal STOP condition, which inhibits further reading.

All the ZL10036 functions are controlled by register bits written through the $I^{2} \mathrm{C}$ bus interface. The SLEEP pin can be used to power-down the device, but it can also be put into the power-down mode with the PD register bit, the two functions being logically OR'ed.

Feedback on the status of the ZL10036 is provided through eight bits in the status byte register, and the phase lock state is also available on the LOCK output pin (as well as the FL register bit).

3.0 User Control

3.1 I/O Pins

The $I^{2} C$ interface controls all the major functions in the ZL10036. Apart from the various analogue functions, the only pins that either control the ZL10036, or are controlled by the internal logic, are the LOCK, SLEEP, P1, P0 and ADD pins. Details follow:

3.1.1 LOCK - Pin 25

This is an output which indicates phase frequency lock for optimum phase noise. The CMOS output can directly drive a low power LED if required.

3.1.2 SLEEP - Pin 11

The SLEEP pin shuts down the analogue sections of the device to give a considerable power saving, typically reducing the power to about one third of its normal level. The RF-bypass function is entirely separate and is unaffected by the state of this pin. The SLEEP pin's function is OR'ed with the PD register bit see 3.4.9, "Power Down (PD Bit)" on page 24, so that if either is a logic one, the ZL10036 will be powered down, or alternatively, both must be at logic zero for normal operation.

3.1.3 Output Ports, P1 \& P0 - Pins 39 \& 24

Two open-collector ports are provided for general purpose use, under control of register bits P1 and P0. The default at power-up is for the $\mathbf{P 1}$ \& $\mathbf{P 0}$ register bits to be low, hence the outputs will be off, i.e., in their high-impedance states. If connected to a pull-up resistor this will therefore result in a logic high. Setting a register bit high will turn the corresponding output on and therefore pull the logic level to near 0 V giving a logic low.

[^1]
3.2 Device Address Selection

Two internal logic levels, MA1 and MA0, can be set to one of four possible logic states by the voltage applied to the ADD pin (\#16). These four states in turn define four different read and write addresses on the $I^{2} \mathrm{C}$ bus, so that as many as four separate devices can be individually addressed on one bus. This is of particular use in a multi-tuner environment as required by PVR applications.

ADD Pin Voltage	MA1	MA0	Write Address		Read Address	
			Hex.	Dec.	Hex.	Dec.
Vee (0 V or Gnd)	0	0	$0 x C 0$	192	$0 \times C 1$	193
Open circuit	0	1	$0 \times C 2$	194	$0 \times C 3$	195
0.5^{*} DIGDEC $(\pm 20 \%)^{1}$	1	0	$0 \times C 4$	196	$0 \times C 5$	197
DIGDEC	1	1	$0 x C 6$	198	$0 \times C 7$	199

Table 3 - Address Selection

1. can be programmed with a single $30 \mathrm{k} \Omega$ resistor to DIGDEC

3.3 Read Register

The ZL10036 status can be read by addressing the device in its slave transmitter mode by setting the LSB of the address byte (the R / \bar{W} bit) to a one. After the master transmits the correct address byte, the ZL10036 will acknowledge its address, and transmit data in response to further clocks on the SCL input. If the master responds with an acknowledge and further clocks, the status byte will be retransmitted until such time as the master fails to send an acknowledge, when the ZL10036 will release the data bus, allowing the master to generate a stop condition.

Bit No.	$\mathbf{7}$ $(M S B)$	$\mathbf{6}$	$\mathbf{5}$	$\mathbf{4}$	$\mathbf{3}$	$\mathbf{2}$	$\mathbf{1}$	$\mathbf{0}$ $(L S B)$
Address	1	1	0	0	0	MA1	MAO	1
Status	POR	FL	X	X	X	X	X	X

Table 4 -Read Data Bit Format (MSB is Transmitted First)
The individual bits in the status register have the following meanings:

3.3.1 Power-On Reset Indicator (POR bit)

This bit is set to a logic ' 1 ' if the VccDIG supply to the PLL section has dropped below typically 3.6 V , e.g., when the device is initially turned on. The bit is reset to ' 0 ' when the read sequence is terminated by a STOP command. When the POR bit is high, this indicates that the programmed information may have been corrupted and the device reset to power up condition.

3.3.2 Frequency \& Phase Lock (FL bit)

Bit 6 (FL) indicates whether the synthesizer is phase locked, a logic ' 1 ' is present if the device is locked, and a logic ' 0 ' if the device is unlocked.

3.3.3 Internal Operation Indicators (X Bits)

These bits indicate internal logic states and are not required for normal use of the ZL10036.

3.4 Write Registers

The ZL10036 has twelve registers which can be programmed by addressing the device in its slave receiver mode, setting the LSB of the address byte (the R/W bit) to a zero. After the master transmits the correct address byte, the ZL10036 will acknowledge its address, and accept data in response to further clocks on the SCL line. At the end of each byte, the ZL10036 will generate the acknowledge bit. The master can at this point, generate a stop condition, or further clocks on the SCL line if further registers are to be programmed. If data is written after the twelfth register (byte-13), it will be ignored.

3.4.1 Register Sub-Addressing

If some register bits require changing, but not all, it is not necessary to write to all the registers. The registers can be addressed in pairs starting with the even numbered bytes, i.e., $2 \& 3,4 \& 5$, etc. Table 5 below shows the protocol required to address any of the even numbered register bytes. It therefore follows that to write to register byte-7 for instance, byte- 6 must also be written first. Register pairs may be written in any order, as required by the software, e.g., $10 / 11$ may be followed by $4 / 5$.

Data Bits				
$\mathbf{7}$ (MSB)	$\mathbf{6}$	$\mathbf{5}$	$\mathbf{4}$	
0	X	X	X	
1	0	X	X	4
1	1	0	0	6
1	1	0	1	8
1	1	1	0	10
1	1	1	1	12
X = Don't Care (content defines a register bit).				

Table 5 - Byte Address Allocation in Write Mode

3.4.2 Register Mapping

Byte	Bit No. Function	$\stackrel{7}{7}$	6	5	4	3	2	1	$\begin{gathered} \mathbf{0} \\ \text { (LSB) } \end{gathered}$	Reset state (hex.) ${ }^{1}$	Further information
1	Device address	1	1	0	0	0	MA1	MAO	0		Table 3 on page 20
2	Programmable Divider	0	2^{14}	2^{13}	2^{12}	2^{11}	2^{10}	2^{9}	2^{8}	0×00	See 3.4.3 on page 23
3		2^{7}	2^{6}	2^{5}	2^{4}	2^{3}	2^{2}	2^{1}	2^{0}	0×00	
4	Control Data	1	0	RFG	BA1	BAO	BG1	BG0	LEN	0x80	"3.4.4" to "3.4.7" on p. 24
5		P0	C1	C0	R4	R3	R2	R1	R0	0x00	pp. 24, 24 \& 25
6		1	1	0	0	RSD	0	0	0	$0 \times \mathrm{CO}$	see "3.4.13" on page 25
7		P1	BF6	BF5	BF4	BF3	BF2	BF1	0	0x20	pp. 24 \& 25
8		1	1	0	1	0	0	1	1	0xDB	page 26
9		0	0	1	1	0	0	0	0	0x30	page 26
10		1	1	1	0	0	0	0	1	0xE1	page 26
11		U^{2}	1	1	1	0	1	0	1	0x75/F5	page 26
12		1	1	1	1	0	0	0	0	0xF0	test function only
13		PD	BR4	BR3	BR2	BR1	BR0	CLR	TL	0x28	pp. 24,25 \& 25

Table 6 - Bit Allocations in the Write Registers

1. This is the power-on default register value - recommended operating values may be different, see "4.1" on page 26.
2. This bit is undefined at power up as its level determines different functions for the other bits in this register.

Symbol	Definition	Symbol	Definition
$2^{14}-2^{0}$	Programmable division ratio control bits	MA1,MA0	Variable address bits
BA1-0	Baseband prefilter gain adjust	P0, P1	External switching ports
BF6-1	Baseband bandwidth adjust	PD	Power down
BG1-0	Baseband postfilter gain adjust	R4-R0	Reference division ratio select
BR4-0	Baseband filter FLL reference frequency select	RFG	RF programmable gain adjust
C1,C0	Charge pump current select	RSD	Resistor switch disable
CLR	Control logic reset	TL	Buffered LO output select
LEN	RF bypass enable		

Table 7 - Key to Table 6

3.4.3 Synthesizer Division Ratio ($2^{\mathbf{1 4}}: \mathbf{2}^{0}$ Bits)

The PLL synthesizer interfaces with the LO multiplex output and runs at the desired frequency for down-conversion. The step size at the desired conversion frequency, is equal to the loop comparison frequency.

The programmable division ratio, $\mathbf{2}^{14}$ to $\mathbf{2}^{\mathbf{0}}$, required for a desired conversion frequency, can be calculated from the following formula:
Desired conversion frequency $=\Delta \mathrm{f}$ step $\times\left(2^{14}+2^{13}+2^{12} \rightarrow 2^{2}+2^{1}+2^{0}\right)$
where: Δ fstep $=$ Fcomp

3.4.4 RF Gain (RFG Bit)

The RF gain is programmed by setting the RFG bit, bit-5 of register byte-4 as required. See also Figure 4, "AGC Control Structure" on page 13.

RFG	Gain Adjust (dB)
0	0
1	+4
(reset state)	

Table 8 - RFG Register Bit Function

3.4.5 Baseband Pre-Filter Gain Adjust (BA1:0 Bits)

The baseband pre-filter gain is programmed by setting BA1:0, bits-4 \& 3 of register byte- 4 as required. See also Figure 4, "AGC Control Structure" on page 13.

BA1	BA0	Pre-Filter Gain Adjust (dB)
0	0	0.0
0	1	+4.2
1	0	+8.4
1	1	+12.6

Table 9 - BA1/0 Register Bits Function

3.4.6 Baseband Post-Filter Gain (BG1:0 Bits)

The baseband post-filter gain is programmed by setting BG1:0, bits-2 \& 1 of register byte-4 as required. See also Figure 4, "AGC Control Structure" on page 13.

BG1	BG0	Post-Filter Gain Adjust (dB)
0	0	0.0
0	1	+4.2
1	0	+8.4
1	1	+12.6

Table 10 - BG1/0 Register Bits Function

3.4.7 RF Bypass Disable (LEN Bit)

The RF bypass function is disabled by setting LEN, bit-0 of register byte-4 to a logic ' 1 '. By default, this bit is at a logic ' 0 ' at power-up, and therefore the function is enabled. If the function is not required, a power saving of approximately 15% can be made by setting this bit. See also section 2.3 on page 16 .

3.4.8 Output Port Controls (P1 \& P0 Bits)

Register bits P1 and P0, bit-7 in register bytes-7 \& 5 respectively, control the output port pins, P1 \& P0, pin numbers $39 \& 24$ respectively.

Bit P1 or P0	Port State	Logic State (if connected to a pull-up)
0	High impedance	1
1	Low impedance to Vee (Gnd)	0

Table 11 - Port Control Bits

3.4.9 Power Down (PD Bit)

Bit-7 of byte-13 controls the PD register bit which is an alternative to the SLEEP pin (see "SLEEP - Pin 11" on page 19). Setting the PD bit to a logic ' 1 ' shuts down the analogue sections of the ZL10036 effecting a saving of about two thirds of the power required for normal operation. A logic ' 0 ' restores normal operation. With either hardware or software power-down, all register settings are unaffected.

3.4.10 Logic Reset (CLR Bit)

Bit-1 of byte-13 controls the CLR register bit. When set to a logic ' 1 ', this self-clearing bit resets the ZL10036 control logic. Writing a logic ' 0 ' has no effect. The following register numbers are reset to their power-on state: $7,9,10,11$, 12 \& 13. All other register's contents are unaffected.

3.4.11 Charge Pump Current (C1 \& C0 Bits)

Register bits $\mathbf{C 1}$ and $\mathbf{C 0}$ are programmed by setting bits- $6 \& 5$ of register byte- 5 . These bits determine the charge pump current that is used on the output of the frequency synthesizer phase detector.

C1	C0	Current in $\mu \mathbf{A}$			
		Min.	Typ.	Max.	
0	0	± 160	± 210	± 290	
0	1	± 280	± 365	± 510	
1	0	± 470	± 625	± 860	
1	1	(reset state)			

Table 12 - Charge Pump Currents

3.4.12 Reference Division Ratios (R4:0 Bits)

Register bits R4:0 control the reference divider ratios as shown in Table 13. They are programmed through bit-4 to bit-0 respectively, in byte-5.

			R4	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{1}$
			R3	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{0}$
R2	R1	R0	Division Ratios			
$\mathbf{0}$	$\mathbf{0}$	$\mathbf{0}$	2	Illegal states		
$\mathbf{0}$	$\mathbf{0}$	$\mathbf{1}$	4	5	6	7
$\mathbf{0}$	$\mathbf{1}$	$\mathbf{0}$	8	10	12	14
$\mathbf{0}$	$\mathbf{1}$	$\mathbf{1}$	16	20	24	28
$\mathbf{1}$	$\mathbf{0}$	$\mathbf{0}$	32	40	48	56
$\mathbf{1}$	$\mathbf{0}$	$\mathbf{1}$	64	80	96	112
$\mathbf{1}$	$\mathbf{1}$	$\mathbf{0}$	128	160	192	224
$\mathbf{1}$	$\mathbf{1}$	$\mathbf{1}$	256	320	384	448

Table 13 - Division Ratios Set with Bits R4-R0

3.4.13 Baseband Filter Resistor Switching (RSD)

The baseband filters use a resistor switching technique that improves bandwidth and phase matching between the I and Q channels. The bandwidth range is effectively separated into 3 sub-ranges with different resistor values being used in each sub-range. It is possible for the filter bandwidth accuracy to be degraded if the bandwidth setting happens to coincide with one of the two transition points between these regions. This can be overcome by disabling the resistor switching using the RSD bit. For optimum filter performance the RSD bit should first be enabled so that the correct resistor value is automatically set for the selected bandwidth.

The RSD bit (bit-3 of byte-6) controls the resistor switching. With the default setting of logic '0' it is enabled and the correct resistor value automatically chosen. With the RSD bit set to a logic ' 1 ' then the switching is disabled and this freezes the resistors at their chosen value. The procedure when selecting a new bandwidth setting is to enable then disable the switching; set RSD to logic '0' then to logic ' 1 '.

3.4.14 Baseband Filter Bandwidth (BF6:1 \& BR4:0 Bits)

Bits 6 to 1 of byte- 7 configure bits BF6 to BF1 respectively. These bits set a decimal number in the range 0 to 62 (63 is not allowed) to determine the baseband filter bandwidth in conjunction with other values.

Bits 6 to 2 of byte- 13 configure bits BR4 to BR0 respectively. These bits set the reference divider ratio for the baseband filter. A number in the range 4 to 27 inclusive (values outside this range are not allowed) can be set, with the proviso that the value of fxta//BR4:0 must also be in the range 575 kHz to $2,500 \mathrm{kHz}$.

For further details, please also see 2.4, "Baseband Filter" on page 17 and "Symbol Rate and Filter Calculations" (sect. 4.3) on page 26.

3.4.15 LO Test (TL Bit)

For test purposes, the LO clock divided by the prescaler ratio can be output on the LOTEST pin by setting bit TL (byte-13 bit-0) to a logic ' 1 '. By default this output is off, i.e., the TL bit is at logic ' 0 '.

4.0 Software

In normal operation, only initialization, channel (frequency) changes and symbol rates require programming intervention. Note that the PLL comparison frequency is set by the crystal frequency divided by the PLL reference divide ratio. In the following examples of register settings, binary values are frequently used, indicated as e.g., 0110 .

4.1 Power-on Software Initialization

a. Bytes $2+3: 2^{14}-2^{0}=$ desired channel frequency/PLL comparison frequency.
b. Byte 4: $B A 1: 0=01_{2}$ for initial baseband filter input level.
c. Byte 4: BG1:0 $=01_{2}$ for target baseband filter output level.
d. Byte 4: LEN = 1 if the RF loop through is to be disabled.
e. Byte 5: R4:0 = PLL reference divider for desired comparison frequency.
f. Bytes 8-10: should be set to the following values: $0 \times D 3,0 \times 40 \& 0 x E 3$ respectively.
g. Byte 11: this should be written twice with the following values:0x5B \& 0xF9. The order in which these values are written is not important.
h. Byte 13: BR4:0 = Crystal frequency in use (see also 4.3.3.1 on page 27).

4.2 Changing Channel

Bytes $2+3: 2^{14}-2^{0}=$ Channel frequency/PLL comparison frequency.

4.3 Symbol Rate and Filter Calculations

4.3.1 Determining the Filter Bandwidth from the Symbol Rate

$f_{b w}=\left(\alpha^{*}\right.$ symbol rate $) /(2.0$ * 0.8$)+$ foffs
where:
$\alpha=1.35$ for DVB or 1.20 for DSS, and is the roll-off of the raised-root cosine filter in the transmitter,
foffs is the total offset of the received signal due to all causes (LNB drift, synthesizer step size, etc) and is read back from the demodulator (ZL10036),
and $\mathrm{fbw}_{\mathrm{bw}}$ is the -3 dB roll-off of the filter for: $8 \mathrm{MHz} \leq \mathrm{fbw}^{\mathrm{M}} \leq 35 \mathrm{MHz}$.
For low symbol rates, the energy content within the bandwidth of the filters reduces significantly so incrementing the baseband post-filter gain helps recover the signal level for the demodulator.
N.B. During channel acquisition or re-acquisition, the filter must be set to its maximum value.

4.3.2 Calculating the Filter Bandwidth

The -3 dB bandwidth of the filter (Hz) is given by the following expression:

$$
\text { Equation } 1-\quad \mathrm{fbw}=\frac{\mathrm{fxtal}}{\mathrm{BR}} \times(\mathrm{BF}+1) \times \frac{1}{\mathrm{~K}}
$$

Where:
$f_{b w}=$ Baseband filter -3 dB bandwidth (Hz) which should be within the range $8 \mathrm{MHz} \leq \mathrm{f}_{\mathrm{bw}} \leq 35 \mathrm{MHz}$.
$f_{x t a l}=$ Crystal oscillator reference frequency (Hz).
$K=1.257$ (constant).
$B F=$ Decimal value of the register bits $B F 6: B F 1$, range $0-62$.
$B R=$ Decimal value of the bits BR4:BR0 (baseband filter reference divider ratio), range 4-27.
where: $575 \mathrm{kHz} \leq \frac{\mathrm{f}_{\mathrm{xtal}}}{\mathrm{BR}} \leq 2.5 \mathrm{MHz}$.
The digital nature of the control loop means that the filter bandwidth setting is quantized: the difference between the desired filter bandwidth and the actual filter bandwidth possible due to discrete settings causes a bandwidth error. In order to minimize this bandwidth error, the maximum filter bandwidth setting resolution is needed. From the limits given above, the best resolution possible is $575 \mathrm{kHz} / 1.257=457.4 \mathrm{kHz}$. However if this resolution is used, the maximum bandwidth with $\mathrm{BF}=62$ is only 28.82 MHz , below the maximum of 35 MHz . Therefore for filter bandwidths greater than 28.82 MHz the resolution must be decreased. For filter bandwidths around 35 MHz the resolution is typically reduced to $698 \mathrm{kHz} / 1.257=555.3 \mathrm{kHz}$.

4.3.3 Determining the Values of BF and BR

4.3.3.1 Calculating the Value of BR

The above description can be described mathematically as:
For $\mathrm{f}_{\mathrm{bw}} \leq 28.82 \mathrm{MHz}$,
Equation 2- $\quad B R=\frac{f_{x t a l}}{575 \mathrm{kHz}}$.
For $\mathrm{f}_{\mathrm{bw}}>28.82 \mathrm{MHz}$,
Equation 3- $\quad B R=\frac{f_{x t a l}}{f_{b w}} \times(62+1) \times \frac{1}{\mathrm{~K}}$.
These equations can give non-integer results so rounding must be performed. The values for $B R$ should be rounded DOWN to the nearest integer this ensures that $\frac{f_{x t a l}}{B R}$ will not be below 575 kHz and that the maximum programmable bandwidth will not be below the desired bandwidth due to rounding.

4.3.3.2 Calculating the Value of BF

Equation 4- $\quad B F=\left(\frac{f b w}{f_{x+a l}} \times B R \times K\right)-1=$
For non-integer values of $B F$, the result should be simply rounded to the nearest integer to give the value for BF6:1.

4.3.4 Filter Bandwidth Programming Examples

Example 1, conditions: $f_{x t a l}=10.111 \mathrm{MHz}, f_{b w}=9 \mathrm{MHz}$
Because $f_{b w}$ is below 28.2 MHz , the value of $B R$ can be evaluated with equation 2 :
$B R=\frac{f_{x t a l}}{575 \mathrm{kHz}}=\frac{10.111 \mathrm{MHz}}{575 \mathrm{kHz}}=17.583$
This result should be rounded down to 17 to ensure that the result is not below the 575 kHz limit. Using this value for $B R$, equation 4 can be evaluated:
$B F=\left(\frac{f b w}{f_{x t a l}} \times B R \times K\right)-1=\left(\frac{9 M H z}{10.11 \mathrm{MHz}} \times 17 \times 1.257\right)-1=18.02285$
The result can be rounded to the nearest value, i.e., $\mathrm{BF}=18$.
Example 2, conditions: $\mathrm{f}_{\mathrm{xtal}}=10.111 \mathrm{MHz}, \mathrm{f}_{\mathrm{bw}}=34.6 \mathrm{MHz}$
In this case, f_{bw} is above 28.2 MHz so using equation 3 to solve for BR :

$$
B R=\frac{f_{x \text { tal }}}{f_{b w}} \times(63) \times \frac{1}{K}=\frac{10.111 \mathrm{MHz}}{34.6 \mathrm{MHz}} \times(63) \times \frac{1}{1.257}=14.647
$$

Using equation 4, this time with the rounded-down value of 14 for BR:

$$
\mathrm{BF}=\left(\frac{\mathrm{fbw}}{\mathrm{f}_{\mathrm{xtal}}} \times \mathrm{BR} \times \mathrm{K}\right)-1=\left(\frac{34.6 \mathrm{MHz}}{10.11 \mathrm{MHz}} \times 14 \times 1.257\right)-1=59.227
$$

Rounding to the nearest integer thus gives a value of 59 for $B F$.

4.4 Programming Sequence for Filter Bandwidth Changes

a. Byte 6: Set RSD $=0$ to re-enable baseband filter resistor switching.
b. Byte 7: Set BF6:1 to the value derived in 4.3.3.2, "Calculating the Value of BF" on page 27.
c. Byte 6: Set RSD = 1 to disable baseband filter resistor switching. This must happen no sooner than a certain time after (b.). This minimum time equals $B R /(32$ * $f x t a l)$ seconds, where $B R$ is the decimal value of byte $B R$ and $f_{x t a l}$ is the reference crystal frequency.

5.0 Application Notes

5.1 Thermal Considerations

Figure 12 - Copper Dimensions for Optimum Heat Transfer

Figure 13 - Paste Mask for Reduced Paste Coverage
The ZL10036 uses the 40-pin QFN package with a thermal 'paddle' in the base, which has a very high thermal conductivity to the die, as well as low electrical resistance to the Vee connections. The ZL10036 has a fairly high power density, and if the excess heat is not efficiently removed, it will rapidly overheat beyond the $125^{\circ} \mathrm{C}$ limit, and affect the performance or could even cause permanent damage to the device.

The paddle is designed to be soldered to a size-matched pad on the PCB (see Figure 13 on page 29) which is thermally connected to an efficient heat sink. The heat sink can be as simple as an area of copper ground plane on
the underside of the board, thereby reducing the system cost. To transfer the heat from the paddle to the underside of the board, an array of $25 \times 0.3 \mathrm{~mm} \varnothing$ vias are used between the topside pad, which will be soldered to the paddle, and the ground plane on the underside of the board. It is also possible to use a smaller number of larger vias, e.g. $16 \times 0.5 \mathrm{~mm}$, but this arrangement is marginally less efficient.

The area of copper in the ground plane must be at least $2,000 \mathrm{~mm}^{2}$ for 1 oz copper. If 2 oz copper board is used or if multiple ground planes are available, as with a four-layer board, the area could be reduced somewhat, but in general it is better to have the maximum cooling possible, as reliability will always be enhanced if lower temperatures are maintained.

While it is possible to use a paste mask that simply duplicates the aperture for the 4.15 mm sq. paddle, the quantity of solder paste under the device can cause problems and it is preferable to reduce the coverage to a level between 50% and 80% of the area. The pattern shown in Figure 14 on page 30 reduces the coverage to approximately 60%, which should reduce out-gassing from under the device and improve the stand-off height of the package from the board.

A very useful publication giving further details is: "Application Notes for Surface Mount Assembly of Amkorps MicroLeadFrame (MLF) Packages" which can be found on: www.amkor.com

5.2 Crystal Oscillator Notes

Component	$\mathbf{4 ~ M H z}$	$\mathbf{1 0 . 1 1 1 ~ M H z}$
C10	$\mathbf{4 7} \mathrm{pF}$	100 pF
C11	$\mathbf{4 7} \mathrm{pF}$	100 pF
C12*	10 pF	15 pF
*C12 may be replaced by a link to GND if crystal output is not required.		

Table 14 - Crystal Capacitor Values for $\mathbf{4} \mathbf{~ M H z}$ and $\mathbf{1 0 . 1 1 1 ~ M H z ~ O p e r a t i o n ~}$
(component numbering refers to the example schematic, Figure 2 on page 2)
The 10.111 MHz frequency recommended for the crystal, is chosen such that when used with the Zarlink ZL10312 demodulator, the system frequency is $91 \mathrm{MHz}=9$ * $10.111 \mathrm{MHz}(91 \mathrm{MHz}>2$ * $45 \mathrm{Ms} / \mathrm{s})$.

Figure 14 - Typical Oscillator Arrangement with Optional Output

Figure 15 - Typical Arrangement for External Oscillator

6.0 Electrical characteristics

6.1 Test Conditions

The following conditions apply to all figures in this chapter, except where notes indicate other settings.
Tamb $=-10^{\circ}$ to $85^{\circ} \mathrm{C}$, Vee $=0 \mathrm{~V}$, All Vcc supplies $=5 \mathrm{~V} \pm 5 \%$
RF gain adjust $=+0 \mathrm{~dB}$, prefilter $=+4.2 \mathrm{~dB}$ and postfilter $=4.2 \mathrm{~dB} . \quad \mathrm{RFG}=0, B A 1=0, B A 0=1, B G 1=0, B G 0=1$
These characteristics are guaranteed by either production test or design. They apply within the specified ambient temperature and supply voltage unless otherwise stated.

6.2 Absolute Maximum Ratings

Parameter	Symbol	Min.	Max.	Unit	Notes
Supply voltage	VccBB, VccDIG, VccLO, VccRF, VccTUNE	-0.3	5.5	V	w.r.t. Vee
Storage temperature	$\mathrm{T}_{\text {STG }}$	-55	150	${ }^{\circ} \mathrm{C}$	
Junction temperature	T_{j}		125	${ }^{\circ} \mathrm{C}$	
Voltage on SDA \& SCL		-0.3	6	V	$\mathrm{Vcc}=\mathrm{Vee}$ to 5.25 V
Voltage on DRIVE		-0.3	VccTUNE+0.3	V	
Voltage on RFIN, RFBYPASS and inverted equivalents		-0.3	VccRF+0.3	V	
Voltage on RFAGC					
Voltage on Vvar		-0.3	VccLO+0.3	V	
Voltage on LOTEST					
Voltage on IOUT, QOUT, IDC, QDC and inverted equivalents		-0.3	$\mathrm{VccBB}+0.3$	V	
Voltage on P1					
Voltage at DIGDEC		-0.3	3.6	V	
Voltage on PUMP		-0.3	VccDIG+0.3	V	
Voltage on SLEEP and P0					
Voltage on ADD, XTAL, XTALCAP and LOCK		-0.3	DIGDEC+0.3	V	
Sink current, P0 or P1			20	mA	Each output
ESD protection, pins 31 \& 32^{1}		0.5		kV	To Mil-std 883B method 3015 cat1
pins 1-30, 33-40		2.0		kV	

1. ESD protection can be increased by adding a protection diode (D1) to the input circuit as shown in the application circuit (Figure 2).

6.3 Recommended Operating Conditions

Parameter	Symbol	Min.	Max.	Unit	Notes
Supply voltage	VccBB, VccDIG, VccLO, VccRF, VccTUNE	4.75	5.25	V	w.r.t. Vee
Operating temperature	T_{OP}	-10	85	${ }^{\circ} \mathrm{C}$	

6.4 DC Characteristics

Pins	Characteristic	Min.	Typ.	Max.	Units	Conditions	
Normal operating conditions							
All Vcc pins: 5, 6, 18, 19, 26, 29, 36, 37	Supply current					RF bypass	filter b.w.
			210	259	mA	disabled	minimum
			228	281	mA		maximum
			243	300	mA	enabled	minimum
			261	322	mA		maximum
			82	107	mA	disabled	sleep mode
			115		mA	enabled	
$\begin{aligned} & \text { QOUT, } \\ & \hline \text { QOUT, IOUT, } \\ & \text { IOUT: } 3,4,7, \\ & 8 \end{aligned}$	Output impedance		25		Ω	Single-ended	
	Output load	1		15	$\begin{aligned} & \mathrm{k} \Omega \\ & \mathrm{pF} \end{aligned}$	Maximum load, which can be applied to output, single-ended. If operated single ended unused output should be unloaded	
QDC, $\overline{\text { QDC }}$, IDC, IDC: 1 , 2, 9,10	Bias voltage		3.8		V		
	Output impedance		11		k Ω		
$\begin{aligned} & \text { SCL, SDA: } \\ & 12,13 \end{aligned}$	Input high voltage	2.3		5.5	V		
	Input low voltage	0		1	V		
	Input current	-10		10	$\mu \mathrm{A}$	Input voltage $=$ Vee to VccDIG	
	Leakage current			10	$\mu \mathrm{A}$	$\begin{aligned} & \text { Input voltage }=\text { Vee to } 5.5 \mathrm{~V} \text {, } \\ & \text { VccDIG=Vee } \end{aligned}$	
	Hysteresis		0.4		V		
SDA: 13	Output voltage			0.4	V	Isink $=3 \mathrm{~mA}$	
				0.6	V	Isink $=6 \mathrm{~mA}$	
PUMP: 21	Charge pump leakage		+-3	+-20	nA	V pin $=1.8 \mathrm{~V}$	
	Charge pump current					Vpin $=1.8 \mathrm{~V}$. See Table 12 on page 24	

6.5 AC Characteristics

Characteristic	Min.	Typ.	Max.	Units	Conditions
System (See ${ }^{1}$)					
Noise figure, DSB		9		dB	At -70 dBm operating level ${ }^{2}$
		12		dB	At -60 dBm operating level ${ }^{2}$
		10		dB	At -70 dBm operating level
		13		dB	At -60 dBm operating level
Variation in NF with RF gain adjust			-1	dB/dB	Above -60 dBm operating level ${ }^{2}$ See Figure 8 on page 15
Conversion gain Maximum Minimum	72	$\begin{array}{r} 78 \\ 6 \end{array}$	10	$\begin{aligned} & \mathrm{dB} \\ & \mathrm{~dB} \end{aligned}$	$\begin{aligned} & \text { Vagc }=0.75 \mathrm{~V} \\ & \text { Vagc }=4.25 \mathrm{~V} \end{aligned}$
AGC control range	68	72		dB	AGC monotonic, Vagc from Vee to Vcc

Characteristic	Min.	Typ.	Max.	Units	Conditions
System IM2			$\begin{aligned} & \hline-35 \\ & -40 \end{aligned}$	$\begin{aligned} & \mathrm{dBC} \\ & \mathrm{dBc} \end{aligned}$	$\begin{aligned} & \text { See }{ }^{3} \\ & \text { See }{ }^{4} \end{aligned}$
System IM3			-15	dBc	See ${ }^{5}$
Variation in system second order intermodulation intercept			-1	dB/dB	See Figure on page 14 and ${ }^{6}$
Variation in system third order intermodulation intercept			-1	dB/dB	See Figure 7 on page 14 and 7
Input compression	-10	-6		dBm	See ${ }^{8}$
LO second harmonic interference level		-50	-35	dBc	See ${ }^{9}$, all gain settings
LNA second harmonic interference level		-35	-20	dBc	See ${ }^{10}$
Quadrature gain match	-1		1	dB	
Quadrature phase match		± 3		deg	Filter bandwidth settings $8-35 \mathrm{MHz}$, up to 0.8 x filter -3 dB bandwidth
I \& Q channel in band ripple			1	dB	
			-30	dBc	All gain settings below 68 dB
I \& Q outputs			-25	dBc	At maximum gain. Linearly interpolated between max. and 68 dB gain, see ${ }^{11}$
LO reference sideband spur level on I \& Q outputs			-40	dBc	Synthesizer phase detector comparison frequency $500-2000 \mathrm{kHz}$
In band LO leakage to RF input			-65	dBm	Within RF band $950-2150 \mathrm{MHz}$
band LO leakage to RF input			-55	dBm	Within RF band $30-950 \mathrm{MHz}$
RF bypass					
Gain	1.5		5.5	dB	
NF		10	13	dB	
OPIP3		9		dBm	See ${ }^{12}$
OPIP2	26			dBm	See ${ }^{13}$
Output return loss	9			dB	$Z_{0}=75 \Omega$. See Figure 9 on page 16 , with output matching as in Figure 2 on page 2. Bypass enabled or disabled.
Forward isolation		25		dB	$950-2150 \mathrm{MHz}$
Reverse isolation		25		dB	Single-ended to single-ended, bypass
In band LO leakage			-65	dBm	
Converter					
Converter Input return loss (pins RFIN \& RFIN)	8	10		dB	$Z_{0}=75 \Omega$. See Figure 9 on page 16. With input matching as in Figure 2 on page 2. Bypass enabled or disabled.

Characteristic	Min.	Typ.	Max.	Units	Conditions	
LO SSB phase noise			$\begin{aligned} & -76 \\ & -96 \end{aligned}$	$\mathrm{dBc} / \mathrm{Hz}$ $\mathrm{dBc} / \mathrm{Hz}$	@ 10 kHz offset @ 100 kHz offset	Measured either, at baseband output of 10 MHz , PLL loop bandwidth circa 100 Hz , or at LOTEST output. Vvar > 3 V
			$\begin{aligned} & -110 \\ & -132 \end{aligned}$	$\mathrm{dBc} / \mathrm{Hz}$ $\mathrm{dBc} / \mathrm{Hz}$	@ 1 MHz offset Noise floor. ${ }^{14}$	Measured at LOTEST output.
LO integrated phase jitter			3	deg	See Figure 11 on page 18 and ${ }^{15}$	
LOTEST output amplitude		200		mVp-p	Test output enabled into 50Ω	

Baseband Filters
(specifications apply with both single-ended and differential load unless otherwise stated)

Bandwidth	4		40	MHz	See 2.4, "Baseband Filter" on page 17. Maximum load as specified								
Bandwidth absolute tolerance	-5		+5	$\%$	Filter bandwidth setting, fset, 8-35 MHz. Slave oscillator enabled, see 16								
Channel bandwidth match	-1		+1	$\%$	Filter bandwidth settings 8-35 MHz								
Characteristic response					All bandwidth settings, see Figure 10 on page 17.								
Channel gain match					Included in system gain match	$	$	Channel phase match					MHz
:---	:---:	:---:	:---:	:---:	:---								
Output total harmonic distortion			-26	dBc	St 0.8 V p-p, single-ended. Maximum load as specified								
Output limiting on page 30.													

1. All power levels are referred to 75Ω and assume an ideal impedance match: $0 \mathrm{dBm}=109 \mathrm{dBmV}$. System specifications refer to total cascaded system of converter/AGC stage and baseband amplifier/filter stage with maximum terminating load as specified in "DC Characteristics" on page 32 , with output amplitude of $0.5 \mathrm{Vp}-\mathrm{p}$ differential.
2. See Figure 8, RF gain adjust $=+4 \mathrm{~dB}$, prefilter $=+4.2 \mathrm{~dB}$ and postfilter $=0 \mathrm{~dB}, \mathrm{RFG}=1, \mathrm{BA} 1=0, \mathrm{BA} 0=1, \mathrm{BG} 1=0, \mathrm{BG} 0=0$
3. 'Baseband defined IM2'. AGC set to deliver an output of $0.5 \mathrm{Vp}-\mathrm{p}$ with an input $\mathrm{CW} @$ frequency fc of -25 dBm . Two undesired tones at $\mathrm{fc}+146$ and $\mathrm{fc}+155 \mathrm{MHz} @-11 \mathrm{dBm}$ generating output intermodulation spur at 9 MHz . Baseband filter at 22 MHz bandwidth setting.
4. 'Front end defined IM2'. LO set to 2145 MHz and AGC set to deliver a 5 MHz output of $0.5 \mathrm{Vp}-\mathrm{p}$ with a desired input CW @ frequency 2150 MHz of -45 dBm . Sum IM2 product from two undesired tones at 1.05 and 1.1 GHz at -25 dBm converted to 5 MHz baseband with desired input removed. Baseband filter at 22 MHz bandwidth setting.
5. 'IM3'. AGC set to deliver an output of $0.5 \mathrm{Vp}-\mathrm{p}$ with an input CW @ frequency fc of -30 dBm . Two undesired tones at fc +55 and $\mathrm{fc}+105 \mathrm{MHz}$ at -11 dBm generating output intermodulation spur at 5 MHz . Baseband filter at 22 MHz bandwidth setting.
6. 'Front end defined' variation in IP2 from two undesired tones at 1.05 and 1.1 GHz at 20 dBc relative to desired at 2.15 GHz converted to 5 MHz baseband with LO tuned to 2.145 GHz with AGC set to deliver 0.5 Vp -p differential on desired, as desired amplitude is varied from -45 dBm to -75 dBm .
7. Variation in IP3 product from two undesired tones at fc +55 and $\mathrm{fc}+105 \mathrm{MHz}$ at 19 dBc relative to desired at fc converted to 5 MHz baseband with LO tuned to desired at fc GHz with AGC set to deliver 0.5 Vp -p differential on desired, as desired amplitude is varied from -30 dBm to -75 dBm .
8. AGC set to deliver an output of $0.5 \mathrm{Vp}-\mathrm{p}$ with an input CW @ frequency fc of -35 dBm . Input compression defined as the level of interferer at 100 MHz offset, which leads to a 1 dB compression in gain.
9. The level of 2.01 GHz down converted to baseband relative to 1.01 GHz with the oscillator tuned to 1 GHz , measured with no input pre-filtering.
10. The level of second harmonic of 1.01 GHz input at -20 dBm down converted to baseband relative to 2.01 GHz at -35 dBm with the oscillator tuned to 2 GHz , measured with no input pre-filtering gain set to deliver $0.5 \mathrm{Vp}-\mathrm{p}$ on 2.01 GHz CW signal. RF gain adjust $=+4 \mathrm{~dB}$, prefilter $=+4.2 \mathrm{~dB}$ and postfilter $=0 \mathrm{~dB}$ RFG $=1, \mathrm{BA} 1=0, \mathrm{BAO}=1, \mathrm{BG} 1=0, \mathrm{BG} 0=0$
11. Within $0-100 \mathrm{MHz}$ band, RF input set to deliver $0.5 \mathrm{Vp}-$ p on output. RF gain adjust $=+4 \mathrm{~dB}$, prefilter $=+4.2 \mathrm{~dB}$ and postfilter $=0 \mathrm{~dB}$ $R F G=1, B A 1=0, B A 0=1, B G 1=0, B G 0=0$
12. Two input tones at $\mathrm{fc}+50$ and $\mathrm{fc}+100 \mathrm{MHz}$ at -9 dBm generating output intermodulation spur at fc .
13. Sum IM2 product from two input tones at 1.05 and 1.1 GHz at -9 dBm converted to 2150 MHz .
14. Measured at baseband output frequency of 10 MHz, PLL loop bandwidth circa 100 Hz . See also Figure 11 on page 18.
15. Integrated rms LO jitter measured from 10 kHz to 15 MHz , PLL loop bandwidth circa 2 kHz .
16. RSD $=0$ for 8 MHz <= fset <= $20 \mathrm{MHz}, \mathrm{RSD}=1$ for $20 \mathrm{MHz}<=$ fset $<=35 \mathrm{MHz}$

TOP VIEW

BOTTOM VIEW

	$\begin{gathered} \text { COMMON } \\ \text { DIMENSIONS } \end{gathered}$	
	MIN.	MAX
A	-	0.90
A1	0.00	0.05
b	0.18	0.30
D	6.00 BSC	
D1	5.75 BSC	
E	6.00 BSC	
E1	5.75 BSC	
N	40	
Nd	10	
Ne	10	
回	0.50 BSC	
L	0.30	0.50
θ	0°	12^{*}

NOTES: 1. DIMENSIONING \& TOLERANCES CONFORM TO ASME Y14.5M. - 1994.
2. N IS THE NUMBER OF TERMINALS.

Nd \& Ne ARE THE NUMBER OF TERMINALS IN X \& Y DIRECTION RESPECTIVELY.
3. DIMENSION b APPLIES TO PLATED TERMINAL AND IS MEASURED

BETWEEN 0.20 AND 0.25 mm FROM TERMINAL.
4. ALL DIMENSIONS ARE IN MILLIMETERS.
5. PACKAGE WARPAGE MAX 0.05 mm .
6. NOT TO SCALE.
7. DIMENSION OF THE EXPOSED METAL PAD MAY BE UPTO O.2OMM SMALLER THAN THE NOMINAL DIE PAD DIMENSION - SEE LEADFRAME DRAWING FOR SPECIFIC PADDLE DIMENSION.

For more information about all Zarlink products visit our Web Site at

 www.zarlink.comInformation relating to products and services furnished herein by Zarlink Semiconductor Inc. or its subsidiaries (collectively "Zarlink") is believed to be reliable. However, Zarlink assumes no liability for errors that may appear in this publication, or for liability otherwise arising from the application or use of any such information, product or service or for any infringement of patents or other intellectual property rights owned by third parties which may result from such application or use. Neither the supply of such information or purchase of product or service conveys any license, either express or implied, under patents or other intellectual property rights owned by Zarlink or licensed from third parties by Zarlink, whatsoever. Purchasers of products are also hereby notified that the use of product in certain ways or in combination with Zarlink, or non-Zarlink furnished goods or services may infringe patents or other intellectual property rights owned by Zarlink.

This publication is issued to provide information only and (unless agreed by Zarlink in writing) may not be used, applied or reproduced for any purpose nor form part of any order or contract nor to be regarded as a representation relating to the products or services concerned. The products, their specifications, services and other information appearing in this publication are subject to change by Zarlink without notice. No warranty or guarantee express or implied is made regarding the capability, performance or suitability of any product or service. Information concerning possible methods of use is provided as a guide only and does not constitute any guarantee that such methods of use will be satisfactory in a specific piece of equipment. It is the user's responsibility to fully determine the performance and suitability of any equipment using such information and to ensure that any publication or data used is up to date and has not been superseded. Manufacturing does not necessarily include testing of all functions or parameters. These products are not suitable for use in any medical products whose failure to perform may result in significant injury or death to the user. All products and materials are sold and services provided subject to Zarlink's conditions of sale which are available on request.

Purchase of Zarlink's $I^{2} \mathrm{C}$ components conveys a licence under the Philips $\mathrm{I}^{2} \mathrm{C}$ Patent rights to use these components in and $\mathrm{I}^{2} \mathrm{C}$ System, provided that the system conforms to the $\mathrm{I}^{2} \mathrm{C}$ Standard Specification as defined by Philips.

Zarlink, ZL and the Zarlink Semiconductor logo are trademarks of Zarlink Semiconductor Inc.
Copyright Zarlink Semiconductor Inc. All Rights Reserved.

[^0]: 1. specification compliant over the range $8-35 \mathrm{MHz}$.
[^1]: 1. PVR - Personal Video Recorder where dual tuners allow the viewer to watch one channel and record another simultaneously, usually to a hard-disk recording system.
