

SILICON TRANSISTOR 2SC3588-Z

NPN SILICON TRIPLE DIFFUSED TRANSISTOR MP-3

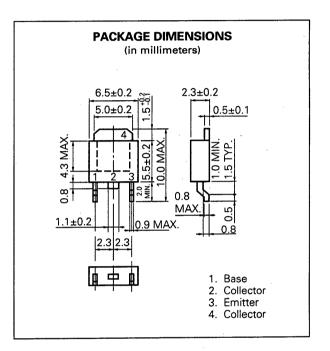
DESCRIPTION

2SC3588-Z is designed for High Voltage Switching, especially in Hybrid Integrated Circuits.

FEATURES

- High Voltage VcEo = 400 V
- Complement to 2SA1400-Z

QUALITY GRADE


Standard

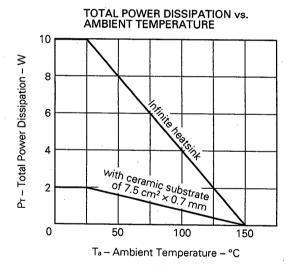
Please refer to "Quality grade on NEC Semiconductor Devices" (Document number IEI-1209) published by NEC Corporation to know the specification of quality grade on the devices and its recommended applications.

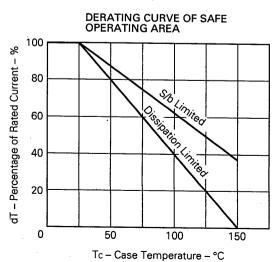
ABSOLUTE MAXIMUM RATINGS (Ta = 25 °C)

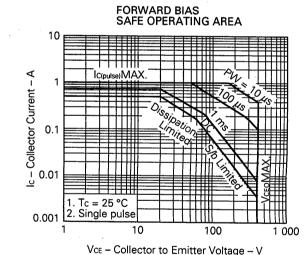
Collector to Base Voltage	Vсво	500	٧
Collector to Emitter Voltage	VCEO	400	٧
Emitter to Base Voltage	Vево	7	٧
Collector Current (DC)	lc	0.5	Α
Collector Current (Pulse)*	lc	1.0	Α
Total Power Dissipation (Ta = 25 °C)**	Рт	2.0	W
Junction Temperature	Tj	150	°C
Storage Temperature	Tstg	-55 to +150	°C

- PW ≤ 10 ms, Duty Cycle ≤ 50 %
- ** When mounted on ceramic substrate of 7.5 $cm^2 \times 0.7$ mm

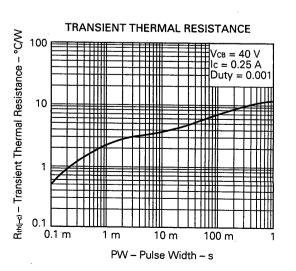
ELECTRICAL CHARACTERISTICS (Ta = 25 °C)

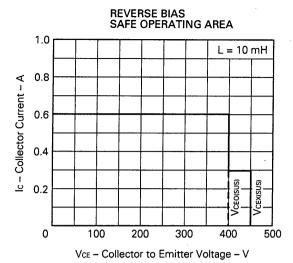

CHARACTERISTIC	SYMBOL	MIN.	TYP.	MAX.	UNIT	TEST CONDITIONS
Collector Cutoff Current	Ісво			10	μΑ	VCB = 400 V, IE = 0
Emitter Cutoff Current	ІЕВО			10	μΑ	VEB = 5.0 V, Ic = 0
DC Current Gain	hre1*	20 -	42	80		VcE = 5.0 V, Ic = 50 mA
DC Current Gain	hFE2*	10	20			VcE = 5.0 V, lc = 300 mA
Collector Saturation Voltage	VCE(sat)*		0.2	0.5	٧	Ic = 300 mA, IB = 60 mA
Base Saturation Voltage	VBE(sat)*		0.85	1.0	V	Ic = 300 mA, IB = 60 mA
Turn-on Time	ton		0.12	1.0	μs	Ic = 0.3 A, RL = 500 Ω
Storage Time	tstg		2.0	2.5	μs	Vcc = 150 V, PW = 50 μs I _{B1} = -I _{B2} = 0.06 A Duty Cycle ≦ 2 %
Fall Time	tf		0.35	1.0	μs	

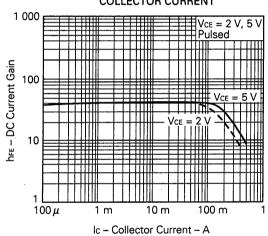

^{*} Pulsed: PW \leq 350 μ s, Duty Cycle \leq 2 %

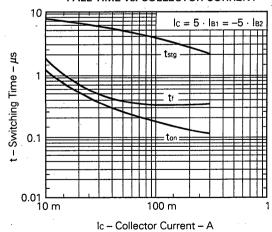

hfe Classification

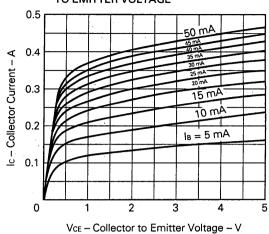
MARKING	М	L	К
hFE1	20 to 40	30 to 60	40 to 80

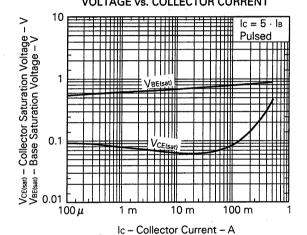

TYPICAL CHARACTERISTICS (Ta = 25 °C)










TURN ON TIME, STORAGE TIME AND FALL TIME vs. COLLECTOR CURRENT

COLLECTOR CURRENT vs. COLLECTOR TO EMITTER VOLTAGE

BASE AND COLLECTOR SATURATION VOLTAGE vs. COLLECTOR CURRENT

Reference

Application note name	No.
Quality control of NEC semiconductors devices.	TEI-1202
Quality control guide of semiconductors devices.	MEI-1202
Assembly manual of semiconductors devices.	IEI-1207
Design of Push-Pull Type Switching Regulators (Basic)	TEB-1002
Design of Push-Pull Type Switching Regulators (Applications)	TEB-1003
Optimum Base Drive Conditions of Switching Power Transistors	TEB-1014

No part of this document may be copied or reproduced in any form or by any means without the prior written consent of NEC Corporation.NEC Corporation assumes no responsibility for any errors which may appear in this document.

NEC Corporation does not assume any liability for infringement of patents, copyrights or other intellectual property rights of third parties by or arising from use of a device described herein or any other liability arising from use of such device. No license, either express, implied or otherwise, is granted under any patents, copyrights or other intellectual property rights of NEC Corporation or others.

The devices listed in this document are not suitable for use in aerospace equipment, submarine cables, nuclear reactor control systems and life support systems. If customers intend to use NEC devices for above applications or they intend to use "Standard" quality grade NEC devices for applications not intended by NEC, please contact our sales people in advance.

Application examples recommended by NEC Corporation.

Standard: Computer, Office equipment, Communication equipment, Test and Measurement equipment, Machine tools, Industrial robots, Audio and Visual equipment, Other consumer products, etc.

Special: Automotive and Transportation equipment, Traffic control systems, Antidisaster systems, Anticrime systems, etc.

M4 92.6