Preliminary

FAIRCHILD

January 2001
Revised August 2001
SEMICロNロபСTロRTM
74LCX32374

Low Voltage 32－Bit D－Type Flip－Flop with 5V Tolerant Inputs and Outputs（Preliminary）

General Description

The LCX32374 contains thirty－two non－inverting D－type flip－flops with 3－STATE outputs and is intended for bus ori－ ented applications．The device is byte controlled．A buff－ ered clock（CP）and Output Enable（ $\overline{\mathrm{OE}}$ ）are common to each byte and can be shorted together for full 32－bit opera－ tion．
The LCX32374 is designed for low voltage（2．5V or 3.3 V ） V_{CC} applications with capability of interfacing to a 5 V signal environment．

The LCX32374 is fabricated with an advanced CMOS tech－ nology to achieve high speed operation while maintaining CMOS low power dissipation．

Features

－ 5 V tolerant inputs and outputs
－ $2.3 \mathrm{~V}-3.6 \mathrm{~V} \mathrm{~V}_{\mathrm{CC}}$ specifications provided
■ 6.2 ns $t_{\text {PD }} \max \left(\mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}\right), 20 \mu \mathrm{~A} \mathrm{I}_{\mathrm{CC}} \max$
■ Power down high impedance inputs and outputs
－Supports live insertion／withdrawal（Note 1）
■ $\pm 24 \mathrm{~mA}$ output drive $\left(\mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V}\right)$
－Uses patented noise／EMI reduction circuitry
■ Latch－up performance exceeds 500 mA
■ ESD performance： Human body model＞2000V Machine model＞200V
－Packaged in plastic Fine－Pitch Ball Grid Array（FBGA） （Preliminary）
Note 1：To ensure the high－impedance state during power up or down，$\overline{O E}$ should be tied to V_{CC} through a pull－up resistor：the minimum value or the resistor is determined by the current－sourcing capability of the driver．

Ordering Code：

Preliminary

Connection Diagram

(Top Thru View)

Functional Description

The LCX32374 consists of thirty-two edge-triggered flip-flops with individual D-type inputs and 3-STATE true outputs. The device is byte controlled with each byte functioning identically, but independent of the other. The control pins can be shorted together to obtain full 32-bit operation. Each byte has a buffered clock and buffered Output Enable common to all flip-flops within that byte. The description which follows applies to each byte. Each flip-flop will store the state of their individual D inputs that meet the setup and hold time requirements on the LOW-to-HIGH Clock (CP_{n}) transition. With the Output Enable $\left(\overline{\mathrm{OE}}_{n}\right)$ LOW, the contents of the flip-flops are available at the outputs. When $\overline{\mathrm{OE}}_{\mathrm{n}}$ is HIGH, the outputs go to the high impedance state. Operation of the $\overline{\mathrm{OE}}_{\mathrm{n}}$ input does not affect the state of the flip-flops.

Pin Descriptions

Pin Names	Description
$\overline{\mathrm{OE}}_{\mathrm{n}}$	Output Enable Input (Active LOW)
CP_{n}	Clock Pulse Input
$\mathrm{I}_{0}-\mathrm{I}_{31}$	Inputs
$\mathrm{O}_{0}-\mathrm{O}_{31}$	Outputs

FBGA Pin Assignments

	1	2	3	4	5	6
A	O_{1}	O_{0}	$\overline{\mathrm{OE}}_{1}$	CP_{1}	I_{0}	I_{1}
B	O_{3}	O_{2}	GND	GND	I_{2}	I_{3}
C	O_{5}	O_{4}	$\mathrm{V}_{\text {CC }}$	V_{CC}	I_{4}	I_{5}
D	O_{7}	O_{6}	GND	GND	I_{6}	I_{7}
E	O_{9}	O_{8}	GND	GND	I_{8}	I_{9}
F	O_{11}	O_{10}	$V_{\text {CC }}$	V_{CC}	I_{10}	I_{11}
G	O_{13}	O_{12}	GND	GND	I_{12}	I_{13}
H	O_{14}	O_{15}	$\overline{\mathrm{OE}}_{2}$	CP_{2}	I_{15}	I_{14}
J	O_{17}	O_{16}	$\overline{\mathrm{OE}}_{3}$	CP_{3}	I_{16}	I_{17}
K	O_{19}	O_{18}	GND	GND	I_{18}	I_{19}
L	O_{21}	O_{20}	$\mathrm{V}_{\text {CC }}$	V_{CC}	I_{20}	I_{21}
M	O_{23}	O_{22}	GND	GND	I_{22}	I_{23}
N	O_{25}	O_{24}	GND	GND	I_{24}	I_{25}
P	O_{27}	O_{26}	$\mathrm{V}_{\text {CC }}$	$\mathrm{V}_{\text {CC }}$	I_{26}	I_{27}
R	O_{29}	O_{28}	GND	GND	I_{28}	I_{29}
T	O_{30}	O_{31}	$\overline{\mathrm{OE}}_{4}$	CP_{4}	I_{31}	l_{30}

Truth Table

Inputs			Outputs
$\mathbf{C P}_{\mathbf{n}}$	$\overline{\mathbf{O E}}_{\mathbf{n}}$	$\mathrm{I}_{\mathbf{n}}$	$\mathbf{O}_{\mathbf{n}}$
\sim	L	H	H
\sim	L	L	L
L	L	X	O_{0}
X	H	X	Z

$X=$ Immaterial
$\mathrm{Z}=$ High Impedance
$\mathrm{O}_{0}=$ Previous O_{0} before HIGH-to-LOW of CP
Preliminary

Absolute Maximum Ratings(Note 3)				
Symbol	Parameter	Value	Conditions	Units
V_{CC}	Supply Voltage	-0.5 to +7.0		V
V_{1}	DC Input Voltage	-0.5 to +7.0		V
V_{O}	DC Output Voltage	$\begin{gathered} -0.5 \text { to }+7.0 \\ -0.5 \text { to } V_{C C}+0.5 \end{gathered}$	3-STATE Output in HIGH or LOW State (Note 4)	V
I_{IK}	DC Input Diode Current	-50	$V_{1}<$ GND	mA
$\mathrm{I}_{\text {OK }}$	DC Output Diode Current	$\begin{array}{r} \hline-50 \\ +50 \\ \hline \end{array}$	$\begin{aligned} & \mathrm{V}_{\mathrm{O}}<\mathrm{GND} \\ & \mathrm{~V}_{\mathrm{O}}>\mathrm{V}_{\mathrm{CC}} \end{aligned}$	mA
I_{0}	DC Output Source/Sink Current	± 50		mA
I_{CC}	DC Supply Current per Supply Pin	± 100		mA
$\mathrm{I}_{\text {GND }}$	DC Ground Current per Ground Pin	± 100		mA
TSTG	Storage Temperature	-65 to +150		${ }^{\circ} \mathrm{C}$

Recommended Operating Conditions (Note 5)

Symbol	Parameter		Min	Max	Units
V_{CC}	Supply Voltage	Operating Data Retention	$\begin{aligned} & 2.0 \\ & 1.5 \end{aligned}$	$\begin{aligned} & \hline 3.6 \\ & 3.6 \end{aligned}$	V
V_{1}	Input Voltage		0	5.5	V
V_{O}	Output Voltage	HIGH or LOW State 3-STATE	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	$\begin{gathered} \hline \mathrm{V}_{\mathrm{CC}} \\ 5.5 \end{gathered}$	V
$\mathrm{IOH}^{\prime} / \mathrm{l}$	Output Current	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V}-3.6 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{CC}}=2.7 \mathrm{~V}-3.0 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{CC}}=2.3 \mathrm{~V}-2.7 \mathrm{~V} \end{aligned}$		$\begin{gathered} \pm 24 \\ \pm 12 \\ \pm 8 \end{gathered}$	mA
T_{A}	Free-Air Operating Temperature		-40	85	${ }^{\circ} \mathrm{C}$
$\Delta \mathrm{t} / \Delta \mathrm{V}$	Input Edge Rate, $\mathrm{V}_{\mathrm{IN}}=0.8 \mathrm{~V}-2.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=3.0 \mathrm{~V}$		0	10	ns/V

Note 3: The Absolute Maximum Ratings are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the Electrical Characteristics tables are not guaranteed at the Absolute Maximum Ratings. The "Recom mended Operating Conditions" table will define the conditions for actual device operation.
Note 4: I_{O} Absolute Maximum Rating must be observed.
Note 5: Unused inputs must be held HIGH or LOW. They may not float.

DC Electrical Characteristics

Symbol	Parameter	Conditions	V_{cc} (V)	$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$		Units
				Min	Max	
$\overline{\mathrm{V}_{\mathrm{IH}}}$	HIGH Level Input Voltage		2.3-2.7	1.7		V
			2.7-3.6	2.0		
V_{IL}	LOW Level Input Voltage		2.3-2.7		0.7	V
			2.7-3.6		0.8	
$\overline{\mathrm{V}} \mathrm{OH}$	HIGH Level Output Voltage	$\mathrm{I}_{\mathrm{OH}}=-100 \mu \mathrm{~A}$	2.3-3.6	$\mathrm{V}_{\mathrm{cc}}-0.2$		v
		$\mathrm{IOH}=-8 \mathrm{~mA}$	2.3	1.8		
		$\mathrm{I}_{\mathrm{OH}}=-12 \mathrm{~mA}$	2.7	2.2		
		$\mathrm{I}_{\mathrm{OH}}=-18 \mathrm{~mA}$	3.0	2.4		
		$\mathrm{I}_{\mathrm{OH}}=-24 \mathrm{~mA}$	3.0	2.2		
$\mathrm{V}_{\text {OL }}$	LOW Level Output Voltage	$\mathrm{I}^{\mathrm{OL}}=100 \mu \mathrm{~A}$	2.3-3.6		0.2	v
		$\mathrm{I}_{\text {OL }}=8 \mathrm{~mA}$	2.3		0.6	
		$\mathrm{l}_{\mathrm{OL}}=12 \mathrm{~mA}$	2.7		0.4	
		$\mathrm{l}_{\mathrm{OL}}=16 \mathrm{~mA}$	3.0		0.4	
		$\mathrm{l}_{\mathrm{OL}}=24 \mathrm{~mA}$	3.0		0.55	
${ }_{1}$	Input Leakage Current	$0 \leq \mathrm{V}_{1} \leq 5.5 \mathrm{~V}$	2.3-3.6		± 5.0	$\mu \mathrm{A}$
$\mathrm{I}_{\text {Oz }}$	3-STATE Output Leakage	$\begin{aligned} & 0 \leq \mathrm{V}_{\mathrm{O}} \leq 5.5 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{IH}} \text { or } \mathrm{V}_{\mathrm{IL}} \end{aligned}$	2.3-3.6		± 5.0	$\mu \mathrm{A}$
IofF	Power-Off Leakage Current	V_{1} or $\mathrm{V}_{\mathrm{O}}=5.5 \mathrm{~V}$	0		10	$\mu \mathrm{A}$

DC Electrical Characteristics (Coninued)						
symbol	Parameter	Condtions	v_{co}	$\mathrm{T}_{\mathrm{A}}=$	${ }^{6+856}$	Units
${ }_{\text {coc }}$	Ouissent Stuply Curent	$\mathrm{V}_{1}=\mathrm{Vccorcor} \mathrm{cos}$	${ }^{23-3,6}$	m		
			${ }^{23-3,6}$		${ }_{+20}^{20}$	${ }^{\mu}$
${ }^{1}$	Incoass in lcceper In	$\mathrm{V}_{\mathrm{H}}=\mathrm{V}_{\mathrm{cc}}-0.0 \mathrm{~V}$	2.3-3.6		500	«A

AC Electrical Characteristics

Symbol	Parameter	$\mathrm{T}_{\mathrm{A}}=-40^{\circ}$ to $+85^{\circ} \mathrm{C}, \mathrm{R}_{\mathrm{L}}=500 \Omega$						Units
		$\begin{gathered} \mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V} \pm 0.3 \mathrm{~V} \\ \hline \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \end{gathered}$		$\begin{aligned} & \hline \mathrm{V}_{\mathrm{CC}}=2.7 \mathrm{~V} \\ & \hline \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \end{aligned}$		$\begin{gathered} \hline \mathrm{V}_{\mathrm{CC}}=2.5 \mathrm{~V} \pm 0.2 \mathrm{~V} \\ \mathrm{C}_{\mathrm{L}}=30 \mathrm{pF} \end{gathered}$		
		Min	Max	Min	Max	Min	Max	
${ }_{\text {f MAX }}$	Maximum Clock Frequency	170						MHz
$\mathrm{t}_{\text {PHL }}$	Propagation Delay	1.5	6.2	1.5	6.5	1.5	7.4	
$t_{\text {PLL }}$	CP to O_{n}	1.5	6.2	1.5	6.5	1.5	7.4	ns
$\mathrm{t}_{\text {PZL }}$	Output Enable time	1.5	6.1	1.5	6.3	1.5	7.9	
$t_{\text {PZ }}$		1.5	6.1	1.5	6.3	1.5	7.9	ns
tpLZ	Output Disable Time	1.5	6.0	1.5	6.2	1.5	7.2	
$\mathrm{t}_{\text {PHz }}$		1.5	6.0	1.5	6.2	1.5	7.2	ns
$\mathrm{t}_{\text {s }}$	Setup Time	2.5		2.5		3.0		ns
$\mathrm{th}^{\text {ct }}$	Hold Time	1.5		1.5		2.0		ns
${ }^{\text {tw }}$	Pulse Width	3.0		3.0		3.5		ns

Dynamic Switching Characteristics

Symbol	Parameter	Conditions	V_{cc}	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	Units
			(V)	Typical	
$\mathrm{V}_{\text {OLP }}$	Quiet Output Dynamic Peak $\mathrm{V}_{\text {OL }}$	$\begin{aligned} & \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \mathrm{~V}_{\mathrm{IH}}=3.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{IL}}=0 \mathrm{~V} \\ & \mathrm{C}_{\mathrm{L}}=30 \mathrm{pF}, \mathrm{~V}_{\mathrm{IH}}=2.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{IL}}=0 \mathrm{~V} \end{aligned}$	$\begin{aligned} & \hline 3.3 \\ & 2.5 \end{aligned}$	$\begin{aligned} & \hline 0.8 \\ & 0.6 \end{aligned}$	V
$\mathrm{V}_{\text {OLV }}$	Quiet Output Dynamic Valley $\mathrm{V}_{\text {OL }}$	$\begin{aligned} & \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \mathrm{~V}_{\mathrm{IH}}=3.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{IL}}=0 \mathrm{~V} \\ & \mathrm{C}_{\mathrm{L}}=30 \mathrm{pF}, \mathrm{~V}_{\mathrm{IH}}=2.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{IL}}=0 \mathrm{~V} \end{aligned}$	$\begin{aligned} & \hline 3.3 \\ & 2.5 \end{aligned}$	$\begin{gathered} \hline-0.8 \\ 0.6 \end{gathered}$	V

Capacitance

Symbol	Carameter	Conditions	Typical	Units
C_{IN}	Input Capacitance	$\mathrm{V}_{\mathrm{CC}}=O$ Open, $\mathrm{V}_{\mathrm{I}}=0 \mathrm{~V}$ or V_{CC}	7	pF
$\mathrm{C}_{\mathrm{OUT}}$	Output Capacitance	$\mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{I}}=0 \mathrm{~V}$ or V_{CC}	8	pF
C_{PD}	Power Dissipation Capacitance	$\mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{I}}=0 \mathrm{~V}$ or $\mathrm{V}_{\mathrm{CC}}, \mathrm{f}=10 \mathrm{MHz}$	20	pF

AC LOADING and WAVEFORMS Generic for LCX Family

FIGURE 1. AC Test Circuit (C_{L} includes probe and jig capacitance)

Test	Switch
$\mathrm{t}_{\mathrm{PLH}}, \mathrm{t}_{\mathrm{PHL}}$	Open
$\mathrm{t}_{\mathrm{PZL}}, \mathrm{t}_{\mathrm{PLZ}}$	6 V at $\mathrm{V}_{\mathrm{CC}}=3.3 \pm 0.3 \mathrm{~V}$, and 2.7 V $\mathrm{~V}_{\mathrm{CC}} \times 2$ at $\mathrm{V}_{\mathrm{CC}}=2.5 \pm 0.2 \mathrm{~V}$
$\mathrm{t}_{\mathrm{PZH}}, \mathrm{t}_{\mathrm{PHZ}}$	GND

Waveform for Inverting and Non-Inverting Functions

Propagation Delay. Pulse Width and $t_{\text {rec }}$ Waveforms

3-STATE Output Low Enable and Disable Times for Logic

FIGURE 2. Waveforms
(Input Characteristics; $\mathbf{f}=\mathbf{1 M H z}, \mathrm{t}_{\mathrm{r}}=\mathrm{t}_{\mathrm{f}}=\mathbf{3 n s}$)

Symbol	$\mathrm{V}_{\mathbf{C C}}$		
	$\mathbf{3 . 3 V} \pm \mathbf{0 . 3 V}$	$\mathbf{2 . 7 V}$	$\mathbf{2 . 5 V} \pm \mathbf{0 . 2 V}$
V_{mi}	1.5 V	1.5 V	$\mathrm{~V}_{\mathrm{CC}} / 2$
$\mathrm{~V}_{\mathrm{mo}}$	1.5 V	1.5 V	$\mathrm{~V}_{\mathrm{CC}} / 2$
$\mathrm{~V}_{\mathrm{x}}$	$\mathrm{V}_{\mathrm{OL}}+0.3 \mathrm{~V}$	$\mathrm{~V}_{\mathrm{OL}}+0.3 \mathrm{~V}$	$\mathrm{~V}_{\mathrm{OL}}+0.15 \mathrm{~V}$
$\mathrm{~V}_{\mathrm{y}}$	$\mathrm{V}_{\mathrm{OH}}-0.3 \mathrm{~V}$	$\mathrm{~V}_{\mathrm{OH}}-0.3 \mathrm{~V}$	$\mathrm{~V}_{\mathrm{OH}}-0.15 \mathrm{~V}$

Physical Dimensions inches (millimeters) unless otherwise noted

NOTES:
A. THIS PACKAGE CONFORMS TO JEDEC M0-205
B. ALL DIMENSIONS IN MILLIMETERS
C. LAND PATTERN RECOMMENDATION: NSMD (Non Solder Mask Defined)
.35MM DIA PADS WITH A SOLDERMASK OPENING OF .45MM CONCENTRIC TO PADS
D. DRAWING CONFORMS TO ASME Y14.5M-1994

BGA96ArevE
96-Ball Fine-Pitch Ball Grid Array (FBGA), JEDEC MO-205, 5.5mm Wide Package Number BGA96A

Preliminary

Fairchild does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and Fairchild reserves the right at any time without notice to change said circuitry and specifications.

LIFE SUPPORT POLICY
FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
2. A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.
