Programmable RS-232/RS-485 Transceiver - +5V Only Operation - Software Programmable RS-232 or RS-485 Selection - Four RS-232 Transceivers in RS-232 Mode - Two RS-485 Full-Duplex Transceivers in RS-485 Mode - Two RS-232 Transceivers and One RS-485 Transceiver in Dual Mode - Self-Testing Loopback Mode - Full Driver Tri-State (Hi-Z) Control - Ideal for RS-232 to RS-485 conversion #### **DESCRIPTION...** The **SP331** is a programmable RS-232 and/or RS-485 transceiver IC. The **SP331** contains four drivers and four receivers when selected in RS-232 mode; and two drivers and two receivers when selected in RS-485 mode. The **SP331** also contains a dual mode which has two RS-232 drivers/receivers plus one differential RS-485 driver/receiver. The RS-232 transceivers can typically operate at 230kbps while adhering to the RS-232 specifications. The RS-485 transceivers can operate up to 10Mbps while adhering to the RS-485 specifications. The **SP331** includes a self-test loopback mode where the driver outputs are internally configured to the receiver inputs. This allows for easy diagnostic serial port testing without using an external loopback plug. The RS-232 and RS-485 drivers can be disabled (High-Z output) by controlling a set of four select pins. ## **ABSOLUTE MAXIMUM RATINGS** These are stress ratings only and functional operation of the device at these ratings or any other above those indicated in the operation sections of the specifications below is not implied. Exposure to absolute maximum rating conditions for extended periods of time may affect reliability. | V _{CC} | +7V | |---------------------|----------------| | Storage Temperature | 65°C to +150°C | | Power Dissipation | | | 28-pin Plastic DIP | 1000mW | | 28-pin Plastic SOIC | 1000mW | | Package Derating:
28-pin Plastic DIP | | |---|---------| | ø,, | 40 °C/W | | 28-pin Plastic SOIC | | | ø _{.JA} | 40 °C/W | ## **SPECIFICATIONS** Typically 25°C @ Vcc = +5V unless otherwise noted. | | MIN. | TYP. | MAX. | UNITS | CONDITIONS | |----------------------------|-------|------|------|-------|---| | LOGIC INPUTS | | | | | | | V_IL | | | 0.8 | Volts | | | V _{IH} | 2.0 | | | Volts | | | LOGIC OUTPUTS | | | | | | | V _{OL} | | | 0.4 | Volts | I _{OUT} = -3.2mA | | V _{OH} | 2.4 | | | Volts | I _{OUT} = 1.0mA | | RS-232 DRIVER | | | | | | | DC Characteristics | | | | | | | HIGH Level Output | +5.0 | | +15 | Volts | $R_L=3k\Omega$, $V_{IN}=0.8V$ | | LOW Level Output | -15.0 | | -5.0 | Volts | $R_{I}^{L}=3k\Omega$, $V_{IN}^{IN}=2.0V$ | | Open Circuit Voltage | -15 | | +15 | Volts | | | Short Circuit Current | | | ±100 | mA | $V_{OUT} = 0V$ | | Power Off Impedance | 300 | | | Ω | $V_{cc}^{001} = 0V, V_{out} = \pm 2.0V$ | | AC Characteristics | | | | | | | Slew Rate | | | 30 | V/µs | $R_1 = 3k\Omega$, $C_1 = 50pF$ | | | | | | ., | V _{CC} = +5.0V, T _A @ +25°C | | Transition Time | | | 1.5 | μs | $R_L=3k\Omega$, $C_L=2500pF$; | | | | | | · | between ±3V, T _△ @ +25°C | | Maximum Data Rate | 120 | 235 | | kbps | $R_1 = 3k\Omega$, $C_1 = 2500pF$ | | Propagation Delay | | | | | | | t _{PHL} | | 2 | 8 | μs | Measured from 1.5V of V _{IN} | | t _{PLH} | | 2 | 8 | μs | to 50% of V_{OUT} ; $R_L=3k\Omega$ | | RS-232 RECEIVER | | | | | | | DC Characteristics | | | | | | | HIGH Threshold | | 1.7 | 3.0 | Volts | | | LOW Threshold | 0.8 | 1.2 | | Volts | | | Receiver Open Circuit Bias | | | +2.0 | Volts | | | Input Impedance | 3 | 5 | 7 | kΩ | $V_{IN} = +15V \text{ to } -15V$ | | AC Characteristics | | | | | | | Maximum Data Rate | 120 | 235 | | kbps | | | Propagation Delay | | | | | | | t _{PHL} | | 0.25 | 1 | μs | Measured from 50% of V _{IN} | | t _{PLH} | | 0.25 | 1 | μs | to 1.5V of V _{OUT} . | | RS-485 DRIVER | | | | | | | DC Characteristics | | | | | | | Open Circuit Voltage | | | 6.0 | Volts | | | Differential Output | 1.5 | 1 | 5.0 | Volts | $R_1 = 54\Omega$, $C_1 = 50pF$ | Typically 25°C @ Vcc = +5V unless otherwise noted. | Typically 25°C @ Vcc = +5V unless otherw | MIN. | TYP. | MAX. | UNITS | CONDITIONS | |--|------------|----------|------------|----------|---| | RS-485 DRIVER | | | | | | | Balance | | | ±0.2 | Volts | $ V_{\tau} - \overline{V_{\tau}} $ | | Common-Mode Output | | | 3.0 | Volts | | | Output Current | 28.0 | | | mA | $R_L=54\Omega$ | | Short Circuit Current | | | ±250 | mA | Terminated in –7V to +10V | | AC Characteristics | | | | | | | Maximum Data Rate | 10 | | | Mbps | $R_1 = 54\Omega$ | | Output Transition Time | . • | 30 | 50 | ns | Rise/fall time, 10%–90% | | Propagation Delay | | | | | See Figures 2 & 4 | | t _{PHL} | | 80 | 120 | ns | $R_{DIFF} = 54\Omega, C_{L1} = C_{L2} = 100pF$ | | t _{PLH} | | 80 | 120 | ns | $R_{DIFF} = 54\Omega, C_{L1} = C_{L2} = 100pF$ | | Driver Output Skew | | 10 | 20 | ns | per Figure 4, t _{SKEW} = t _{DPLH} - t _{DPHL} | | RS-485 RECEIVER | | | | | | | DC Characteristics | | | | | | | Inputs Common Mode Range | -7.0 | | +12.0 | Volts | | | Receiver Sensitivity | 7.0 | ±0.2 | ±0.3 | Volts | $-7V \le V_{CM} \le +12V$ | | Input Impedance | 12 | 15 | | kΩ | $-7V \le V_{CM} \le +12V$ | | | | | | | Civi | | AC Characteristics | | | | | | | Maximum Data Rate | 10 | | | Mbps | Con Figures 2 8 6 | | Propagation Delay | | 130 | 200 | ns | See Figures 2 & 6 | | t _{PHL}
t _{PLH} | | 130 | 200 | ns | ${ m R_{DIFF}}$ =54 Ω , ${ m C_{L1}}$ =C $_{L2}$ =100pF ${ m R_{DIFF}}$ =54 Ω , ${ m C_{L1}}$ =C $_{L2}$ =100pF | | Differential Receiver Skew | | 10 | 20 | ns | $t_{\text{DIFF}} = 121, \ \theta_{11} = \theta_{12} = 100 \text{ f}$
$t_{\text{DIFF}} = 11, \ \text{L} = 100 \text{ f}$
$t_{\text{DIFF}} = 54\Omega,$ | | | | | | | $t_{SKEW} = t_{PLH} - t_{PHL} ; R_{DIFF} = 54\Omega,$
$C_{L1} = C_{L2} = 100pF$ | | | | | | | | | ENABLE TIMING | | | | | | | RS-485 Driver | | | | | | | Enable Time
Enable to Low | | 00 | 150 | 20 | See Figures 3 & 5 | | Enable to Low
Enable to High | | 90
90 | 150
150 | ns
ns | C_L =15pF, S_1 Closed
C_1 =15pF, S_2 Closed | | Disable Time | | 00 | 100 | 110 | See Figures 3 & 5 | | Disable From Low | | 80 | 120 | ns | C _L =15pF, S ₁ Closed | | Disable From High | | 80 | 120 | ns | C _L =15pF, S ₂ Closed | | | | | | | | | BOWED DECLIBERATION | | | | | | | POWER REQUIREMENTS | . 4 75 | | | \/o!+- | | | Supply Voltage V _{CC}
Supply Current I _{CC} | +4.75 | | +5.25 | Volts | | | No Load (T _x Disabled) | | 10 | 15 | mA | SEL A → SEL D = "0001" | | No Load (RS-232 Mode) | | 15 | 30 | mA | SEL_A → SEL_D = "0000" | | No Load (RS-485 Mode) | | 7 | 20 | mA | SEL_A ⇒ SEL_D = "1100" | | | | | | | | | ENVIRONMENTAL | | | | | | | Operating Temperature | 0 | | . 70 | | | | Commercial (C)
Industrial (E) | 0
–40 | | +70
+85 | °C
°C | | | Storage Temperature | -40
-65 | | +150 | ي
ي | | | | 30 | ## RECEIVER INPUT GRAPH ## **TEST CIRCUITS** Figure 1. Driver DC Test Load Circuit Figure 2. Driver/Receiver Timing Test Circuit Figure 3. Driver Timing Test Load #2 Circuit ## **SWITCHING WAVEFORMS** Figure 4. Driver Propagation Delays Figure 5. Driver Enable and Disable Times Figure 6. Receiver Propagation Delays Figure 7. Typical RS-232 Driver Output Figure 8. Typical RS-485 Driver Output Figure 9. SP331 Pinout Figure 10. Typical Operating Circuit ### **FUNCTION TABLE FOR SELECT PINS** | <u>A</u> | <u>B</u> | <u>C</u> | <u>D</u> | MODE | <u>FUNCTION</u> | |----------|----------|----------|----------|---------------|---| | 0 | 0 | 0 | 0 | RS-232 | All four RS-232 drivers active | | 0 | 0 | 0 | 1 | RS-232 | All four RS-232 drivers tri-state | | 0 | 0 | 1 | 0 | RS-232 | All four RS-232 drivers tri-state | | 0 | 0 | 1 | 1 | RS-232 | RS-232 (4ch) Loopback | | 0 | 1 | 0 | 0 | RS-232/RS-485 | T1 and T2 active RS-232; T3 tri-state RS-485 | | 0 | 1 | 0 | 1 | RS-232/RS-485 | T1 and T2 tri-state RS-232; T3 active RS-485 | | 0 | 1 | 1 | 0 | RS-232/RS-485 | T1 and T2 active RS-232; T3 tri-state RS-485 | | 0 | 1 | 1 | 1 | RS-232/RS-485 | RS-232 (2ch) / RS-485 (1ch) Loopback | | 1 | 0 | 0 | 0 | RS-485/RS-232 | T1 active RS-485; T2 and T3 active RS-232 | | 1 | 0 | 0 | 1 | RS-485/RS-232 | T1 tr-state RS-485; T3 active RS-232; T4 active RS232 | | 1 | 0 | 1 | 0 | RS-485/RS-232 | All RS-485 and RS-232 drivers tri-state | | 1 | 0 | 1 | 1 | RS-485/RS-232 | RS-485 (1ch) / RS-232 (2ch) Loopback | | 1 | 1 | 0 | 0 | RS-485 | T1 and T3 active RS-485 | | 1 | 1 | 0 | 1 | RS-485 | T1 tri-state RS-485; T3 active RS-485 | | 1 | 1 | 1 | 0 | RS-485 | T1 active RS-485; T3 tri-state RS-485 | | 1 | 1 | 1 | 1 | RS-485 | RS-485 (2ch) Loopback | Table 1. Mode Function Table. (Refer to Control Logic Confirmations for Block Diagrams) #### THEORY OF OPERATION The **SP331** is made up of four separate circuit blocks — the charge pump, drivers, receivers, and decoder. Each of these circuit blocks is described in more detail below. ## Charge-Pump The charge pump is a **Sipex**–patented design (U.S. 5,306,954) and uses a unique approach compared to older less efficient designs. The charge pump still requires four external capacitors, but uses a four–phase voltage shifting technique to attain symmetrical 10V power supplies. *Figure 15(a)* shows the waveform found on the positive side of capcitor C2, and *Figure 15(b)* shows the negative side of capcitor C2. There is a free–running oscillator that controls the four phases of the voltage shifting. A description of each phase follows. #### Phase 1 — V_{SS} charge storage —During this phase of the clock cycle, the positive side of capacitors C_1 and C_2 are initially charged to +5V. C_1^+ is then switched to ground and charge on C_1^- is transferred to C_2^- . Since C_2^+ is connected to +5V, the voltage potential across capacitor C_2 is now 10V. #### Phase 2 — V_{SS} transfer — Phase two of the clock connects the negative terminal of C_2 to the V_{SS} storage capacitor and the positive terminal of C_2 to ground, and transfers the generated –l0V to C_3 . Simultaneously, the positive side of capacitor C_1 is switched to +5V and the negative side is connected to ground. #### Phase 3 — V_{DD} charge storage — The third phase of the clock is identical to the first phase — the charge transferred in C_1 produces –5V in the negative terminal of C_1 , which is applied to the negative side of capacitor C_2 . Since C_2^+ is at +5V, the voltage potential across C_2 is 10V. #### Phase 4 — V_{DD} transfer — The fourth phase of the clock connects the negative terminal of C_2 to ground and transfers the generated l0V across C_2 to C_4 , the V_{DD} storage capacitor. Again, Figure 11. Charge Pump Phase 1. Figure 12. Charge Pump Phase 2. Figure 13. Charge Pump Phase 3. Figure 14. Charge Pump Phase 4. simultaneously with this, the positive side of capacitor C_1 is switched to +5V and the negative side is connected to ground, and the cycle begins again. Since both V+ and V⁻ are separately generated from V_{CC} in a no–load condition, V+ and V⁻ will be symmetrical. Older charge pump approaches that generate V⁻ from V+ will show a decrease in the magnitude of V⁻ compared to V+ due to the inherent inefficiencies in the design. The clock rate for the charge pump typically operates at 15kHz. The external capacitors must be 0.1µF with a 16V breakdown rating. ## **External Power Supplies** For applications that do not require +5V only, external supplies can be applied at the V+ and V^- pins. The value of the external supply voltages must be no greater than $\pm 10V$. The current drain for the $\pm 10V$ supplies is used for RS-232. For the RS-232 driver the current requirement will be 3.5mA per driver. The external power supplies should provide a power supply sequence of : $\pm 10V$, then $\pm 5V$, followed by $\pm 10V$. Figure 15. Charge Pump Waveforms #### **Drivers** The **SP331** has four independent RS-232 singleended drivers and two differential RS-485 drivers. Control for the mode selection is done via a four-bit control word. The drivers are prearranged such that for each mode of operation the relative position and functionality of the drivers are set up to accommodate the selected interface mode. As the mode of the drivers is changed, the electrical characteristics will change to support the requirements of clock, data, and control line signal levels. Unused driver inputs can be left floating; however, to ensure a desired state with no input signal, pull-up resistors to +5V or pull-down resistors to ground are suggested. Since the driver inputs are both TTL or CMOS compatible, any value resistor less than $100k\Omega$ will suffice. When in RS-232 mode, the single-ended RS-232 drivers produce compliant RS-232E and ITU V.28 signals. Each of the four drivers output single-ended bipolar signals in access of ± 5 V with a full load of 3k Ω and 2500pF applied as specified. These drivers can also operate at least 120kbps. When programmed to RS-485 mode, the differential RS-485 drivers produce complaint RS-485 signals. Each RS-485 driver outputs a unipolar signal on each output pin with a magnitude of at least 1.5V while loaded with a worst case of 54Ω between the driver's two output pins. The signal levels and drive capability of the RS-485 drivers allow the drivers to also comply with RS-422 levels. The transmission rate for the differential drivers is 10Mbps. #### Receivers The **SP331** has four single-ended receivers when programmed for RS-232 mode and two differential receivers when programmed for RS-485 mode. Control for the mode selection is done via a 4–bit control word, as in the drivers. As the operating mode of the receivers is changed, the electrical characteristics will change to support the requirements of the appropriate serial standard. Unused receiver inputs can be left floating without causing oscillation. To ensure a desired state of the receiver output, a pull–up resistor of $100k\Omega$ to +5V should be connected to the inverting input for a logic low, or the non–inverting input for a logic high. For single-ended receivers, a pull–down resistor to ground of $5k\Omega$ is internally connected, which will ensure a logic high output. The RS-232 receiver has a single–ended input with a threshold of 0.8V to 2.4V. The RS-232 receiver has an operating voltage range of $\pm 15V$ and can receive signals up to 120kbps. RS-232 receivers are used in RS-232 mode for all signal types include data, clock, and control lines of the RS-232 serial port. The differential RS-485 receiver has an input impedance of $15k\Omega$ and a differential threshold of $\pm 200 mV$. Since the characteristics of an RS-422 receiver are actually subsets of RS-485, the receivers for RS-422 requirements are identical to the RS-485 receivers. All of the differential receivers can receive data up to 10 Mbps. #### **Select Mode Pins** Similar to our SP500 family of multiprotocol products, the **SP331** has the ability to change the configuration of the drivers and receivers via a 4-bit switch. Referring to *Table 1*; RS-232 mode, RS-485 mode, or two different combinations of RS-232/RS-485 can be configured using the SEL_A and SEL_B pins. The drivers can be put into tri-state mode by using the SEL_C and SEL_D pins. All receivers remain active during any tri-state condition of the drivers. ## **Loopback Mode** Loopback is invoked by asserting "xx11" into the select pins. In RS-232/RS-485 or RS-485/RS-232 loopback mode, the RS-232 driver outputs loop back into the RS-232 receiver inputs and the RS-485 differential driver loops back into the RS-485 receiver. During loopback, the driver outputs and receiver inputs are disconnected from the outside world. The driver outputs are in tri-state and the receiver inputs are disabled. The input impedance of the receivers during loopback is approximately $15 \mathrm{k}\Omega$ to ground. ## SP331 CONTROL LOGIC CONFIGURATION (Refer to Table 1) | SEL A | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | |-------|--|---|--|---|---|--|---------------------------------------|---|--|--------------------------------|---|--| | SEL B | 0 | 0 | 0 | 1 | 1 | 1 | 0 | 0 | 0 | 1 | 1 | 1 | | SEL C | 0 | 0 | 1 | 0 | 0 | 1 | 0 | 0 | 1 | 0 | 0 | 1 | | SEL D | 0 | 1 | 0 | 0 | 1 | 0 | 0 | 1 | 0 | 0 | 1 | 0 | | SEL D | 26 TI1 27 TI2 28 TI3 1 TI4 19 RX1 20 RX2 21 RX3 22 RX4 | | TX1 6 TX2 7 TX3 4 TX4 3 RRI1 15 RRI2 16 RRI3 17 RRI4 18 | 26 TI1 27 TI2 28 TI3 19 RX1 20 RX2 21 RX3 | | TX1 6 TX2 7 TX3 4 TX4 3 RI1 15 RI2 16 RI3 17 RI4 18 | 28 TI3 1 TI4 19 RX1 21 RX3 22 RX4 | | TX1 6
TX2 7
TX3 4
TX4 3
RI1 15
RI2 16
RI3 17 | 26 TI1 28 TI3 19 RX1 21 RX3 | | TX1 6
TX2 7
TX3 4
TX4 3
RI1 15
RI2 16
RI3 17
RI4 18 | ## SP331 LOOPBACK (Refer to Table 1) | ORDERING INFORMATION | | | | | | | | |----------------------|-------------------|---------------------|--|--|--|--|--| | Model | Temperature Range | Package Types | | | | | | | SP331CT | 0°C to +70°C | 28-pin Plastic SOIC | | | | | | | SP331ET | -40°C to +85°C | | | | | | | Please consult the factory for pricing and availability on a Tape-On-Reel option. #### SIGNAL PROCESSING EXCELLENCE #### **Sipex Corporation** Headquarters and Sales Office 22 Linnell Circle Billerica, MA 01821 TEL: (978) 667-8700 FAX: (978) 670-9001 e-mail: sales@sipex.com Sales Office 233 South Hillview Drive Milpitas, CA 95035 TEL: (408) 934-7500 FAX: (408) 935-7600 Sipex Corporation reserves the right to make changes to any products described herein. Sipex does not assume any liability arising out of the application or use of any product or circuit described hereing, neither does it convey any license under its patent rights nor the rights of others.