features

- $3.8 \mathrm{nV} / \sqrt{\mathrm{Hz}}$ Input Noise Voltage
- 3.7mA Supply Current
- 200MHz Gain Bandwidth
- Low Total Harmonic Distortion: -85 dBc at 1 MHz
- 70V/ $\mu \mathrm{s}$ Slew Rate
- $400 \mu \mathrm{~V}$ Maximum Input Offset Voltage
- 300nA Maximum Input Bias Current
- Unity-Gain Stable
- Capacitive Load Stable Up to 100pF
- 23mA Minimum Output Current
- Specified at $\pm 5 \mathrm{~V}$ and Single 5 V

APPLICATIONS

- Video and RF Amplification
- ADSL, HDSL II, VDSL Receivers
- Active Filters
- Wideband Amplifiers
- Buffers
- Data Acquisition Systems
$\overline{\mathbf{L Y}}$, LTC and LT are registered trademarks of Linear Technology Corporation.

DESCRIPTIOn

The LT ${ }^{\circledR}$ 1722/LT1723/LT1724 are single/dual/quad, Iow noise, low power, high speed operational amplifiers. These products feature lower input offset voltage, lower input bias current and higher DC gain than devices with comparable bandwidth. The 200MHz gain bandwidth ensures high open-loop gain at video frequencies.
The low input noise voltage is achieved with reduced supply current. The total noise is optimized for a source resistance between 0.8 k and 12k. Due to the input bias current cancellation technique used, the resistance seen by each input does not need to be balanced.
The output drives a 150Ω load to $\pm 3 \mathrm{~V}$ with $\pm 5 \mathrm{~V}$ supplies. On a single 5 V supply the output swings from 1.5 V to 3.5 V with a 500Ω load connected to 2.5 V . The amplifier is unitygain stable (CLOAD $\leq 100 \mathrm{pF}$).
The LT1722/LT1723/LT1724 are manufactured on Linear Technology's advanced low voltage complementary bipolar process. The LT1722 is available in the SO-8 and 5 -pin SOT-23 packages. The LT1723 is available in the S0-8 and MS8 packages. The LT1724 is available in the 14-lead S0 package.

TYPICAL APPLICATION

Differential Video Line Driver

Line Driver Mulitburst Video Signal

ABSOLUTE MAXIMUM RATINGS (Note 1)

Total Supply Voltage (V^{+}to V^{-}) 12.6 V Input Voltage ... $\pm \mathrm{V}_{S}$ Differential Input Voltage (Note 2) $\pm 0.7 \mathrm{~V}$ Input Current (Note 2) \qquad

Operating Temperature Range (Note 4) ... $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$ Specified Temperature Range (Note 5) ... $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$ Maximum Junction Temperature $150^{\circ} \mathrm{C}$
Storage Temperature Range \qquad $-65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$ Lead Temperature (Soldering, 10 sec)................ $300^{\circ} \mathrm{C}$

PACKAGE/ORDER INFORMATION

	ORDER PART NUMBER		ORDER PART NUMBER
	$\begin{aligned} & \text { LT1722CS8 } \\ & \text { LT1722IS8 } \end{aligned}$		$\begin{aligned} & \text { LT1722CS5 } \\ & \text { LT1722IS5 } \end{aligned}$
	S8 PART MARKING		S5 PART MARKING*
	$\begin{aligned} & 1722 \\ & 17221 \end{aligned}$		LTZB
	ORDER PART NUMBER		ORDER PART NUMBER
	$\begin{aligned} & \hline \text { LT1723CS8 } \\ & \text { LT1723IS8 } \end{aligned}$		LT1723CMS8 LT1723IMS8
	S8 PART MARKING		MS8 PART MARKING
	$\begin{aligned} & 1723 \\ & 17231 \end{aligned}$		LTYC LTZA
	ORDER PART NUMBER		
	$\begin{aligned} & \text { LT1724CS } \\ & \text { LT1724IS } \end{aligned}$		

Consult LTC Marketing for parts specified with wider operating temperature ranges.
*The temperature grades are identified by a label on the shipping container.

ELECTRICAL CHARACTGRISTICS $T_{A}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{S}}= \pm 5 \mathrm{~V}, \mathrm{v}_{\mathrm{cm}}=0 \mathrm{~V}$, unless otherwise noted.

SYMBOL	PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
$\mathrm{V}_{\text {OS }}$	Input Offset Voltage	(Note 6) LT1722 SOT-23 and LT1723 MS8		$\begin{aligned} & 100 \\ & 150 \end{aligned}$	$\begin{aligned} & 400 \\ & 650 \end{aligned}$	$\begin{aligned} & \overline{\mu V} \\ & \mu \mathrm{~V} \end{aligned}$
Ios	Input Offset Current			40	300	nA
I_{B}	Input Bias Current			40	300	nA
e_{n}	Input Noise Voltage	$\mathrm{f}=10 \mathrm{kHz}$		3.8		$\mathrm{nV} / \sqrt{\mathrm{Hz}}$
i_{n}	Input Noise Current	$\mathrm{f}=10 \mathrm{kHz}$		1.2		$\mathrm{pA} / \sqrt{\mathrm{Hz}}$
$\mathrm{R}_{\text {IN }}$	Input Resistance	$V_{C M}= \pm 3.5 \mathrm{~V}$ Differential	5	$\begin{aligned} & 35 \\ & 50 \end{aligned}$		$\begin{gathered} \overline{\mathrm{M} \Omega} \\ \mathrm{k} \Omega \end{gathered}$
$\mathrm{C}_{\text {IN }}$	Input Capacitance			2		pF
	Input Voltage Range + Input Voltage Range -		3.5	$\begin{gathered} \hline 4 \\ -4 \end{gathered}$	-3.5	V
CMRR	Common Mode Rejection Ratio	$\mathrm{V}_{\text {CM }}= \pm 3.5 \mathrm{~V}$	80	100		dB
PSRR	Power Supply Rejection Ratio	$\mathrm{V}_{S}= \pm 2.3 \mathrm{~V}$ to $\pm 5.5 \mathrm{~V}$	78	90		dB
AVOL	Large-Signal Voltage Gain	$\begin{aligned} & V_{\text {OUT }}= \pm 3 V, R_{L}=500 \Omega \\ & V_{\text {OUT }}= \pm 3 V, R_{L}=150 \Omega \end{aligned}$	$\begin{gathered} 10 \\ 7 \end{gathered}$	$\begin{aligned} & \hline 17 \\ & 14 \end{aligned}$		V / mV V / mV
V OUT	Output Swing	$\begin{aligned} & R_{L}=500 \Omega, V_{I N}= \pm 10 \mathrm{mV} \\ & R_{L}=150 \Omega, V_{I N}= \pm 10 \mathrm{mV} \\ & \hline \end{aligned}$	$\begin{aligned} & \pm 3.2 \\ & \pm 3.1 \end{aligned}$	$\begin{aligned} & \pm 3.8 \\ & \pm 3.4 \end{aligned}$		V
IOUT	Output Current	$\mathrm{V}_{\text {OUT }}= \pm 3 \mathrm{~V}, 10 \mathrm{mV}$ Overdrive	23	50		mA
ISC	Short-Circuit Current	$\mathrm{V}_{\text {OUT }}=0 \mathrm{~V}, \mathrm{~V}_{\text {IN }}= \pm 1 \mathrm{~V}$	35	90		mA
SR	Slew Rate	$A_{V}=-1,($ Note 7)	45	70		$\mathrm{V} / \mathrm{\mu s}$
	Full Power Bandwidth	3V peak, (Note 8)		3.7		MHz
GBW	Gain Bandwidth	$\mathrm{f}=200 \mathrm{kHz}$	115	200		MHz
$\mathrm{t}_{\text {S }}$	Settling Time	$\begin{aligned} & A_{V}=-1,2 V, 0.1 \% \\ & A_{V}=-1,2 V, 0.01 \% \end{aligned}$		$\begin{gathered} 91 \\ 112 \end{gathered}$		ns ns
$\mathrm{tr}_{\mathrm{r}}, \mathrm{t}_{\mathrm{f}}$	Rise Time, Fall Time	$A_{V}=1,10 \%$ to $90 \%, V_{\text {IN }}=0.2 V_{\text {P-P, }}, R_{L}=150 \Omega$		6		ns
	Overshoot	$A_{V}=1, V_{I N}=0.2 V_{P-P}, R_{L}=150 \Omega, R_{F}=0 \Omega$		15		\%
	Propagation Delay	$50 \% \mathrm{~V}_{\text {IN }}$ to $50 \% \mathrm{~V}_{\text {OUT }}=0.2 \mathrm{~V}_{\text {P-P, }} \mathrm{R}_{\mathrm{L}}=150 \Omega$		3		ns
R_{0}	Output Resistance	$A_{V}=1, f=1 \mathrm{MHz}$		0.15		Ω
	Channel Separation	$\mathrm{V}_{\text {OUT }}= \pm 3 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=150 \Omega$	82	90		dB
I_{S}	Supply Current	Per Amplifier		3.7	4.5	mA

$T_{A}=25^{\circ} C . V_{S}=5 \mathrm{~V}, V_{C M}=2.5 \mathrm{~V}, R_{L}$ to 2.5 V , unless otherwise noted.

SYMBOL	PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
$\mathrm{V}_{\text {OS }}$	Input Offset Voltage	(Note 6) LT1722 SOT-23 and LT1723 MS8		$\begin{aligned} & 250 \\ & 350 \end{aligned}$	$\begin{aligned} & 550 \\ & 800 \end{aligned}$	$\mu \mathrm{V}$ $\mu \mathrm{V}$
Ios	Input Offset Current			20	300	nA
I_{B}	Input Bias Current			20	300	nA
e_{n}	Input Noise Voltage	$\mathrm{f}=10 \mathrm{kHz}$		4		$\mathrm{nV} / \sqrt{\mathrm{Hz}}$
i_{n}	Input Noise Current	$f=10 \mathrm{kHz}$		1.1		$\mathrm{pA} / \sqrt{\mathrm{Hz}}$
$\mathrm{R}_{\text {IN }}$	Input Resistance	$\begin{aligned} & \mathrm{V}_{\mathrm{CM}}=1.5 \mathrm{~V} \text { to } 3.5 \mathrm{~V} \\ & \text { Differential } \end{aligned}$	5	$\begin{aligned} & 32 \\ & 55 \end{aligned}$		$M \Omega$ $\mathrm{k} \Omega$
$\mathrm{C}_{\text {IN }}$	Input Capacitance			2		pF
	Input Voltage Range + Input Voltage Range -		3.5	$\begin{aligned} & 4 \\ & 1 \end{aligned}$	1.5	V
CMRR	Common Mode Rejection Ratio	$\mathrm{V}_{\text {CM }}=1.5 \mathrm{~V}$ to 3.5 V	80	100		dB
AVOL	Large-Signal Voltage Gain	$\mathrm{V}_{\text {OUT }}=1.5 \mathrm{~V}$ to $3.5 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=500 \Omega$	4	10		V / mV
$V_{\text {OUT }}$	Output Swing+ Output Swing-	$\begin{aligned} & R_{L}=500 \Omega, V_{I N}= \pm 10 \mathrm{mV} \\ & R_{L}=500 \Omega, V_{I N}= \pm 10 \mathrm{mV} \end{aligned}$	3.6	$\begin{aligned} & 3.8 \\ & 0.9 \end{aligned}$	1.4	V

3

SYMBOL	PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
IOUT	Output Current	$\mathrm{V}_{\text {OUT }}=3.5 \mathrm{~V}$ or $1.5 \mathrm{~V}, 10 \mathrm{mV}$ Overdrive	10	20		mA
ISC	Short-Circuit Current	$\mathrm{V}_{\text {OUT }}=2.5 \mathrm{~V}, \mathrm{~V}_{\text {IN }}= \pm 1 \mathrm{~V}$	22	55		mA
SR	Slew Rate	$A_{V}=-1$, (Note 7)	40	70		$\mathrm{V} / \mathrm{\mu s}$
	Full Power Bandwidth	1V peak, (Note 8)		8.7		MHz
GBW	Gain Bandwidth (Note 10)	$\mathrm{f}=200 \mathrm{kHz}$	115	180		MHz
$\mathrm{tr}_{\text {r }} \mathrm{t}_{\mathrm{f}}$	Rise Time, Fall Time	$A_{V}=1,10 \%$ to $90 \%, V_{I N}=0.2 V_{P-P}, R_{L}=500 \Omega$		5		ns
	Overshoot	$A_{V}=1, V_{\text {IN }}=0.2 V_{P-P,}, R_{L}=500 \Omega$		16		\%
	Propagation Delay	$50 \% \mathrm{~V}_{\text {IN }}$ to $50 \% \mathrm{~V}_{\text {OUT }}, 0.1 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=500 \Omega$		3		ns
R_{0}	Output Resistance	$A_{V}=1, \mathrm{f}=1 \mathrm{MHz}$		0.19		Ω
	Channel Separation	$\mathrm{V}_{\text {OUT }}=1.5 \mathrm{~V}$ to $3.5 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=500 \Omega$	82	90		dB
Is	Supply Current	Per Amplifier		3.8	5	mA

The \bullet denotes the specifications which apply over the temperature range of $0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 70^{\circ} \mathrm{C} . \mathrm{V}_{\mathrm{S}}= \pm 5 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=0 \mathrm{~V}$, unless otherwise noted. (Note 5)

SYMBOL	PARAMETER	CONDITIONS		MIN	TYP	MAX	UNITS
$\mathrm{V}_{\text {OS }}$	Input Offset Voltage	(Note 6) LT1722 SOT-23 and LT1723 MS8	\bullet			$\begin{aligned} & 700 \\ & 850 \end{aligned}$	$\mu \mathrm{V}$ $\mu \mathrm{V}$
	Input $\mathrm{V}_{\text {OS }}$ Drift	(Note 9)	\bullet		3	7	$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
Ios	Input Offset Current		\bullet			350	nA
I_{B}	Input Bias Current		\bullet			350	nA
	Input Voltage Range + Input Voltage Range -		\bullet	3.5		-3.5	V
CMRR	Common Mode Rejection Ratio	$\mathrm{V}_{\text {CM }}= \pm 3.5 \mathrm{~V}$	\bullet	75			dB
PSRR	Power Supply Rejection Ratio	$\mathrm{V}_{S}= \pm 2.3 \mathrm{~V}$ to $\pm 5.5 \mathrm{~V}$	\bullet	76			dB
AVOL	Large-Signal Voltage Gain	$\begin{aligned} & V_{\text {OUT }}= \pm 3 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=500 \Omega \\ & \mathrm{~V}_{\text {OUT }}= \pm 3 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=150 \Omega \end{aligned}$	\bullet	$\begin{aligned} & 9 \\ & 6 \end{aligned}$			$\begin{aligned} & \mathrm{V} / \mathrm{mV} \\ & \mathrm{~V} / \mathrm{mV} \end{aligned}$
V OUT	Output Swing	$\begin{aligned} & R_{L}=500 \Omega, V_{I N}= \pm 10 \mathrm{mV} \\ & R_{L}=150 \Omega, V_{I N}= \pm 10 \mathrm{mV} \end{aligned}$	\bullet	$\begin{aligned} & \pm 3.15 \\ & \pm 3.05 \end{aligned}$			V
IOUT	Output Current	$\mathrm{V}_{\text {OUT }}= \pm 3 \mathrm{~V}, 10 \mathrm{mV}$ Overdrive	\bullet	22			mA
ISC	Short-Circuit Current	$\mathrm{V}_{\text {OUT }}=0 \mathrm{~V}, \mathrm{~V}_{\text {IN }}= \pm 1 \mathrm{~V}$	\bullet	30			mA
SR	Slew Rate	$A_{V}=-1$, (Note 7)	\bullet	35			$\mathrm{V} / \mathrm{\mu s}$
GBW	Gain Bandwidth	$\mathrm{f}=200 \mathrm{kHz}$	-	100			MHz
	Channel Separation	$V_{\text {OUT }}= \pm 3 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=150 \Omega$	\bullet	81			dB
Is	Supply Current	Per Amplifier	-			5.45	mA

ELECTRICAL CHARACTERISTICS The • denotes the specifications which apply over the temperature range of $0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 70^{\circ} \mathrm{C}$. $\mathrm{V}_{\mathrm{S}}=5 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=2.5 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}$ to 2.5 V , unless otherwise noted. (Note 5)

SYMBOL	PARAMETER	CONDITIONS		MIN	TYP	MAX	UNITS
$V_{0 S}$	Input Offset Voltage	$\begin{aligned} & \text { (Note 6) } \\ & \text { LT1722 S0T-23 and LT1723MS8 } \end{aligned}$	\bullet			$\begin{aligned} & 850 \\ & 950 \end{aligned}$	$\begin{aligned} & \mu \mathrm{V} \\ & \mu \mathrm{~V} \end{aligned}$
	Input $\mathrm{V}_{\text {OS }}$ Drift	(Note 9)	\bullet		3	7	$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
$\mathrm{I}_{0 S}$	Input Offset Current		\bullet			350	nA
$\underline{I_{B}}$	Input Bias Current		\bullet			350	nA
	Input Voltage Range + Input Voltage Range -		\bullet	3.5		1.5	V
CMRR	Common Mode Rejection Ratio	$\mathrm{V}_{\text {CM }}=1.5 \mathrm{~V}$ to 3.5 V	\bullet	75			dB
AVOL	Large-Signal Voltage Gain	$\mathrm{V}_{\text {OUT }}=1.5 \mathrm{~V}$ to 3.5V, $\mathrm{R}_{\mathrm{L}}=500 \Omega$	\bullet	3			V / mV
$\mathrm{V}_{\text {OUT }}$	Output Swing+ Output Swing-	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=500 \Omega, \mathrm{~V}_{\mathrm{IN}}= \pm 10 \mathrm{mV} \\ & \mathrm{R}_{\mathrm{L}}=500 \Omega, \mathrm{~V}_{\mathrm{IN}}= \pm 10 \mathrm{mV} \end{aligned}$	\bullet	3.55		1.45	V
IOUT	Output Current	$\mathrm{V}_{\text {OUT }}=3.5 \mathrm{~V}$ or $1.5 \mathrm{~V}, 10 \mathrm{mV}$ Overdrive	\bullet	9			mA
ISC	Short-Circuit Current	$\mathrm{V}_{\text {OUT }}=2.5 \mathrm{~V}, \mathrm{~V}_{\text {IN }}= \pm 1 \mathrm{~V}$	\bullet	11			mA
SR	Slew Rate	$A_{V}=-1,($ Note 7)	\bullet	30			$\mathrm{V} / \mathrm{\mu s}$
GBW	Gain Bandwidth (Note 10)	$\mathrm{f}=200 \mathrm{kHz}$	\bullet	100			MHz
	Channel Separation	$\mathrm{V}_{\text {OUT }}=1.5 \mathrm{~V}$ to 3.5V, $\mathrm{R}_{\mathrm{L}}=500 \Omega$	\bullet	81			dB
I_{S}	Supply Current		\bullet			5.95	mA

The \bullet denotes the specifications which apply over the temperature range of $-40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 85^{\circ} \mathrm{C} . \mathrm{V}_{\mathrm{S}}= \pm 5 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=0 \mathrm{~V}$, unless otherwise noted. (Note 5)

SYMBOL	PARAMETER	CONDITIONS		MIN	TYP	MAX	UNITS
$\mathrm{V}_{\text {OS }}$	Input Offset Voltage	(Note 6) LT1722 SOT-23 and LT1723 MS8	\bullet			$\begin{gathered} 900 \\ 1100 \end{gathered}$	$\mu \mathrm{V}$ $\mu \mathrm{V}$
	Input $\mathrm{V}_{\text {OS }}$ Drift	(Note 9)	\bullet		3	10	$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
Ios	Input Offset Current		\bullet			400	nA
I_{B}	Input Bias Current		\bullet			400	nA
	Input Voltage Range + Input Voltage Range -		\bullet	3.5		-3.5	V
CMRR	Common Mode Rejection Ratio	$\mathrm{V}_{\mathrm{CM}}= \pm 3.5 \mathrm{~V}$	\bullet	75			dB
PSRR	Power Supply Rejection Ratio	$\mathrm{V}_{S}= \pm 2.0 \mathrm{~V}$ to $\pm 5.5 \mathrm{~V}$	\bullet	75			dB
Avol	Large-Signal Voltage Gain	$\begin{aligned} & V_{\text {OUT }}= \pm 3 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=500 \Omega \\ & \mathrm{~V}_{\text {OUT }}= \pm 3 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=150 \Omega \end{aligned}$		$\begin{aligned} & 8 \\ & 5 \end{aligned}$			V / mV V / mV
$V_{\text {OUT }}$	Output Swing	$\begin{aligned} & R_{L}=500 \Omega, V_{I N}= \pm 10 \mathrm{mV} \\ & R_{L}=150 \Omega, V_{I N}= \pm 10 \mathrm{mV} \end{aligned}$		$\begin{aligned} & \pm 3.1 \\ & \pm 3.0 \end{aligned}$			V
IOUT	Output Current	$V_{\text {OUT }}= \pm 3 \mathrm{~V}, 10 \mathrm{mV}$ Overdrive	\bullet	20			mA
ISC	Short-Circuit Current	$\mathrm{V}_{\text {OUT }}=0 \mathrm{~V}, \mathrm{~V}_{\text {IN }}= \pm 1 \mathrm{~V}$	\bullet	25			mA
SR	Slew Rate	$A_{V}=-1$, (Note 7)	\bullet	25			V/ $\mu \mathrm{S}$
GBW	Gain Bandwidth	$\mathrm{f}=200 \mathrm{kHz}$	\bullet	90			MHz
	Channel Separation	$\mathrm{V}_{\text {OUT }}= \pm 3 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=150 \Omega$	\bullet	80			dB
Is	Supply Current		\bullet			5.95	mA

ELECTRICAL CHARACTERISTICS The odenotes the speefiriations wich paply verer the emperature ange of

 $-40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 85^{\circ} \mathrm{C} . \mathrm{V}_{\mathrm{S}}=5 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=2.5 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}$ to 2.5 V , unless otherwise noted. (Note 5)| SYMBOL | PARAMETER | CONDITIONS | | MIN | TYP | MAX | UNITS |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{V}_{\text {OS }}$ | Input Offset Voltage | (Note 6)
 LT1722 SOT-23 and LT1723 MS8 | \bullet | | | $\begin{aligned} & 1000 \\ & 1200 \end{aligned}$ | $\mu \mathrm{V}$ $\mu \mathrm{V}$ |
| | Input $\mathrm{V}_{\text {OS }}$ Drift | (Note 9) | \bullet | | 3 | 10 | $\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$ |
| los | Input Offset Current | | \bullet | | | 400 | nA |
| I_{B} | Input Bias Current | | \bullet | | | 400 | nA |
| | Input Voltage Range + Input Voltage Range - | | \bullet | 3.5 | | 1.5 | V |
| CMRR | Common Mode Rejection Ratio | $\mathrm{V}_{\mathrm{CM}}=1.5 \mathrm{~V}$ to 3.5 V | \bullet | 75 | | | dB |
| A VOL | Large-Signal Voltage Gain | $\mathrm{V}_{\text {OUT }}=1.5 \mathrm{~V}$ to $3.5 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=500 \Omega$ | \bullet | 2 | | | V / mV |
| V OUT | Output Swing+ Output Swing- | $\begin{aligned} & R_{L}=500 \Omega, V_{I N}= \pm 10 \mathrm{mV} \\ & R_{L}=500 \Omega, V_{I N}= \pm 10 \mathrm{mV} \end{aligned}$ | \bullet | 3.5 | | 1.5 | V |
| IOUT | Output Current | $\mathrm{V}_{\text {OUT }}=3.5 \mathrm{~V}$ or $1.5 \mathrm{~V}, 30 \mathrm{mV}$ Overdrive | \bullet | 8 | | | mA |
| ISC | Short-Circuit Current | $\mathrm{V}_{\text {OUT }}=2.5 \mathrm{~V}, \mathrm{~V}_{\text {IN }}= \pm 1 \mathrm{~V}$ | \bullet | 10 | | | mA |
| SR | Slew Rate | $\mathrm{A}_{V}=-1$, (Note 7) | \bullet | 20 | | | $\mathrm{V} / \mathrm{\mu s}$ |
| GBW | Gain Bandwidth (Note 10) | $\mathrm{f}=200 \mathrm{kHz}$ | \bullet | 90 | | | MHz |
| | Channel Separation | $\mathrm{V}_{\text {OUT }}=1.5 \mathrm{~V}$ to $3.5 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=500 \Omega$ | \bullet | 80 | | | dB |
| Is | Supply Current | | \bullet | | | 6.45 | mA |

Note 1: Absolute Maximum Ratings are those values beyond which the life of a device may be impaired.
Note 2: The inputs are protected by back-to-back diodes. If the differential input voltage exceeds 0.7 V , the input current should be limited to less than 10 mA .
Note 3: A heat sink may be required to keep the junction temperature below the absolute maximum rating when the output is shorted indefinitely.
Note 4: The LT1722C/LT1722I, LT1723C/LT1723I, LT1724C/LT1724I are guaranteed functional over the operating temperature range of $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$.
Note 5: The LT1722C/LT1723C/LT1724C are guaranteed to meet specified performance from $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$. The LT1722C/LT1723C/LT1724C are
designed, characterized and expected to meet specified performance from $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$ but are not tested or QA sampled at these temperatures. The LT1722I/LT1723I/LT1724I are guaranteed to meet specified performance from $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$.
Note 6: Input offset voltage is pulse tested and is exclusive of warm-up drift.
Note 7: Slew rate is measured between $\pm 2 \mathrm{~V}$ on the output with $\pm 3 \mathrm{~V}$ input for $\pm 5 \mathrm{~V}$ supplies and $\pm 1 \mathrm{~V}$ on the output with $\pm 1.5 \mathrm{~V}$ input for single 5 V supply. (For 5 V supply, the voltage levels are 2.5 V referred.)
Note 8: Full power bandwidth is calculated from the slew rate: FPBW $=\mathrm{SR} / 2 \pi \mathrm{~V}_{\mathrm{P}}$
Note 9 : This parameter is not 100% tested.
Note 10 : This parameter is guaranteed through correlation with slew rate.

TYPICAL PERFORMANCE CHARACTERISTICS

TYPICAL PERFORMANCE CHARACTERISTICS

1723 G10

1723 G13

Output Voltage Swing vs Supply Voltage

1723 G08
Overshoot vs Capacitive Load

Undistorted Output Swing vs Frequency

1723 G15
Output Impedance vs Frequency

Output Short-Circuit Current vs Temperature

Gain and Phase vs Frequency

TYPICAL PGRFORMANCE CHARACTERISTICS

1723 G19

1723 G22

Gain vs Frequency, $A_{V}=1$

Power Supply Rejection Ratio
vs Frequency

1723 G23

723 G40

Gain vs Frequency, $A_{V=-1}$

Common Mode Rejection Ratio vs Frequency

1723 G24

Gain Bandwidth
vs Supply Voltage

LT1722/LT1723/LT1724

TYPICAL PGRFORMARCE CHARACTERISTICS

1723 G31

Harmonic Distortion vs Frequency $A_{V}=2, V_{0}=2 V_{P-P}$

1723 G32

TYPICAL PERFORMANCE CHARACTERISTICS

APPLICATIONS InFORMATION

The LT1722/LT1723/LT1724 may be inserted directly into many operational amplifier applications improving both DC and AC performance, as well as noise and distortion.

Layout and Passive Components

The LT1722/LT1723/LT1724 amplifiers are more tolerant of less than ideal layouts than other high speed amplifiers. For maximum performance (for example, fast settling time) use a ground plane, short lead lengths and RF quality bypass capacitors $(0.01 \mu \mathrm{~F}$ to $0.1 \mu \mathrm{~F})$. For high drive current applications, use low ESR supply bypass capacitors ($1 \mu \mathrm{~F}$ to $10 \mu \mathrm{~F}$ tantalum). The output/input parasitic coupling should be minimized when high frequency performance is required.
The parallel combination of the feedback resistor and gain setting resistor on the inverting input combine with the input capacitance to form a pole that can cause peaking or even oscillations. In parallel with the feedback resistor, a capacitor of value:

$$
\mathrm{C}_{\mathrm{F}}>\mathrm{R}_{\mathrm{G}} \cdot \mathrm{C}_{\text {IN }} / \mathrm{R}_{\mathrm{F}}
$$

should be used to cancel the input pole and optimize dynamic performance. For unity-gain applications where a feedback resistor is used, such as an I-to-V converter, C_{F} should be five times greater than C_{IN}; an optimum value for C_{F} is 10 pF .

Input Considerations

Each of the LT1722/LT1723/LT1724 inputs is protected with back-to-back diodes across the bases of the NPN input devices. If greater than 0.7 V differential input voltages are anticipated, the input current must be limited to less than 10 mA with an external series resistor. Each input also has two ESD clamp diodes-one to each supply. If an input is driven beyond the supply, limit the current with an external resistor to less than 10 mA . The input stage protection circuit is shown in Figure 1.
The input currents of the LT1722/LT1723/LT1724 are typically in the tens of nA range due to the bias current cancellation technique used at the input. As the input offset current can be greater than either input current,

Figure 1. Input Stage Protection
adding resistance to balance source resistance is not recommended. The value of the source resistor should be below 12 k as it actually degrades DC accuracy and also increases noise.

Total Input Noise

The total input noise of the LT1722/LT1723/LT1724 is optimized for a source resistance between 0.8 k and 12 k . Within this range, the total input noise is dominated by the noise of the source resistance itself. When the source resistance is below 0.8 k , voltage noise of the amplifier dominates. When the source resistance is above $12 k$, the input noise current is the dominant contributor.

Capacitive Loading

The LT1722/LT1723/LT1724 drive capacitive loads up to 100 pF with unity gain. As the capacitive load increases, both the bandwidth and the phase margin decrease causing peaking in the frequency response and overshoot in the transient response. When there is a need to drive a larger capacitive load, a 25Ω series resistance assures stability with any value of Ioad capacitor. A feedback capacitor also helps to reduce any peaking.

Power Dissipation

The LT1722/LT1723/LT1724 combine high speed and large output drive in a small package. Maximum junction temperature $\left(T_{J}\right)$ is calculated from the ambient temperature $\left(T_{A}\right)$, power dissipation per amplifier $\left(\mathrm{P}_{\mathrm{D}}\right)$ and number of amplifiers (n) as follows:

$$
T_{J}=T_{A}+\left(n \bullet P_{D} \bullet \theta_{J A}\right)
$$

APPLICATIONS INFORMATION

Power dissipation is composed of two parts. The first is due to the quiescent supply current and the second is due to on-chip dissipation caused by the load current.
Worst-case instantaneous power dissipation for a given resistive load in one amplifier occurs at the maximum supply current and when the output voltage is at half of either supply voltage (or the maximum swing if less than half supply voltage).
Therefore $\mathrm{P}_{\mathrm{D}(\mathrm{MAX})}$ in one amplifier is:

$$
P_{D(\text { MAX })}=\left(\mathrm{V}^{+}-\mathrm{V}^{-}\right)\left(\mathrm{I}_{\mathrm{S}(\mathrm{MAX})}\right)+\left(\mathrm{V}^{+} / 2\right)^{2} / \mathrm{R}_{\mathrm{L}}
$$

or

$$
\begin{aligned}
P_{D(\text { MAX })}= & \left(\mathrm{V}^{+}-\mathrm{V}^{-}\right)\left(\mathrm{I}_{\mathrm{S}(\operatorname{MAX})}\right)+ \\
& \left(\mathrm{V}^{+}-\mathrm{V}_{0(\text { MAX })}\right)\left(\mathrm{V}_{0(\text { MAX })} / R_{L}\right)
\end{aligned}
$$

Example. Worst-case conditions are: both op amps in the LT1723IS8 are at $T_{A}=85^{\circ} \mathrm{C}, \mathrm{V}_{S}= \pm 5 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=150 \Omega$, $\mathrm{V}_{\text {OUT }}=2.5 \mathrm{~V}$.

$$
\begin{aligned}
& \mathrm{P}_{\mathrm{D}(\mathrm{MAX})}=2 \cdot\left[(10 \mathrm{~V})(5.95 \mathrm{~mA})+(2.5 \mathrm{~V})^{2} / 150 \Omega\right]=203 \mathrm{~mW} \\
& \mathrm{~T}_{J(\operatorname{MAX})}=85^{\circ} \mathrm{C}+(203 \mathrm{~mW})\left(190^{\circ} \mathrm{C} / \mathrm{W}\right)=124^{\circ} \mathrm{C}
\end{aligned}
$$

which is less than the absolute maximum rating at $150^{\circ} \mathrm{C}$.

Circuit Operation

The LT1722/LT1723/LT1724 circuit topology is a voltage feedback amplifier. The operation of the circuit can be understood by referring to the Simplified Schematic. The first stage is a folded cascode formed by the transistors Q1 through Q4. A degeneration resistor, R, is used in the input stage. The current mirror Q5, Q6 is bootstrapped by Q7. The capacitor, C, assures the bandwidth and the slew rate performance. The output stage is formed by complementary emitter followers, Q8 through Q11. The diodes D1 and D2 protect against input reversed biasing. The remaining part of the circuit assures optimum voltage and current biases for all stages.
Low noise, reduced current supply, high speed and DC accurate parameters are distinctive features of the LT1722/ LT1723/LT1724.

SImPLIFIED SCHEmATIC

S8 Package

8-Lead Plastic Small Outline (Narrow . 150 Inch)
(Reference LTC DWG \# 05-08-1610)

MS8 Package 8-Lead Plastic MSOP
(Reference LTC DWG \# 05-08-1660)

1. DIMENSIONS IN MILLIMETER/(INCH)
2. DRAWING NOT TO SCALE
3. DIMENSION DOES NOT INCLUDE MOLD FLASH, PROTRUSIONS OR GATE BURRS.

MOLD FLASH, PROTRUSIONS OR GATE BURRS SHALL NOT EXCEED 0.152 mm (.006") PER SIDE
4. DIMENSION DOES NOT INCLUDE INTERLEAD FLASH OR PROTRUSIONS.

INTERLEAD FLASH OR PROTRUSIONS SHALL NOT EXCEED $0.152 \mathrm{~mm}\left(.006^{\prime \prime}\right)$ PER SIDE
5. LEAD COPLANARITY (BOTTOM OF LEADS AFTER FORMING) SHALL BE 0.102 mm (.004") MAX

S Package
14-Lead Plastic Small Outline (Narrow . 150 Inch)
(Reference LTC DWG \# 05-08-1610)

TYPICAL APPLICATION

4- to 2-Wire Local Echo Cancellation Differential Receiver Amplifier

RELATGD PARTS

PART NUMBER	DESCRIPTION	COMMENTS
LT1677	Single, Low Noise Rail-to-Rail Amplifier	3V Operation, 2.5mA Supply Current, 4.5nV/ $\sqrt{\mathrm{Hz}} \operatorname{Max} \mathrm{e}_{\mathrm{n}}$, $60 \mu \mathrm{~V}$ Max $\mathrm{V}_{0 \mathrm{~S}}$
LT1800/LT1801/LT1802	Single/Dual/Quad, Low Power, 80MHz Rail-to-Rail Precision Amplifier	1.6mA Supply Current, $350 \mu \mathrm{~V}$ V 0 , 2.3V Operation
LT1806/LT1807	Single/Dual, Low Noise 325MHz Rail-to-Rail Amplifiers	2.5V Operation, $550 \mu \mathrm{~V} \mathrm{~V}_{\mathrm{MAX}} \mathrm{V}_{\text {OS }}, 3.5 \mathrm{nV} / \sqrt{\mathrm{Hz}}$
LT1809/LT1810	Single/Dual, Low Distortion 180MHz Rail-to-Rail Amplifiers	2.5 V Operation, -90 dBc at 5 MHz Distortion
LT1812/LT1813/LT1814	Single/Dual/Quad, 3mA, 750V/us Amplifiers	5 V Operation, 3.6 mA Supply Current, 40 mA Min Output Current
LT6202/LT6203/LT6204	Single/Dual/Quad, 100MHz, Low Noise Rail-to-Rail Op Amp	$2 \mathrm{nV} / \sqrt{\mathrm{Hz}}$, 2.5mA on Single 3V Supply

