Dual operational amplifier with switch, for audio use (2 inputs / 1 output $\times 2$) BA3129 / BA3129F

The BA3129 and BA3129F contain two circuits with operational amplifiers configured of two differential input circuits, an output circuit, and a switch circuit. The two differential input circuits are separate, enabling independent settings to be entered for the amplifier gain and frequency characteristic.

- Applications

Audio amplifiers and other electronic circuits

- Features

1) Can drive both dual or single power supplies.
2) Low noise. ($\mathrm{Vn}=2 \mu \mathrm{~V}_{\text {rms }}$ typ.: FLAT $)$
3) High gain and low distortion.
4) Little switching noise.
(Gv = $110 \mathrm{~dB}, \mathrm{THD}=0.0015 \%$)
5) Internal phase compensation.

- Block diagram

- Absolute maximum ratings $\left(\mathrm{Ta}=25^{\circ} \mathrm{C}\right)$

Parameter		Symbol	Limits	Unit
Applied voltage		Vcc	± 18	V
Power dissipation	BA3129	Pd	$1100^{* 1}$	mW
	BA3129F		$450^{* 2}$	
Operating temperature	Topr	$-20 \sim+75$	${ }^{\circ} \mathrm{C}$	
Storage temperature	Tstg	$-55 \sim+125$	${ }^{\circ} \mathrm{C}$	
Differential input voltage	Vid	$\pm \mathrm{Vcc}$	V	
Common-mode input voltage	Vi	$-\mathrm{Vcc} \sim \mathrm{Vcc}$	V	
Load current	loмax.	± 50	mA	

*1 Reduced by 11 mW for each increase in Ta of $1^{\circ} \mathrm{C}$ over $25^{\circ} \mathrm{C}$.
*2 Reduced by 4.5 mW for each increase in Ta of $1^{\circ} \mathrm{C}$ over $25^{\circ} \mathrm{C}$.

Recommended operating conditions ($\mathrm{Ta}=25^{\circ} \mathrm{C}$)

Parameter		Symbol	Limits	Unit
Operating power supply voltage	Single power supply	V_{cc}	$5 \sim 32$	V
	Dual power supplies	$\mathrm{V}_{\mathrm{cc}}, \mathrm{V}_{\mathrm{EE}}$	$\pm 2.5 \sim \pm 16$	V
Load conditions				

Electrical characteristics (unless otherwise noted, $\mathrm{Ta}=25^{\circ} \mathrm{C}, \mathrm{V}$ cc $=15 \mathrm{~V}$, $\mathrm{V}_{\mathrm{EE}}=-15 \mathrm{~V}$)

Parameter	Symbol	Min.	Typ.	Max.	Unit	Conditions
Quiescent circuit current	1 Q	-	4.6	8.0	mA	$\mathrm{VIN}=0, \mathrm{RL}=\infty \mathrm{SW}$ pin open
Input offset voltage	Vio	-	0.5	5.0	mV	$\mathrm{RS} \leqq 10 \mathrm{k} \Omega$
Input offset current	lio	-	5	200	nA	-
Input bias current	lb	-	50	500	nA	*1
High-amplitude voltage gain	Avol	86	110	-	dB	$\mathrm{RL} \leqq 2 \mathrm{k} \Omega$, Vo $= \pm 10 \mathrm{~V}$
Common-mode input voltage	Vicm	± 12	± 14	-	V	-
Common-mode rejection ratio	CMRR	70	90	-	dB	$\mathrm{RS} \leqq 10 \mathrm{k} \Omega$
Power supply voltage rejection ratio	PSRR	76	90	-	dB	$\mathrm{RS} \leqq 10 \mathrm{k} \Omega$
Maximum output voltage	Vон / Vol	± 12	± 14	-	V	$\mathrm{RL} \geqq 10 \mathrm{k} \Omega$
		± 10	± 13	-	V	$R L \geqq 2 \mathrm{k} \Omega$
Slew rate	SR	-	2.4	-	$\mathrm{V} / \mu \mathrm{s}$	$\mathrm{GV}=0 \mathrm{~dB}, \mathrm{RL} \leqq 2 \mathrm{k} \Omega$
Gain band width product	GBW	-	6.5	-	MHz	$\mathrm{f}=10 \mathrm{kHz}$
Input conversion noise voltage	Vn	-	2.0	-	$\mu \mathrm{Vrms}$	$\mathrm{RL}=2 \mathrm{k} \Omega$. B. P. $\mathrm{F}=20 \sim 30 \mathrm{kHz}$
Crosstalk between A-B	$C T_{A-B}$	-	85	-	dB	$\mathrm{f}=1 \mathrm{kHz}$
Total harmonic distortion	THD	-	0.0015	-	\%	$\mathrm{f}=1 \mathrm{kHz}$, Vo $=5 \mathrm{Vrms}$
Channel separation	CS	-	120	-	dB	$f=1 \mathrm{kHz}$, input conversion

*1 Because the first stage is configured with a PNP transistor, input bias current is from the IC.
O Not designed for radiation resistance.

- Operation notes

(1) Using SW pins

The Pin 6 and Pin 9 SW pins control switching of the dual-system differential input amplifier. When the current flowing from the SW pins is detected, the differential input amplifier is switched. If no current is flowing from the SW pins, the A amplifier is activated, and if current of $20 \mu \mathrm{~A}$ or higher is flowing, the B amplifier is activated.
The pin voltage is $\mathrm{V}=\mathrm{Vcc}-\left(5 \times 10^{3}+10 \times 10^{3}\right) \mathrm{I}-0.7$. Thus, R1 and R2 are set so that when the switch is off, the switching current is $1 \mu \mathrm{~A}$ or lower, and when the switch is on, the switching current is $20 \mu \mathrm{~A}$ or higher.

Fig. 1

- Application example

Fig. 2
When the switch is off, Pins 6 and 9 are open, resulting in high impedance. To guard against induction noise and other adverse effects, we recommend using a pullup resistance.

- External dimensions (Units: mm)
BA3129

