

Current Transducer HX 03 .. 50-P

For the electronic measurement of currents: DC, AC, pulsed, mixed, with a galvanic isolation between the primary circuit (high power) and the secondary circuit (electronic circuit).

$I_{PN} = 3..50 A$

Electrical data

Primary nominal r.m.s. current \mathbf{I}_{PN} (A)	Primary current measuring range I _P (A)	Primary Conductor Diameter x Turns (mm)	Туре
3	± 9	0.6d x 20T	HX 03-P
5	± 15	0.8d x 12T	HX 05-P
10	± 30	1.1d x 6T	HX 10-P
15	± 45	1.4d x 4T	HX 15-P
20	± 60	1.6d x 3T	HX 20-P
25	±75	1.6d x 2T	HX 25-P
50	±150	1.2 x 6.3 x 1T	HX 50-P

V _{OUT}	Output voltage @ $\pm I_{DN}$, $\mathbf{R}_{1} = 10 \text{ k}\Omega$, $\mathbf{T}_{\Delta} = 25^{\circ}\text{C}$	±4	V	
R _{OUT}	Output impedance	< 50	Ω	
R,	Load resistance	≥10	$k\Omega$	
V c	Supply voltage (± 5 %)1)	± 15	V	
I _c	Current consumption	$< \pm 15$	mΑ	
V_{d}	R.m.s. voltage for AC isolation test, 50/60Hz, 1 mn > 3			
V _e	R.m.s. voltage for partial discharge extinction			
	at 10pC	≥ 1	kV	
	Impulse withstand voltage, 1.2/50µs	≥ 6	kV	

Accuracy-Dynamic performance data

$egin{array}{c} \mathbf{X} \\ \mathbf{e}_{L} \\ \mathbf{v}_{OE} \\ \mathbf{v}_{OH} \end{array}$	Accuracy @ I_{PN} , $T_A = 25^{\circ}$ C (without offset) Linearity $(0 \pm I_{PN})$ Electrical offset voltage, $T_A = 25^{\circ}$ C		< ± 1 < ± 1 < ± 40	% of I _{PN} % of I _{PN} mV
V _{OH} V _{OT} TCe _G	Hysteresis offset voltage @ $\mathbf{I}_p = 0$; after an excursion of 3 x \mathbf{I}_{PN} Thermal drift of \mathbf{V}_{OE} Thermal drift of the gain (% of reading) Response time @ 90% of \mathbf{I}_{PN}	max.	< ± 15 ± 1.5 ± 0.1 ≤ 3	mV mV/K %/K µs
f	Frequency bandwidth (-3 dB) 2)		50	kHz

General data

_	701101 di data		
T _A	Ambient operating temperature	- 25 + 85	_
T_{s}	Ambient storage temperature	- 25 + 85	°C
m	Mass	8	g
	Min. internal creepage distance/clearance	≥ 5.5	mm
	Isolation material group	1	
	Standards	EN50178	

Notes: 1) Also operate at ±12V power supplies, measuring range reduced to ±2.5x I_{PN} 2) Small signal only to avoid excessive heating of the magnetic cores

Features

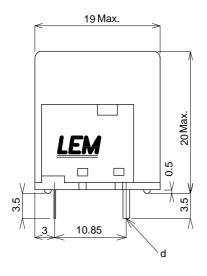
- Galvanic isolation between primary and secondary circuit
- Hall effect measuring principle
- Isolation voltage 3000V
- Low power consumption
- Extended measuring range (3x I_{PN})
- Power supply from ±12V to ±15V
- Material according to UL94-V0

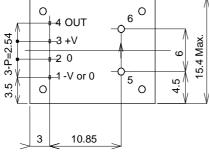
Advantages

- Low insertion losses
- Easy to mount with automatic handling system
- Small size and space saving
- Only one design for wide current ratings range
- High immunity to external interference.

Applications

- Switched Mode Power Supplies (SMPS)
- AC variable speed drives
- Uninterruptible Power Supplies (UPS)
- Electrical appliances
- Battery supplied applications
- DC motor drives


030806/5


LEM Components www.lem.com

HX 03 .. 50-P (in mm)

HX 03...25-P

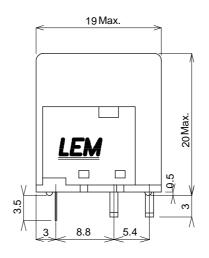
6 O

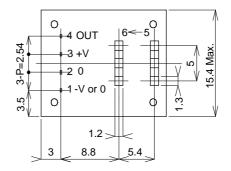
Terminal Pin Identification

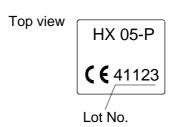
1.....-15V

2.....0V

0


3.....+15V


4.....Output


5.....Primary input Current(+)

6.....Primary input Current(-)

HX 50-P

Primary conductor diameter / dimension

нх	03-P	05-P	10-P	15-P	20-P	25-P	50-P	l
d	0.6	8.0	1.1	1.4	1.6	1.6	1.2x6.3	

Secondary pins dimension

0.5x0.25