MC74VHC1G03

Product Preview
 2-Input NOR Gate with Open Drain Output

The MC74VHC1G03 is an advanced high speed CMOS 2-input NOR gate with an open drain output fabricated with silicon gate CMOS technology. It achieves high speed operation similar to equivalent Bipolar Schottky TTL while maintaining CMOS low power dissipation.

The internal circuit is composed of three stages, including an open drain output which provides the capability to set output switching level. This allows the MC74VHC1G03 to be used to interface 5 V circuits to circuits of any voltage between VCC and 7 V using an external resistor and power supply.

The MC74VHC1G03 input structure provides protection when voltages up to 7 V are applied, regardless of the supply voltage.

- High Speed: $\mathrm{tPD}=3.6 \mathrm{~ns}(\mathrm{Typ})$ at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$
- Low Internal Power Dissipation: $\mathrm{I}_{\mathrm{C}}=2 \mu \mathrm{~A}(\mathrm{Max})$ at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$
- Power Down Protection Provided on Inputs
- Pin and Function Compatible with Other Standard Logic Families
- Latchup Performance Exceeds 300mA
- ESD Performance: $\mathrm{HBM}>2000 \mathrm{~V}$; $\mathrm{MM}>200 \mathrm{~V}, \mathrm{CDM}>1500 \mathrm{~V}$

Figure 1. 5-Lead SOT-353 Pinout (Top View)

This document contains information on a product under development. ON Semiconductor reserves the right to change or discontinue this product without notice.

ON Semiconductor
Formery a Division of Motorola http://onsemi.com

SC-88A / SOT-353
DF SUFFIX
CASE 419A

MARKING DIAGRAM

Pin 1
d = Date Code

PIN ASSIGNMENT	
1	IN B
2	IN A
3	GND
4	OUT \bar{Y}
5	VCC

ORDERING INFORMATION

See detailed ordering and shipping information in the package dimensions section on page 4 of this data sheet.

FUNCTION TABLE

Inputs		Output
A	B	\bar{Y}
L	L	Z
L	H	L
H	L	L
H	H	L

MAXIMUM RATINGS*

Characteristics	Symbol	Value	Unit
DC Supply Voltage	V_{CC}	-0.5 to +7.0	V
DC Input Voltage	VIN	-0.5 to +7.0	V
DC Output Voltage	V OUT	-0.5 to 7.0	V
Input Diode Current	IIK	-20	mA
Output Diode Current $\quad\left(\mathrm{V}_{\text {OUT }}\right.$ < GND; $\left.\mathrm{V}_{\text {OUT }}>\mathrm{V}_{\text {CC }}\right)$	IOK	+20	mA
DC Output Current, per Pin	IOUT	+25	mA
DC Supply Current, V CCC and GND	ICC	+50	mA
Power dissipation in still air, SC-88A \dagger	PD_{D}	200	mW
Lead temperature, 1 mm from case for 10 s	TL	260	${ }^{\circ} \mathrm{C}$
Storage temperature	$\mathrm{T}_{\text {stg }}$	-65 to +150	${ }^{\circ} \mathrm{C}$

* Maximum Ratings are those values beyond which damage to the device may occur. Exposure to these conditions or conditions beyond those indicated may adversely affect device reliability. Functional operation under absolute-maximum-rated conditions is not implied. Functional operation should be restricted to the Recommended Operating Conditions.
\dagger Derating - SC-88A Package: $-3 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ from 65° to $125^{\circ} \mathrm{C}$
RECOMMENDED OPERATING CONDITIONS

Characteristics	Symbol	Min	Max	Unit
DC Supply Voltage	V_{CC}	2.0	5.5	V
DC Input Voltage	$\mathrm{V}_{\text {IN }}$	0.0	5.5	V
DC Output Voltage	V ${ }_{\text {OUT }}$	0.0	7.0	V
Operating Temperature Range	T_{A}	-55	+85	${ }^{\circ} \mathrm{C}$
Input Rise and Fall Time $V_{C C}=3.3 \mathrm{~V} \pm 0.3 \mathrm{~V}$ $V_{C C}=5.0 \mathrm{~V} \pm 0.5 \mathrm{~V}$	$\mathrm{tr}_{\mathrm{r}}, \mathrm{tf}^{\text {f }}$	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 100 \\ & 20 \end{aligned}$	ns/V

DC ELECTRICAL CHARACTERISTICS

Symbol	Parameter	Test Conditions	$V_{C C}$ (V)	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$			$\mathrm{T}_{\mathrm{A}} \leq 85^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{A}} \leq 125^{\circ} \mathrm{C}$		Unit
				Min	Typ	Max	Min	Max	Min	Max	
V_{IH}	Minimum High-Level Input Voltage		$\begin{aligned} & 2.0 \\ & 3.0 \\ & 4.5 \\ & 5.5 \end{aligned}$	$\begin{gathered} \hline 1.5 \\ 2.1 \\ 3.15 \\ 3.85 \end{gathered}$			$\begin{gathered} \hline 1.5 \\ 2.1 \\ 3.15 \\ 3.85 \end{gathered}$		$\begin{gathered} \hline 1.5 \\ 2.1 \\ 3.15 \\ 3.85 \end{gathered}$		V
VIL	Maximum Low-Level Input Voltage		$\begin{aligned} & 2.0 \\ & 3.0 \\ & 4.5 \\ & 5.5 \end{aligned}$			$\begin{gathered} \hline 0.5 \\ 0.9 \\ 1.35 \\ 1.65 \end{gathered}$		$\begin{gathered} \hline 0.5 \\ 0.9 \\ 1.35 \\ 1.65 \end{gathered}$		$\begin{gathered} \hline 0.5 \\ 0.9 \\ 1.35 \\ 1.65 \end{gathered}$	V
V_{OH}	Minimum High-Level Output Voltage $\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}}$ or V_{IL}	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}} \text { or } \mathrm{V}_{\mathrm{IL}} \\ & \mathrm{IOH}=-50 \mu \mathrm{~A} \end{aligned}$	$\begin{aligned} & \hline 2.0 \\ & 3.0 \\ & 4.5 \end{aligned}$	$\begin{aligned} & \hline 1.9 \\ & 2.9 \\ & 4.4 \end{aligned}$	$\begin{aligned} & \hline 2.0 \\ & 3.0 \\ & 4.5 \end{aligned}$		$\begin{aligned} & 1.9 \\ & 2.9 \\ & 4.4 \end{aligned}$		$\begin{aligned} & 1.9 \\ & 2.9 \\ & 4.4 \end{aligned}$		V
		$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}} \text { or } \mathrm{V}_{\mathrm{IL}} \\ & \mathrm{IOH}=-4 \mathrm{~mA} \\ & \mathrm{IOH}=-8 \mathrm{~mA} \end{aligned}$	$\begin{aligned} & 3.0 \\ & 4.5 \end{aligned}$	$\begin{aligned} & 2.58 \\ & 3.94 \\ & \hline \end{aligned}$			$\begin{aligned} & 2.48 \\ & 3.80 \end{aligned}$		$\begin{aligned} & 2.34 \\ & 3.66 \\ & \hline \end{aligned}$		V
VOL	Maximum Low-Level Output Voltage $\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}}$ or V_{IL}	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}} \text { or } \mathrm{V}_{\mathrm{IL}} \\ & \mathrm{I}_{\mathrm{OL}}=50 \mu \mathrm{~A} \end{aligned}$	$\begin{aligned} & 2.0 \\ & 3.0 \\ & 4.5 \end{aligned}$		0.0 0.0 0.0	$\begin{aligned} & \hline 0.1 \\ & 0.1 \\ & 0.1 \end{aligned}$		$\begin{aligned} & \hline 0.1 \\ & 0.1 \\ & 0.1 \end{aligned}$		$\begin{aligned} & 0.1 \\ & 0.1 \\ & 0.1 \end{aligned}$	V
		$\begin{array}{\|l} \hline \mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}} \text { or } \mathrm{V}_{\mathrm{IL}} \\ \mathrm{IOL}=4 \mathrm{~mA} \\ \mathrm{IOL}=8 \mathrm{~mA} \\ \hline \end{array}$	$\begin{aligned} & 3.0 \\ & 4.5 \end{aligned}$			$\begin{aligned} & 0.36 \\ & 0.36 \end{aligned}$		$\begin{aligned} & 0.44 \\ & 0.44 \end{aligned}$		$\begin{aligned} & 0.52 \\ & 0.52 \end{aligned}$	V
IIN	Maximum Input Leakage Current	$\mathrm{V}_{\text {IN }}=5.5 \mathrm{~V}$ or GND	$\begin{aligned} & 0 \text { to } \\ & 5.5 \end{aligned}$			± 0.1		± 1.0		± 1.0	$\mu \mathrm{A}$
ICC	Maximum Quiescent Supply Current	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {CC }}$ or GND	5.5			2.0		20		40	$\mu \mathrm{A}$
IOPD	Maximum Off-state Leakage Current	$\mathrm{V}_{\text {OUT }}=5.5 \mathrm{~V}$	0			0.25		2.5		5.0	$\mu \mathrm{A}$

AC ELECTRICAL CHARACTERISTICS ($\mathrm{C}_{\text {load }}=50 \mathrm{pF}$, Input $\mathrm{t}_{\mathrm{r}}=\mathrm{t}_{\mathrm{f}}=3.0 \mathrm{~ns}$)

Symbol	Parameter	Test Conditions		$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$			$\mathrm{T}_{\mathrm{A}} \leq 85^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{A}} \leq 125^{\circ} \mathrm{C}$		Unit
				Min	Typ	Max	Min	Max	Min	Max	
tpZL	Maximum Output Enable Time, Input A or B to Y	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=3.0 \pm 0.3 \mathrm{~V} \\ & \mathrm{R}_{\mathrm{L}}=1 \mathrm{~K} \Omega \end{aligned}$	$\begin{aligned} & C_{L}=15 \mathrm{pF} \\ & \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \end{aligned}$		$\begin{aligned} & 5.6 \\ & 8.1 \end{aligned}$	$\begin{gathered} \hline 7.9 \\ 11.4 \end{gathered}$		$\begin{gathered} \hline 9.5 \\ 13.0 \end{gathered}$		$\begin{aligned} & 11.0 \\ & 15.5 \end{aligned}$	ns
		$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=5.0 \pm 0.5 \mathrm{~V} \\ & \mathrm{R}_{\mathrm{L}}=1 \mathrm{~K} \Omega \end{aligned}$	$\begin{aligned} & C_{L}=15 \mathrm{pF} \\ & \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \end{aligned}$		$\begin{aligned} & 3.6 \\ & 5.1 \end{aligned}$	$\begin{aligned} & 5.5 \\ & 7.5 \end{aligned}$		$\begin{aligned} & 6.5 \\ & 8.5 \end{aligned}$		$\begin{gathered} \hline 8.0 \\ 10.0 \end{gathered}$	
tpLZ	Maximum Output Disable Time	$\mathrm{V}_{\mathrm{CC}}=3.0 \pm 0.3 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=1 \mathrm{~K} \Omega, \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$			8.1	11.4		13.0		15.5	ns
		$\mathrm{V}_{\mathrm{CC}}=5.0 \pm 0.5 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=1 \mathrm{~K} \Omega, \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$			5.1	7.5		8.5		10.0	
$\mathrm{Cl}_{\text {IN }}$	Maximum Input Capacitance				4	10		10		10	pF

		Typical @ $\mathbf{2 5} \mathbf{5}^{\circ} \mathbf{C}, \mathbf{V} \mathbf{C C}=\mathbf{5 . 0 V}$	
		$\mathbf{p F}$	

1. CPD is defined as the value of the internal equivalent capacitance which is calculated from the operating current consumption without load. Average operating current can be obtained by the equation: $I_{C C}(O P R)=C_{P D} \bullet V_{C C} \bullet f_{i n}+I_{C C} . C_{P D}$ is used to determine the no-load dynamic power consumption; $\mathrm{P}_{\mathrm{D}}=\mathrm{CPD} \bullet \mathrm{V}_{\mathrm{CC}}{ }^{2} \bullet \mathrm{f}_{\mathrm{in}}+\mathrm{I}_{\mathrm{CC}} \bullet \mathrm{V}_{\mathrm{CC}}$.

Figure 2. Output Voltage Mismatch Application

MC74VHC1G03

Figure 3. Switching Waveforms

*Includes all probe and jig capacitance
Figure 4. Test Circuit

DEVICE ORDERING INFORMATION

	Device Nomenclature						Package Type	Tape and Reel Size
Device Order Number	Circuit Indicator	Temp Range Identifier	Technology	Device Function	Package Suffix	Tape \& Reel Suffix		
MC74VHC1G03DFT1	MC	74	VHC1G	03	DF	T1	$\begin{aligned} & \hline \text { SC-88A / } \\ & \text { SOT-353 } \end{aligned}$	7-Inch/3000 Unit

PACKAGE DIMENSIONS

SC-88A / SOT-353
DF SUFFIX
5-LEAD PACKAGE
CASE 419A-01
ISSUE B

NOTES:

1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
. CONTROLLING DIMENSION: MM.

DIM	INCHES		MILLIMETERS	
	MIN	MAX	MIN	MAX
A	0.071	0.087	1.80	2.20
B	0.045	0.053	1.15	1.35
C	0.031	0.043	0.80	1.10
D	0.004	0.012	0.10	0.30
G	0.026 BSC		0.65 BSC	
H	-	0.004	-	0.10
J	0.004	0.010	0.10	0.25
K	0.004	0.012	0.10	0.30
N	0.008 REF		0.20 REF	
S	0.079	0.087	2.00	2.20
V	0.012	0.016	0.30	0.40

MC74VHC1G03

Figure 5. Carrier Tape Specifications

EMBOSSED CARRIER DIMENSIONS (See Notes 1 and 2)

Tape Size	B_{1} Max	D	D_{1}	E	F	K	P	P0	P_{2}	R	T	W
8 mm	$\begin{aligned} & 4.35 \mathrm{~mm} \\ & \left(0.171^{\prime \prime}\right) \end{aligned}$	$\begin{gathered} 1.5+0.1 / \\ -0.0 \mathrm{~mm} \\ (0.059 \\ +0.004 / \\ \left.+0.0^{\prime \prime}\right) \end{gathered}$	$\begin{aligned} & 1.0 \mathrm{~mm} \\ & \mathrm{Min} \\ & \left(0.039^{\prime \prime}\right) \end{aligned}$	$\begin{gathered} 1.75 \\ \pm 0.1 \mathrm{~mm} \\ (0.069 \\ \left. \pm 0.004^{\prime \prime}\right) \end{gathered}$	$\begin{gathered} 3.5 \\ \pm 0.5 \mathrm{~mm} \\ (1.38 \\ \left. \pm 0.002^{\prime \prime}\right) \end{gathered}$	$\begin{aligned} & 2.4 \mathrm{~mm} \\ & \left(0.094^{\prime \prime}\right) \end{aligned}$	$\begin{gathered} 4.0 \\ \pm 0.10 \mathrm{~mm} \\ (0.157 \\ \left. \pm 0.004^{\prime \prime}\right) \end{gathered}$	$\begin{gathered} 4.0 \\ \pm 0.1 \mathrm{~mm} \\ (0.156 \\ \left. \pm 0.004^{\prime \prime}\right) \end{gathered}$	$\begin{gathered} 2.0 \\ \pm 0.1 \mathrm{~mm} \\ (0.079 \\ \left. \pm 0.002^{\prime \prime}\right) \end{gathered}$	$\begin{aligned} & 25 \mathrm{~mm} \\ & \left(0.98^{\prime \prime}\right) \end{aligned}$	$\begin{gathered} 0.3 \\ \pm 0.05 \mathrm{~mm} \\ (0.01 \\ +0.00038 / \\ \left.-0.0002^{\prime \prime}\right) \end{gathered}$	$\begin{gathered} 8.0 \\ \pm 0.3 \mathrm{~mm} \\ (0.315 \\ \left. \pm 0.012^{\prime \prime}\right) \end{gathered}$

1. Metric Dimensions Govern-English are in parentheses for reference only.
2. A_{0}, B_{0}, and K_{0} are determined by component size. The clearance between the components and the cavity must be within 0.05 mm min to 0.50 mm max. The component cannot rotate more than 10° within the determined cavity

Figure 6. Reel Dimensions

REEL DIMENSIONS

Tape Size	A Max	G	t Max
8 mm	330 mm $\left(13^{\prime \prime}\right)$	$8.400 \mathrm{~mm},+1.5 \mathrm{~mm},-0.0$ $\left(0.33^{\prime \prime},+0.059^{\prime \prime},-0.00\right)$	14.4 mm
$\left(0.56^{\prime \prime}\right)$			

Figure 7. Reel Winding Direction

MC74VHC1G03

Figure 8. Tape Ends for Finished Goods

Figure 9. Reel Configuration

MC74VHC1G03

Abstract

ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer.

PUBLICATION ORDERING INFORMATION

USA/EUROPE Literature Fulfillment:
Literature Distribution Center for ON Semiconductor
P.O. Box 5163, Denver, Colorado 80217 USA

Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada
Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada
Email: ONlit@hibbertco.com
Fax Response Line*: 303-675-2167
800-344-3810 Toll Free USA/Canada
*To receive a Fax of our publications
N. America Technical Support: 800-282-9855 Toll Free USA/Canada

ASIA/PACIFIC: LDC for ON Semiconductor - Asia Support
Phone: 303-675-2121 (Tue-Fri 9:00am to 1:00pm, Hong Kong Time) Email: ONlit-asia@hibbertco.com

JAPAN: ON Semiconductor, Japan Customer Focus Center
4-32-1 Nishi-Gotanda, Shinagawa-ku, Tokyo, Japan 141-8549
Phone: 81-3-5487-8345
Email: r14153@onsemi.com
ON Semiconductor Website: http://onsemi.com
For additional information, please contact your local Sales Representative.

