

Current Transducer LF 505-S

For the electronic measurement of currents: DC, AC, pulsed..., with a galvanic isolation between the primary circuit (high power) and the secondary circuit (electronic circuit).

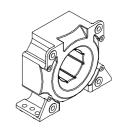
Electrical data

Preliminary

ANTY

I _{PN} I _P R _M	Primary nominal r.m.s. current Primary current, measuring range Measuring resistance		500 0 ± 800 $\mathbf{R}_{M \; min} \qquad \mathbf{R}_{M \; max}$		A A
M	G		R _{M min}		
	with ± 15 V	@ ± 500 A _{max}	0	60	Ω
		@ ± 800 A _{max}	0	11	Ω
	with ± 18 V	@ ± 500 A max	0	92	Ω
		@ ± 800 A max	0	30	Ω
	with ± 24 V	@ ± 500 A max	5	149	Ω
		@ ± 800 A max	5	65	Ω
I _{SN}	Secondary nominal r.m.s. current		100		mΑ
K	Conversion ratio		1:500	0	
v _c	Supply voltage (± 5 %)		± 15 24		V
I _c	Current consumption		24 (@ ± 18 V)+ I _s m/		mΑ
V _d	R.m.s. voltage for AC isola	ation test, 50 Hz, 1 mn	3	, 8	kV

Accuracy - Dynamic performance data


\mathbf{E}_{L}^{G}	Overall accuracy @ $\mathbf{I}_{_{\mathrm{PN}}}$, $\mathbf{T}_{_{\mathrm{A}}}$ = 25°C Linearity		± 0.6 < 0.1		% %
I _о	Offset current @ \mathbf{I}_{p} = 0, \mathbf{T}_{A} = 25°C Thermal drift of \mathbf{I}_{O}	- 10°C + 70°C	Typ ± 0.3	Max ± 0.4 ± 0.5	mA mA
t _r di/dt f	Response time ¹⁾ @ 90 % of I _{PN} di/dt accurately followed Frequency bandwidth (-1 dB)		< 1 > 100 DC 1	00	μs A/μs kHz

General data

T _A T _S R _S m	Ambient operating temperature Ambient storage temperature Secondary coil resistance @ Mass Standards ²⁾	T _A = 70°C	- 10 + 70 - 25 + 85 70 230 EN 50155	°C °C Ω
			EN 50178	

Notes: 1) With a di/dt of 100 A/µs

$I_{PN} = 500 A$

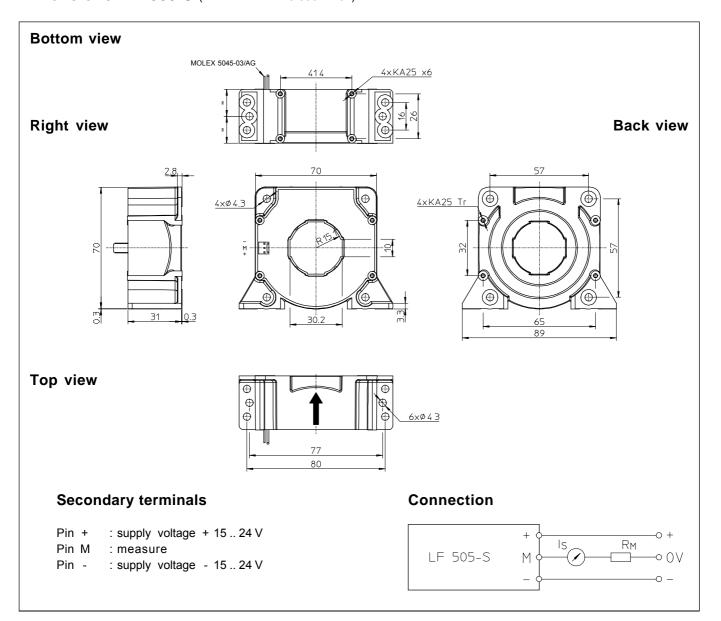
Features

- Closed loop (compensated) current transducer using the Hall effect
- Insulated plastic case recognized according to UL 94-V0.

Advantages

- Excellent accuracy
- Very good linearity
- Low temperature drift
- Optimized response time
- Wide frequency bandwidth
- No insertion losses
- High immunity to external interference
- Current overload capability.

Applications


- AC variable speed drives and servo motor drives
- · Static converters for DC motor drives
- Battery supplied applications
- Uninterruptible Power Supplies (UPS)
- Switched Mode Power Supplies (SMPS)
- Power supplies for welding applications.

010327/4

²⁾ A list of corresponding tests is available

Dimensions LF 505-S (in mm. 1 mm = 0.0394 inch)

Mechanical characteristics

• General tolerance

Fastening

• Primary through-hole

· Connection of secondary

± 0.5 mm see drawing 30.2 x 30.2 mm MOLEX 5045-03/AG

Remarks

- I_s is positive when I_p flows in the direction of the arrow.
- Temperature of the primary conductor should not exceed 100°C.
- Dynamic performances (di/dt and response time) are best with a single bar completely filling the primary hole.
- This is a standard model. For different versions (supply voltages, turns ratios, unidirectional measurements...), please contact us.