32K x 32 Synchronous-Pipelined Cache RAM #### **Features** - Low (660 μW) standby power (f=0, L version) - Supports 117-MHz bus operations with zero wait states - · Fully registered inputs and outputs for pipelined oper- - 32K x 32 common I/O architecture - 3.3V V_{DD} and 2.5V V_{DDQ} for 2.5V I/Os - · Fast Clock-to-output times - 5.0 ns (for 117-MHz device) - 5.5 ns (for 100-MHz device) - -8.5 ns (for 66-MHz device) - User-selectable burst counter supporting interleaved or linear burst sequences - Separate processor and controller address strobes - · Synchronous self-timed writes - · Asynchronous output enable - JEDEC-standard 100 TQFP pinout - "ZZ" Sleep Mode option - Supports Stop Clock option for power conservation ## **Functional Description** The CY7C1337 is 3.3V 32K by 32 synchronous-pipelined cache SRAM designed to support zero wait state secondary cache with minimal glue logic. All synchronous inputs pass through input registers controlled by the rising edge of the clock. All data outputs pass through output registers controlled by the rising edge of the clock. Maximum access delay from the clock rise is 5ns (117 MHz version). A 2-bit on-chip wraparound burst counter captures the first address in a burst sequence and automatically increments the address for the rest of the burst access. The CY7C1337 supports either the interleaved burst sequence or a linear burst sequence used by processors such as the PowerPC. The burst sequence is selected through the MODE pin. Accesses can be initiated by asserting either the processor address strobe (ADSP) or the controller address strobe (ADSC) at clock rise. Address advancement through the burst sequence is controlled by the ADV input. Byte write operations are qualified with the four Byte Write Select (BW_[0-3]) inputs. A Global Write Enable (GW) overrides all byte write inputs and writes data to all four bytes. All writes are conducted with on-chip synchronous self-timed write circuitry. Three synchronous chip selects (\overline{CE}_1 , \overline{CE}_2 , \overline{CE}_3) and an asynchronous output enable (OE) provide for easy bank selection and output three-state control. In order to provide proper data during depth expansion, \overline{OE} is masked during the first clock of a read cycle when going from a deselected to a selected state. ## **Pin Configuration** ## **Selection Guide** | | | 7C1337-117
7C1337L-117 | 7C1337-100
7C1337L-100 | 7C1337-66
7C1337L-66 | |--|------------|---------------------------|---------------------------|-------------------------| | Maximum Access Time (ns) | | 5.0 | 5.5 | 8.5 | | Maximum Operating Current (mA) | Commercial | 350 | 310 | 230 | | Maximum CMOS Standby Current (uA) (L Version only) | Commercial | 200 | 200 | 200 | ## **Pin Definitions** | Pin Number | Name | I/O | Description | |--|----------------------|------------------------|---| | 48-44, 81,82,
99, 100,
32-37 | A _[14:0] | Input-
Synchronous | Address Inputs used to select one of the 32K address locations. Sampled at the rising edge of the CLK if \overline{ADSP} or \overline{ADSC} is active LOW, and \overline{CE}_1 , \overline{CE}_2 , and \overline{CE}_3 are sampled active. A_0 and A_1 feed the 2-bit counter. | | 96-93 | BW _[3:0] | Input-
Synchronous | Byte Write Select Inputs, active LOW. Qualified with BWE to conduct byte writes to the SRAM. Sampled on the rising edge of CLK. | | 88 | GW | Input-
Synchronous | Global Write Enable Input, active LOW. When asserted LOW on the rising edge of CLK, a global write is conducted. (ALL bytes are written, regardless of the values on $\overline{BW}_{[3:0]}$ and \overline{BWE} .) | | 87 | BWE | Input-
Synchronous | Byte Write Enable Input, active LOW. Sampled on the rising edge of CLK. This signal must be asserted LOW to conduct a byte write. | | 89 | CLK | Input-Clock | Clock input. Used to capture all synchronous inputs to the device. Also used to increment the burst counter when \overline{ADV} is asserted LOW, during a burst operation. | | 98 | CE ₁ | Input-
Synchronous | Chip Enable 1 Input, active LOW. Sampled on the rising edge of CLK. Used in conjunction with CE_2 and \overline{CE}_3 to select/deselect the device. \overline{ADSP} is ignored if \overline{CE}_1 is high. | | 97 | CE ₂ | Input-
Synchronous | Chip Enable 2 Input, active HIGH. Sampled on the rising edge of CLK. Used in conjunction with $\overline{\text{CE}}_1$ and $\overline{\text{CE}}_3$ to select/deselect the device. | | 92 | CE ₃ | Input-
Synchronous | Chip Enable 3 Input, active LOW. Sampled on the rising edge of CLK. Used in conjunction with $\overline{\text{CE}}_1$ and $\overline{\text{CE}}_2$ to select/deselect the device. | | 86 | ŌĒ | Input-
Asynchronous | Output Enable, asynchronous input, active LOW. Controls the direction of the I/O pins. When LOW, the I/O pins behave as outputs. When deasserted HIGH, I/O pins are three-stated, and act as input data pins. OE is masked during the first clock of a read cycle when going from a deselected to a selected state. | | 83 | ADV | Input-
Synchronous | Advance Input signal, sampled on the rising edge of CLK. When asserted, it automatically increments the address in a burst cycle. | | 84 | ADSP | Input-
Synchronous | Address Strobe from Processor, sampled on the rising edge of CLK. When asserted LOW, $A_{[14-0]}$ is captured in the address registers. A_0 and A_1 are also loaded into the burst counter. When \overline{ADSP} and \overline{ADSC} are both asserted, only \overline{ADSP} is recognized. \overline{ASDP} is ignored when \overline{CE}_1 is deasserted HIGH. | | 85 | ADSC | Input-
Synchronous | Address Strobe from Controller, sampled on the rising edge of CLK. When asserted LOW, $A_{[14-0]}$ is captured in the address registers. A_0 and A_1 are also loaded into the burst counter. When \overline{ADSP} and \overline{ADSC} are both asserted, only \overline{ADSP} is recognized. | | 64 | ZZ | Input-
Asynchronous | ZZ "sleep" Input. This active high input places the device in a non-time critical "sleep" condition with data integrity preserved. | | 29, 28, 25-22,
19, 18,13,12,
9-6, 3, 2, 79,
78, 75-72, 69,
68, 63, 62
59-56, 53, 52 | DQ _[31:0] | I/O-
Synchronous | Bidirectional Data I/O lines. As inputs, they feed into an on-chip data register that is triggered by the rising edge of CLK. As outputs, they deliver the data contained in the memory location specified by $A_{[14:0]}$ during the previous clock rise of the read cycle. The direction of the pins is controlled by $\overline{\text{OE}}$. When $\overline{\text{OE}}$ is asserted LOW, the pins behave as outputs. When HIGH, $DQ_{[31:0]}$ are placed in a three-state condition. | | 15, 41, 65, 91 | V_{DD} | Power Supply | Power supply inputs to the core of the device. Should be connected to 3.3V power supply. | | 17, 40, 67, 90 | V_{SS} | Ground | Ground for the core of the device. Should be connected to ground of the system. | | 4, 11, 20, 27,
54, 61, 70, 77 | V_{DDQ} | I/O Power
Supply | Power supply for the I/O circuitry. Should be connected to a 2.5V power supply. | | 5, 10, 21, 26,
55, 60, 71, 76 | V_{SSQ} | I/O Ground | Ground for the I/O circuitry. Should be connected to ground of the system. | | 31 | MODE | Input-
Static | Selects burst order. When tied to GND selects linear burst sequence. When tied to VDDQ or left floating selects interleaved burst sequence. This is a strap pin and should remain static during device operation. | | 1, 14, 16, 30,
38,39, 42, 43,
49,50,51,66,
80 | NC | - | No Connects | #### Introduction #### **Functional Overview** All synchronous inputs pass through input registers controlled by the rising edge of the clock. All data outputs pass through output registers controlled by the rising edge of the clock. Maximum access delay from the clock rise ($T_{\rm CO}$) is 5.0 ns (117MHz device). A two-bit on-chip wraparound burst counter captures the first address in a burst sequence and automatically increments the address for the rest of the burst access. The CY7C1337 supports secondary cache in systems utilizing either a linear or interleaved burst sequence. The burst order is user selectable, and is determined by sampling the MODE input. Accesses can be initiated with either the processor address strobe (ADSP) or the controller address strobe (ADSC). Address advancement through the burst sequence is controlled by the ADV input. Byte write operations are qualified with the Byte Write Enable (\overline{BWE}) and Byte Write Select $(\overline{BW}_{[0-3]})$ inputs. A Global Write Enable (\overline{GW}) overrides all byte write inputs and writes data to all four bytes. All writes are simplified with on-chip synchronous self-timed write circuitry. Three synchronous chip selects $(\overline{CE}_1, CE_2, \overline{CE}_3)$ and an asynchronous output enable (\overline{OE}) provide for easy bank selection and output three-state control. \overline{ADSP} is ignored if \overline{CE}_1 is HIGH. #### Single Read Accesses This access is initiated when the following conditions are satisfied at clock rise: (1) ADSP or ADSC is asserted LOW, (2) $\overline{\text{CE}}_1$, $\overline{\text{CE}}_2$, $\overline{\text{CE}}_3$ are all asserted active, and (3) the write signals ($\overline{\text{GW}}$, $\overline{\text{BWE}}$) are all deasserted HIGH. $\overline{\text{ADSP}}$ is ignored if CE₁ is HIGH. The address presented to the address inputs (A_0-A_{14}) is stored into the address advancement logic and the Address Register while being presented to the memory core. The corresponding data is allowed to propagate to the input of the Output Registers. At the rising edge of the next clock the data is allowed to propagate through the output register and onto the data bus within 5.0 ns(117MHz device) if OE is active low. The only exception occurs when the SRAM is emerging from a deselected state to a selected state, its outputs are always three-stated during the first cycle of the access. After the first cycle of the access, the outputs are controlled by the OE signal. Consecutive single read cycles are supported. Once the SRAM is deselected at clock rise by the chip select and either ADSP or ADSC signals, its output will three-state immediately. #### Single Write Accesses Initiated by ADSP This access is initiated when both of the following conditions are satisfied at clock rise: (1) $\overline{\text{ADSP}}$ is asserted LOW, and (2) $\overline{\text{CE}_1}$, $\overline{\text{CE}_2}$, $\overline{\text{CE}_3}$ are all asserted active. The address presented to A_0 - A_{14} is loaded into the address register and the address advancement logic while being delivered to the RAM core. The write signals ($\overline{\text{GW}}$, $\overline{\text{BWE}}$, and $\overline{\text{BW}}_0$ – $\overline{\text{BW}}_3$) and $\overline{\text{ADV}}$ inputs are ignored during this first cycle. ADSP triggered write accesses require two clock cycles to complete. If \overline{GW} is asserted LOW on the second clock rise, the data presented to the DQ₀–DQ₃₁ inputs is written into the corresponding address location in the RAM core. If $\overline{\text{GW}}$ is HIGH, then the write operation is controlled by $\overline{\text{BWE}}$ and $\overline{\text{BW}}_{[3:0]}$ signals. The CY7C1337 provides byte write capability that is described in the write cycle description table. Asserting the Byte Write Enable input ($\overline{\text{BWE}}$) with the selected Byte Write ($\overline{\text{BW}}_0$ - $\overline{\text{BW}}_3$) input will selectively write to only the desired bytes. Bytes not selected during a byte write operation will remain unaltered. A Synchronous self-timed write mechanism has been provided to simplify the write operations. Because the CY7C1337 is a common I/O device, the Output Enable (\overline{OE}) must be deasserted HIGH before presenting data to the DQ_0 - DQ_{31} inputs. Doing so will three-state the output drivers. As a safety precaution, DQ_0 - DQ_{31} are automatically three-stated whenever a write cycle is detected, regardless of the state of \overline{OE} . ## Single Write Accesses Initiated by ADSC ADSC write accesses are initiated when the following conditions are satisfied: (1) ADSC is asserted LOW, (2) ADSP is deasserted HIGH, (3) $\overline{\text{CE}}_1$, CE_2 , $\overline{\text{CE}}_3$ are all asserted active, and (4) the appropriate combination of the write inputs (GW, $\overline{\text{BWE}}$, and $\overline{\text{BW}}_0$ - $\overline{\text{BW}}_3$) are asserted active to conduct a write to the desired byte(s). ADSC triggered write accesses require a single clock cycle to complete. The address presented to A₀-A₁₄ is loaded into the address register and the address advancement logic while being delivered to the RAM core. The ADV input is ignored during this cycle. If a global write is conducted, the data presented to the DQ₀-DQ₃₁ is written into the corresponding address location in the RAM core. If a byte write is conducted, only the selected bytes are written. Bytes not selected during a byte write operation will remain unaltered. A Synchronous self-timed write mechanism has been provided to simplify the write operations. Because the CY7C1337 is a common I/O device, the Output Enable (\overline{OE}) must be deasserted HIGH before presenting data to the DQ_0 - DQ_{31} inputs. Doing so will three-state the output drivers. As a safety precaution, DQ_0 - DQ_{31} are automatically three-stated whenever a write cycle is detected, regardless of the state of \overline{OE} . #### **Burst Sequences** The CY7C1337 provides a two-bit wraparound counter, fed by A_0 and A_1 , that implements either an interleaved or linear burst sequence. The burst sequence is user selectable through the MODE input. Asserting ADV LOW at clock rise will automatically increment the burst counter to the next address in the burst sequence. Both read and write burst operations are supported. ## Interleaved Burst Sequence | First
Address | Second
Address | Third
Address | Fourth
Address | |------------------|-------------------|------------------|-------------------| | Ax+1, Ax | Ax+1, Ax | Ax+1, Ax | Ax+1, Ax | | 00 | 01 | 10 | 11 | | 01 | 00 | 11 | 10 | | 10 | 11 | 00 | 01 | | 11 | 10 | 01 | 00 | ## **Linear Burst Sequence** | First
Address | Second
Address | Third
Address | Fourth
Address | |------------------|-------------------|------------------|-------------------| | Ax+1, Ax | Ax+1, Ax | Ax+1, Ax | Ax+1, Ax | | 00 | 01 | 10 | 11 | | 01 | 10 | 11 | 00 | | 10 | 11 | 00 | 01 | | 11 | 00 | 01 | 10 | ## Sleep Mode The ZZ input pin is an asynchronous input. Asserting ZZ places the SRAM in a power conservation "sleep" mode. While in this mode, data integrity is guaranteed. Accesses pending when entering the "sleep" mode are not considered valid nor is the completion of the operation guaranteed. The device should be deselected prior to entering the "sleep" mode. \overline{CE}_1 , CE $_2$, \overline{CE}_3 , \overline{ADSP} , and \overline{ADSC} must remain inactive for the duration of t_{ZZREC} after the ZZ input returns low. ## **ZZ Mode Electrical Characteristics** | Parameter | Description | Test Conditions | Min | Max | Unit | |--------------------------------|-----------------------------|------------------------------|-------------------|-------------------|------| | I _{CCZZ} | Snooze mode standby current | $ZZ \ge V_{DDQ} - 0.2V$ | | 2 | mA | | I _{CCZZ} (L version) | Snooze mode standby current | ZZ ≥ V _{DDQ} – 0.2V | | 500 | μА | | t _{ZZS} | Device operation to ZZ | $ZZ \ge V_{DDQ} - 0.2V$ | | 3t _{CYC} | ns | | t _{ZZREC} | ZZ recovery time | ZZ <u><</u> 0.2V | 3t _{CYC} | | ns | # Cycle Descriptions^[1,2,3] | Next Cycle | Add. Used | ZZ | Œ ₃ | CE ₂ | Œ ₁ | ADSP | ADSC | ADV | ŌĒ | DQ | Write | |----------------|-----------|----|----------------|-----------------|----------------|------|------|-----|----|------|-------| | Unselected | None | L | Х | Х | 1 | Х | 0 | Х | Х | Hi-Z | Х | | Unselected | None | L | 1 | Х | 0 | 0 | Х | Х | Х | Hi-Z | Х | | Unselected | None | L | Х | 0 | 0 | 0 | Х | Х | Х | Hi-Z | Х | | Unselected | None | L | 1 | Х | 0 | 1 | 0 | Х | Х | Hi-Z | Х | | Unselected | None | L | Х | 0 | 0 | 1 | 0 | Х | Х | Hi-Z | Х | | Begin Read | External | L | 0 | 1 | 0 | 0 | Х | Х | Х | Hi-Z | Х | | Begin Read | External | L | 0 | 1 | 0 | 1 | 0 | Х | Х | Hi-Z | read | | Continue Read | Next | L | Х | Х | Х | 1 | 1 | 0 | 1 | Hi-Z | read | | Continue Read | Next | L | Х | Х | Х | 1 | 1 | 0 | 0 | DQ | read | | Continue Read | Next | L | Х | Х | 1 | Х | 1 | 0 | 1 | Hi-Z | read | | Continue Read | Next | L | Х | Х | 1 | Х | 1 | 0 | 0 | DQ | read | | Suspend Read | Current | L | Х | Х | Х | 1 | 1 | 1 | 1 | Hi-Z | read | | Suspend Read | Current | L | Х | Х | Х | 1 | 1 | 1 | 0 | DQ | read | | Suspend Read | Current | L | Х | Х | 1 | Х | 1 | 1 | 1 | Hi-Z | read | | Suspend Read | Current | L | Х | Х | 1 | Х | 1 | 1 | 0 | DQ | read | | Begin Write | Current | L | Х | Х | Х | 1 | 1 | 1 | Х | Hi-Z | write | | Begin Write | Current | L | Х | Х | 1 | Х | 1 | 1 | Х | Hi-Z | write | | Begin Write | External | L | 0 | 1 | 0 | 1 | 0 | Х | Х | Hi-Z | write | | Continue Write | Next | L | Х | Х | Х | 1 | 1 | 0 | Х | Hi-Z | write | | Continue Write | Next | L | Х | Х | 1 | Х | 1 | 0 | Х | Hi-Z | write | | Suspend Write | Current | L | Х | Х | Х | 1 | 1 | 1 | Х | Hi-Z | write | | Suspend Write | Current | L | Х | Х | 1 | Х | 1 | 1 | Х | Hi-Z | write | | ZZ "sleep" | None | Н | Х | Х | Х | Х | Х | Х | Х | Hi-Z | Х | X=Don't Care, 1=HIGH, 0=LOW. Write is defined by BWE, BW[3:0], and GW. See write table. The DQ pins are controlled by the current cycle and the OE signal. OE is asynchronous and is not sampled with the clock. CY7C1337 # Write Cycle Descriptions^[4,5,6] | Function | GW | BWE | BW ₃ | BW ₂ | BW ₁ | BW ₀ | |--------------------------------------|----|-----|-----------------|-----------------|-----------------|-----------------| | Read | 1 | 1 | Х | Х | Х | Х | | Read | 1 | 0 | 1 | 1 | 1 | 1 | | Write Byte 0-DQ _[7:0] | 1 | 0 | 1 | 1 | 1 | 0 | | Write Byte 1-DQ _[15:8] | 1 | 0 | 1 | 1 | 0 | 1 | | Write Bytes 1, 0 | 1 | 0 | 1 | 1 | 0 | 0 | | Write Byte 2 - DQ _[23:16] | 1 | 0 | 1 | 0 | 1 | 1 | | Write Bytes 2, 0 | 1 | 0 | 1 | 0 | 1 | 0 | | Write Bytes 2, 1 | 1 | 0 | 1 | 0 | 0 | 1 | | Write Bytes 2, 1, 0 | 1 | 0 | 1 | 0 | 0 | 0 | | Write Byte 3 - DQ _[31:24] | 1 | 0 | 0 | 1 | 1 | 1 | | Write Bytes 3, 0 | 1 | 0 | 0 | 1 | 1 | 0 | | Write Bytes 3, 1 | 1 | 0 | 0 | 1 | 0 | 1 | | Write Bytes 3, 1, 0 | 1 | 0 | 0 | 1 | 0 | 0 | | Write Bytes 3, 2 | 1 | 0 | 0 | 0 | 1 | 1 | | Write Bytes 3, 2, 0 | 1 | 0 | 0 | 0 | 1 | 0 | | Write Bytes 3, 2, 1 | 1 | 0 | 0 | 0 | 0 | 1 | | Write All Bytes | 1 | 0 | 0 | 0 | 0 | 0 | | Write All Bytes | 0 | Х | Х | Х | Х | Х | #### Notes: X=Don't Care, 1=Logic HIGH, 0=Logic LOW. The SRAM always initiates a read cycle when ADSP asserted, regardless of the state of GW, BWE, or BW₃₋₀. Writes may occur only on subsequent clocks after the ADSP or with the assertion of ADSC. As a result, OE must be driven HIGH prior to the start of the write cycle to allow the outputs to tri– state. OE is a don't care for the remainder of the write cycle. OE is asynchronous and is not sampled with the clock rise. It is masked internally during write cycles. During a read cycle DQ=HIGH-Z when OE is inactive or when the device is de-selected, and DQ=data when OE is active ## **Maximum Ratings** | (Above which the useful life may be impaired. For user guide lines, not tested.) | |--| | Storage Temperature65°C to +150°C | | Ambient Temperature with Power Applied55°C to +125°C | | Supply Voltage on $V_{\mbox{\scriptsize DD}}$ Relative to GND0.5V to +4.6V | | DC Voltage Applied to Outputs in High Z State $^{[7]}$ | ## Notes: 7. Minimum voltage equals -2.0 V for pulse durations of less than 20 ns. | Current into Outputs (LOW) | 20 mA | |--|---------| | Static Discharge Voltage(per MIL-STD-883, Method 3015) | >2001V | | Latch-Up Current | >200 mA | ## **Operating Range** | Range | Ambient
Temperature ^[8]] | V _{DD} | |-------|--|------------------| | Com'l | 0°C to +70°C | 3.3V <u>+</u> 5% | 8. T_A is the "instant on" case temperature. ## **Electrical Characteristics** Over the Operating Range | Parameter | Description | Test Condit | tions | Min. | Max. | Unit | |------------------|--|---|-----------------------|-------|------------------|------| | V _{DD} | Power Supply Voltage | | | 3.135 | 3.465 | V | | V_{DDQ} | I/O Supply Voltage | | | 2.375 | 2.9 | V | | V _{OH} | Output HIGH Voltage | $loh = -100\mu A$ | | 2.1 | | V | | | | loh = −1mA | | 2.0 | | V | | | | loh = −2mA | | 1.7 | | V | | V _{OL} | Output LOW Voltage | IoI = 100μA | | | 0.2 | V | | | | IoI = 1mA | | | 0.4 | V | | | | IoI = 2mA | | | 0.7 | V | | V _{IH} | Input HIGH Voltage | | | 1.7 | $V_{DDQ} + 0.3V$ | V | | V _{IL} | Input LOW Voltage ^[7] | | | | 0.7 | V | | I _X | Input Load Current except ZZ and MODE | $GND \le V_I \le V_{DDQ}$ | | | 5 | μΑ | | | Input Current of MODE | $\begin{aligned} & \text{Input} = V_{\text{SS}} \\ & \text{Input} = V_{\text{DDQ}} \\ & \text{Input} = V_{\text{SS}} \\ & \text{Input} = V_{\text{DDQ}} \end{aligned}$ | | -30 | | μΑ | | | | | | | 5 | μΑ | | | Input Current of ZZ | | | -5 | | μΑ | | | | | | | 30 | μΑ | | I _{OZ} | Output Leakage
Current | $GND \le V_1 \le V_{DDQ}$, Outputs Disal | -5 | 5 | μА | | | I _{CC} | V _{DD} Operating Supply | $V_{DD} = Max$, $I_{OUT} = 0mA$, | 8.6 ns cycle, 117 MHz | | 350 | mA | | | Current | $f = fMAX = 1/t_{CYC}$ | 10 ns cycle, 100 MHz | | 310 | mA | | | | | 15 ns cycle, 66 MHz | | 230 | mA | | I _{SB1} | Automatic CS | Max V _{DD} , Device Deselected, | 8.6 ns cycle, 117 MHz | | 40 | mA | | | Power-Down
Current-TTL Inputs | $V_{IN} \ge V_{IH} \text{ or } V_{IN} \le V_{IL},$
$f = f_{MAX} = 1/t_{CYC}$ | 10 ns cycle, 100 MHz | | 35 | mA | | | - Carrotte - La mpario | - IWAX MCYC | 15 ns cycle, 66 MHz | | 25 | mA | | I _{SB2} | Automatic CS | Max V _{DD} , Device Deselected, | | | 1.5 | mA | | | Power-Down Cur-
rent-CMOS Inputs | $V_{IN} \le 0.3V, f = 0$ | L version | | 200 | μΑ | | I _{SB3} | Automatic CS | Max V _{DD} , Device Deselected, | 8.6 ns cycle, 117 MHz | | 35 | mA | | | Power-Down Cur-
rent-CMOS Inputs | $V_{IN} < 0.3V$,
$f = f_{MAX} = 1/t_{CYC}$ | 10 ns cycle, 100 MHz | | 30 | mA | | | | IVIAA | 15 ns cycle, 66 MHz | | 20 | mA | | I _{SB4} | Automatic CS
Power-Down
Current-TTL Inputs | $\begin{aligned} &\text{Max. V}_{DD}\text{, Device Deselected,} \\ &\text{V}_{IN} \geq \text{V}_{IH} \text{ or V}_{IN} \leq \text{V}_{IL}, \text{ f} = 0 \end{aligned}$ | | | 25 | mA | ## Capacitance^[9] | Parameter | Description | Test Conditions | Min | Max. | Unit | |------------------|--------------------------|---|-----|------|------| | C _{IN} | Input Capacitance | $T_A = 25^{\circ}C, f = 1 \text{ MHz},$ | 2 | 5 | pF | | C _{CLK} | Clock Input Capacitance | $V_{DD} = 3.3V.$ $V_{DDQ} = 2.5V$ | 2 | 5 | pF | | C _{I/O} | Input/Output Capacitance | | 3.5 | 8 | pF | ## Note: ^{9.} Tested initially and after any design or process changes that may affect these parameters. ## **AC Test Loads and Waveforms** ## Switching Characteristics Over the Operating Range^[11,12,13] | | 1 | -117 | | -100 | | -66 | | | |-------------------|--|------|-----|------|------|------|-----|------| | Parameter | Description | Min | Max | Min. | Max. | Min | Max | Unit | | t _{CYC} | Clock Cycle Time | 8.6 | | 10 | | 15.0 | | ns | | t _{CH} | Clock HIGH | 2.5 | | 3.2 | | 6.0 | | ns | | t _{CL} | Clock LOW | 2.5 | | 3.2 | | 6.0 | | ns | | t _{AS} | Address Set-Up Before CLK Rise | 2.0 | | 2.0 | | 2.5 | | ns | | t _{AH} | Address Hold After CLK Rise | 0.5 | | 0.5 | | 0.5 | | ns | | t _{CO} | Data Output Valid After CLK Rise | | 5.0 | | 5.5 | | 8.5 | ns | | t _{DOH} | Data Output Hold After CLK Rise | 1.5 | | 1.5 | | 2.0 | | ns | | t _{ADS} | ADSP, ADSC Set-Up Before CLK Rise | 2.0 | | 2.0 | | 2.5 | | ns | | t _{ADH} | ADSP, ADSC Hold After CLK Rise | 0.5 | | 0.5 | | 0.5 | | ns | | t _{WES} | BWE, GW, BW[3:0] Set-Up Before CLK Rise | 2.0 | | 2.0 | | 2.5 | | ns | | t _{WEH} | BWE, GW, BW[3:0] Hold After CLK Rise | 0.5 | | 0.5 | | 0.5 | | ns | | t _{ADVS} | ADV Set-Up Before CLK Rise | 2.0 | | 2.0 | | 2.5 | | ns | | t _{ADVH} | ADV Hold After CLK Rise | 0.5 | | 0.5 | | 0.5 | | ns | | t _{DS} | Data Input Set-Up Before CLK Rise | 2.0 | | 2.0 | | 2.5 | | ns | | t _{DH} | Data Input Hold After CLK Rise | 0.5 | | 0.5 | | 0.5 | | ns | | t _{CES} | Chip Select Set-Up | 2.0 | | 2.0 | | 2.5 | | ns | | t _{CEH} | Chip Select Hold After CLK Rise | 0.5 | | 0.5 | | 0.5 | | ns | | t _{CHZ} | Clock to High-Z ^[12] | 1.5 | 4.5 | 1.5 | 5 | 2.0 | 6.0 | ns | | t _{CLZ} | Clock to Low-Z ^[12] | 0 | | 0 | | 0 | | ns | | t _{EOHZ} | OE HIGH to Output High-Z ^[12, 13] | | 4.8 | | 5.5 | | 6.0 | ns | | t _{EOLZ} | OE LOW to Output Low-Z ^[12,13] | 0 | | 0 | | 0 | | ns | | t _{EOV} | OE LOW to Output Valid ^[12] | | 4.8 | | 5.5 | | 6.0 | ns | ## Switching Characteristics Over the Operating Range $^{[11,12,13]}$ | | | -117 | | -100 | | -66 | | | |-----------|-------------|------|-----|------|------|-----|-----|------| | Parameter | Description | Min | Max | Min. | Max. | Min | Max | Unit | #### Notes: - 10. Input waveform should have a slew rate of 1V/nS and swing from 0V to 2.5V 11. Unless otherwise noted, test conditions assume signal transition time of 3 ns or less, timing reference levels of 1.25V, input pulse levels of 0 to 2.5V, and output loading of the specified lo_L/l_{OH} and load capacitance. Shown in (a) and (b) of AC test loads. 12. t_{CHZ}, t_{CLZ}, t_{OEV}, t_{EOLZ}, and t_{EOHZ} are specified with a load capacitance of 5 pF as in part (b) of AC Test Loads. Transition is measured ±200 mV from steady-state voltage. 13. At any given voltage and temperature, t_{EOHZ} is less than t_{EOLZ} and t_{CHZ} is less than t_{CLZ}. ## **Switching Waveforms** ## **Write Cycle Timing** $\overline{\text{WE}}$ is the combination of $\overline{\text{BWE}}$ & $\overline{\text{BW}}_{x}$ to define a write cycle (see write cycle definition table). = UNDEFINED ## Switching Waveforms (continued) ## **Read Cycle Timing** ## Switching Waveforms (continued) ## **Read/Write Cycle Timing** Note: Write data forwarded to outputs on read immediately following a write [©] Cypress Semiconductor Corporation, 1997. The information contained herein is subject to change without notice. Cypress Semiconductor Corporation assumes no responsibility for the use of any circuitry other than circuitry embodied in a Cypress Semiconductor product. Nor does it convey or imply any license under patent or other rights. Cypress Semiconductor does not authorize its products for use as critical components in life-support systems where a malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress Semiconductor products in life-support systems application implies that the manufacturer assumes all risk of such use and in doing so indemnifies Cypress Semiconductor against all charges. ## Switching Waveforms (continued) ## Notes: ^{14.} Device must be deselected when entering ZZ mode. See Cycle description for all possible signal conditions to deselect the device.15. I/O's are in tri-state when exiting ZZ sleep mode. ## **Ordering Information** | Speed
(MHz) | Ordering Code | Package
Name | Package Type | Operating
Range | | |----------------|-----------------|-----------------|------------------------------|--------------------|--| | 117 | CY7C1337-117AC | A100 | 100-Lead Thin Quad Flat Pack | Commercial | | | 100 | CY7C1337-100AC | A100 | 100-Lead Thin Quad Flat Pack | Commercial | | | 66 | CY7C1337-66AC | A100 | 100-Lead Thin Quad Flat Pack | Commercial | | | 117 | CY7C1337L-117AC | A100 | 100-Lead Thin Quad Flat Pack | Commercial | | | 100 | CY7C1337L-100AC | A100 | 100-Lead Thin Quad Flat Pack | Commercial | | | 66 | CY7C1337L-66AC | A100 | 100-Lead Thin Quad Flat Pack | Commercial | | Document #: 38-00452-B ## **Package Diagrams** ## 100-Lead Thin Quad Flat Pack (TQFP) A100 #### NOTES: - DIMENSIONS ARE IN MILLIMETERS. LEAD COPLANARITY 0.100 MAX. PACKAGE WIDTH (14.00±0.10) AND LENGTH (20.00±0.10) DIES NOT INCLUDE MOLD PROTRUSION. MAX. ALLOWABLE PROTRUSION IS 0.25 MM. LEAD WIDTH DIES NOT INCLUDE DAMBAR PROTRUSION. MAX. ALLOWABLE DAMBAR PROTRUSION ABOVE I TWER RADIUS IS 0.08 MM