

October 1987 Revised January 1999

MM74C85 4-Bit Magnitude Comparator

General Description

The MM74C85 is a four-bit magnitude comparator which will perform comparison of straight binary or BCD codes. The circuit consists of eight comparing inputs (AO, A1, A2, A3, B0, B1, B2, B3), three cascading inputs (A > B, A < B and A = B), and three outputs (A > B, A < B and A = B). This device compares two four-bit words (A and B) and determines whether they are "greater than," "less than," or "equal to" each other by a high level on the appropriate output. For words greater than four-bits, units can be cascaded by connecting the outputs (A > B, A < B, and A = B) of the least significant stage to the cascade inputs (A > B, A < B and A = B) of the next-significant stage. In addition the least significant stage must have a high level voltage

 $(V_{IN(1)})$ applied to the A = B input and low level voltage $(V_{IN(0)})$ applied to A > B and A < B inputs.

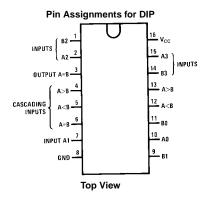
Features

■ Wide supply voltage range: 3.0V to 15V

■ Guaranteed noise margin: 1.0V
 ■ High noise immunity: 0.4 V_{CC} (typ.)

■ Low power: TTL compatibility: fan out of 2 driving 74L

■ Expandable to 'N' stages

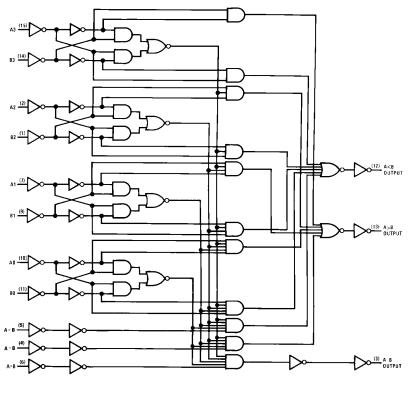

■ Applicable to binary or BCD

■ Low power pinout: 74L85

Ordering Code:

Order Number	Package Number	Package Description			
MM74C85N	N16E	16-Lead Plastic Dual-In-Line Package (PDIP), JEDEC MS-001, 0.300" Wide			

Connection Diagram



Truth Table

Comparing Inputs			Cascading Inputs			Outputs			
A3, B3	A2, B2	A1, B1	A0, B0	A > B	A < B	A = B	A > B	A < B	A = B
A3 > B3	Х	Х	Х	Х	Х	Χ	Н	L	L
A3 < B3	Х	Χ	Χ	Х	Χ	Χ	L	Н	L
A3 = B3	A2 > B2	Χ	Χ	Х	Χ	Χ	Н	L	L
A3 = B3	A2 < B2	Χ	Χ	Х	Χ	Χ	L	Н	L
A3 = B3	A2 = B2	A1 > B1	X	X	Χ	Χ	Н	L	L
A3 = B3	A2 = B2	A1 < B1	X	X	Χ	Χ	L	Н	L
A3 = B3	A2 = B2	A1 = B1	A0 > B0	Χ	Χ	Χ	Н	L	L
A3 = B3	A2 = B2	A1 = B1	A0 < B0	X	X	Χ	L	Н	L
A3 = B3	A2 = B2	A1 = B1	A0 = B0	Н	L	L	Н	L	L
A3 = B3	A2 = B2	A1 = B1	A0 = B0	L	Н	L	L	Н	L
A3 = B3	A2 = B2	A1 = B1	A0 = B0	L	L	Н	L	L	Н
A3 = B3	A2 = B2	A1 = B1	A0 = B0	L	Н	Н	L	Н	Н
A3 = B3	A2 = B2	A1 = B1	A0 = B0	Н	L	Н	Н	L	Н
A3 = B3	A2 = B2	A1 = B1	A0 = B0	Н	Н	Н	Н	Н	Н
A3 = B3	A2 = B2	A1 = B1	A0 = B0	Н	Н	L	Н	Н	L
A3 = B3	A2 = B2	A1 = B1	A0 = B0	L	L	L	L	L	L

H = HIGH Level, L = LOW Level, X = Irrelevant

Logic Diagram

Absolute Maximum Ratings(Note 1)

Voltage at Any Pin $-0.3\mbox{V}$ to $\mbox{V}_{\mbox{CC}} + 0.3\mbox{V}$ Operating Temperature Range $-40^{\circ}C$ to $+85^{\circ}C$ -65°C to +150°C

Storage Temperature Range

Power Dissipation (P_D) Dual-In-Line 700 mW Small Outline 500 mW

Operating $V_{\rm CC}$ Range 3.0V to 15V

18V V_{CC}

Lead Temperature

260°C (Soldering, 10 seconds)

Note 1: "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. Except for "Operating Temperature Range" they are not meant to imply that the devices should be operated at these limits. The table of "Electrical Characteristics" provides conditions for actual device operation.

DC Electrical Characteristics

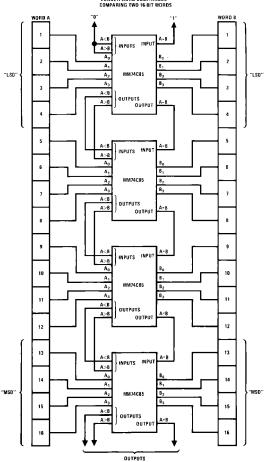
Min/Max limits apply across temperature range unless otherwise noted

Symbol	Parameter	Conditions	Min	Тур	Max	Units
CMOS TO	смоѕ		- I		I	
V _{IN(1)}	Logical "1" Input Voltage	V _{CC} = 5.0V	3.5			V
		V _{CC} = 10V	8.0			V
V _{IN(0)}	Logical "0" Input Voltage	V _{CC} = 5.0V			1.5	V
		V _{CC} = 10V			2.0	V
V _{OUT(1)}	Logical "1" Output Voltage	$V_{CC} = 5.0V, I_{O} = -10 \mu A$	4.5			V
		$V_{CC} = 10V$, $I_{O} = -10 \mu A$	9.0			V
V _{OUT(0)}	Logical "0" Output Voltage	$V_{CC} = 5.0V, I_{O} = +10 \mu A$			0.5	V
		$V_{CC} = 10V$, $I_{O} = +10 \mu A$			1.0	V
I _{IN(1)}	Logical "1" Input Current	V _{CC} = 15V, V _{IN} = 15V		0.005	1.0	μΑ
I _{IN(0)}	Logical "0" Input Current	$V_{CC} = 15V, V_{IN} = 0V$	-1.0	-0.005		μΑ
I _{CC}	Supply Current	V _{CC} = 15V		0.05	300	μΑ
CMOS/LP1	TL INTERFACE		<u> </u>		I	
V _{IN(1)}	Logical "1" Input Voltage	V _{CC} = 4.75V	V _{CC} - 1.5			V
V _{IN(0)}	Logical "0" Input Voltage	V _{CC} = 4.75V			0.8	V
V _{OUT(1)}	Logical "1" Output Voltage	$V_{CC} = 4.75V$, $I_{O} = -360 \mu A$	2.4			V
V _{OUT(0)}	Logical "0" Output Voltage	$V_{CC} = 4.75V$, $I_{O} = 360 \mu A$			0.4	V
OUTPUT D	RIVE (See Family Characteristics Da	nta Sheet) (Short Circuit Current)	•			
I _{SOURCE}	Output Source Current	$V_{CC} = 5.0V$, $V_{OUT} = 0V$	-1.75	-3.3		mA
	(P-Channel)	$T_A = 25^{\circ}C$				
I _{SOURCE}	Output Source Current	V _{CC} = 10V, V _{OUT} = 0V	-8.0	-15		mA
	(P-Channel)	$T_A = 25^{\circ}C$				
I _{SINK}	Output Sink Current	$V_{CC} = 5.0V$, $V_{OUT} = V_{CC}$	1.75	3.6		mA
-	(N-Channel)	$T_A = 25^{\circ}C$				
I _{SINK}	Output Sink Current	V _{CC} = 10V, V _{OUT} = V _{CC}	8.0	16		mA
-	(N-Channel)	T _A = 25°C				

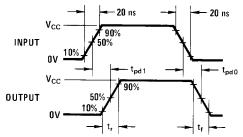
AC Electrical Characteristics (Note 2)

 $T_{\Delta} = 25^{\circ}C$, $C_{L} = 50$ pF, unless otherwise specified

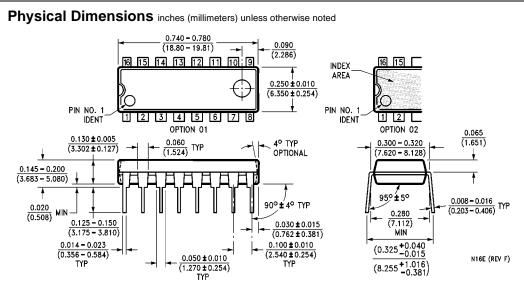
TA = 20 G, GL = 30 pr, diffess difference specified							
Symbol	Parameter	Conditions	Min	Тур	Max	Units	
t _{pd}	Propagation Delay from any A	V _{CC} = 50V		250	600	ns	
	or B Data Input to any	V _{CC} = 10V		100	300	ns	
	Data Output						
t _{pd}	Propagation Delay Time from	V _{CC} = 50V		200	500	ns	
	any Cascade Input to	V _{CC} = 10V		100	250	ns	
	any Output						
C _{IN}	Input Capacitance	Any Input		5.0		pF	
C _{PD}	Power Dissipation Capacitance	Per Package (Note 4)		45		pF	


Note 2: AC Parameters are guaranteed by DC correlated testing.

Note 3: Capacitance is guaranteed by periodic testing.


Note 4: C_{PD} determines the no load AC power consumption of any CMOS device. For complete explanation see Family Characteristics application note,

Typical Applications


Four Digit Comparator -LONGER WORD COMPARISONCOMPARING TWO 16-BIT WORDS

Switching Time Waveforms

Unused inputs must be tied to an appropriate logic level.

16-Lead Plastic Dual-In-Line Package (PDIP), JEDEC MS-001, 0.300" Wide Package Number N16E

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

- Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
- A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

www.fairchildsemi.com