

STK6713AMK3

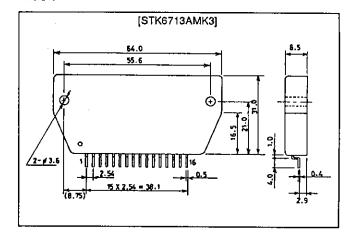
Stepping Motor Fixed-current Driver

Overview

The STK6713AMK3 is a unipolar fixed-current choppertype 4-phase stepping motor driver hybrid IC (HIC) which uses a MOSFET power device. The excitation sequence signal is active High.

Applications

• Serial printer, line printer, PPC, laser beam printer (LBP) paper feed and carriage motor drivers

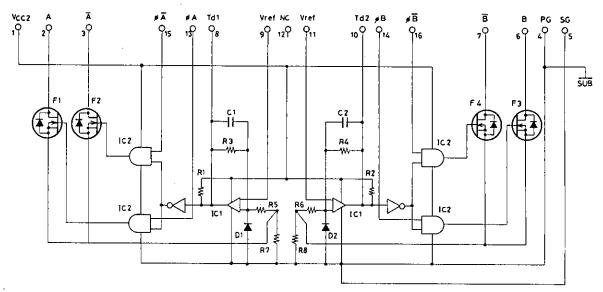

Features

- Fixed-current driver device which uses MOSFET
- Input signal supporting TTL level (Active High drive type)
- On-chip current detection resistor

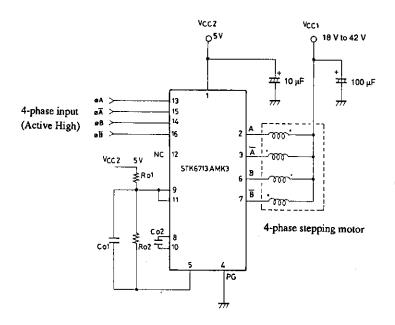
Package Dimensions

unit: mm

4131

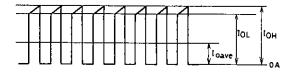


Specifications


Maximum Ratings at Ta = 25°C

Parameter	Symbol	Conditions		Ratings		Unit
Maximum supply voltage 1	V _{CC} 1max	No input signal		52		V
Maximum supply voltage 2	V _{CC} 2max	No input signal		7		v
Maximum phase current	I _{OH} max	per phase, $R/L = 5\Omega/10mH$,		3.9		Α
		0.5 s 1 pulse, Vcc input				
Repeated avalanche handling capability	Ear max			42		mJ
Storage temperature	Tstg	r .	-40 to +125			°C
Junction temperature	Tj max			150		°C
Operating substrate temperature	Tc max			105	٠	°C
Allowable Operating Conditions at Ta = 25°C				typ	max	Unit
Supply voltage 1	V _{CC} 1	With input signal	18	_	42	v
Supply voltage 2	V_{CC}^2	With input signal	4.75	5.0	5.25	V
Phase driver withstand voltage	V_{DSS}		100			V
Phase current	I _{OH} max	Duty 50%			3.0	A
Electrical Characteristics at Ta = 25°C, Vcc1 = 36V, Vcc2 = 5V				typ	max	Unit
Output saturation voltage	V_{ST}	$R_{L}=14\Omega, V_{IN}=2.4V$		1.5	2.1	v
Output current (average)	Io ave	Load; R/L=3.5Ω/3.8mH, V _{IN} =2.4V per phase	0.414	0.46	0.506	A
Pin 1 current consumption (average)	I_{CC}^2	Load; R/L = $3.5\Omega/3.8$ mH, V _{IN} = 2.4 V per phase		10	20	mA
FET diode forward voltage	Vdf	$I_f = 1.0A$		1.2	1.8	v
TTL input ON voltage	V _{IH}	Input voltage when F1, 2, 3, 4 ON	2.0			v
TTL input OFF voltage	V _{IL}	Input voltage when F1, 2, 3, 4 OFF			0.8	V
Switching time	t _{ON}	$R_{L}=24\Omega, V_{IN}=2.4V$		80		ns
	t _{OFF}	$R_{L}=24\Omega, V_{IN}=2.4V$		0.2		μs
Note: With regulated voltage power	supply.					

Equivalent Circuit



Application Circuit

Note: For reference, when $I_{OH}\approx 1.0 A,\,R_{O1}$ = $6.8 k\Omega$ and R_{O2} = $390\Omega.$

Output current waveform when phases held (locked)

Measure output current values in this state.

$$\begin{split} I_{OH} &= K \ X \ \frac{R_{O2}}{R_{O1} + R_{O2}} \ X \ V_{CC} 2 / R_7 \\ K &\approx 1.2 \\ R_7 &= R_8 = 0.33 \Omega \pm 3\% \end{split}$$

To reduce noise during motor hold, it is possible to mount $C_{O1} \approx 0.01~\mu F$ and $C_{O2} \approx 100\text{-}200~pF$. Normally these are not required.

Note: Both input signals cannot be H at the same time.

- No products described or contained herein are intended for use in surgical implants, life-support systems, aerospace equipment, nuclear power control systems, vehicles, disaster/crime-prevention equipment and the like, the failure of which may directly or indirectly cause injury, death or property loss.
- Anyone purchasing any products described or contained herein for an above-mentioned use shall:
 - ① Accept full responsibility and indemnify and defend SANYO ELECTRIC CO., LTD., its affiliates, subsidiaries and distributors and all their officers and employees, jointly and severally, against any and all claims and litigation and all damages, cost and expenses associated with such use:
 - 2 Not impose any responsibility for any fault or negligence which may be cited in any such claim or litigation on SANYO ELECTRIC CO., LTD., its affiliates, subsidiaries and distributors or any of their officers and employees jointly or severally.
- Information (including circuit diagrams and circuit parameters) herein is for example only; it is not guaranteed for volume production. SANYO believes information herein is accurate and reliable, but no guarantees are made or implied regarding its use or any infringements of intellectual property rights or other rights of third parties.

This catalog provides information as of June, 1995. Specifications and information herein are subject to change without notice.