FAIRCHILD

SEMICONDUCTOR

October 1987 Revised January 1999

MM74C373 • MM74C374 3-STATE Octal D-Type Latch • 3-STATE Octal D-Type Flip-Flop

General Description

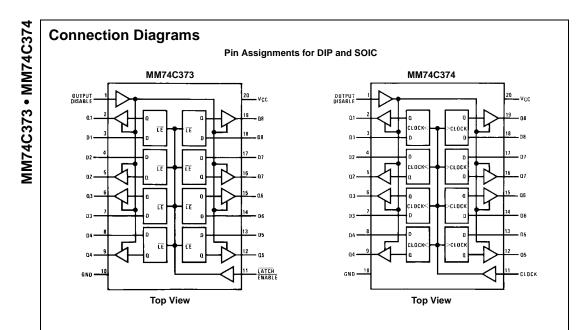
The MM74C373 and MM74C374 are integrated, complementary MOS (CMOS), 8-bit storage elements with 3-STATE outputs. These outputs have been specially designed to drive high capacitive loads, such as one might find when driving a bus, and to have a fan out of 1 when driving standard TTL. When a high logic level is applied to the OUTPUT DISABLE input, all outputs go to a high impedance state, regardless of what signals are present at the other inputs and the state of the storage elements.

The MM74C373 is an 8-bit latch. When $\overrightarrow{\text{LATCH}}$ ENABLE is high, the Q outputs will follow the D inputs. When $\overrightarrow{\text{LATCH}}$ ENABLE goes low, data at the D inputs, which meets the set-up and hold time requirements, will be retained at the outputs until $\overrightarrow{\text{LATCH}}$ ENABLE returns high again.

The MM74C374 is an 8-bit, D-type, positive-edge triggered flip-flop. Data at the D inputs, meeting the set-up and hold time requirements, is transferred to the Q outputs on positive-going transitions of the CLOCK input.

Both the MM74C373 and the MM74C374 are being assembled in 20-pin dual-in-line packages with 0.300" pin centers.

Features

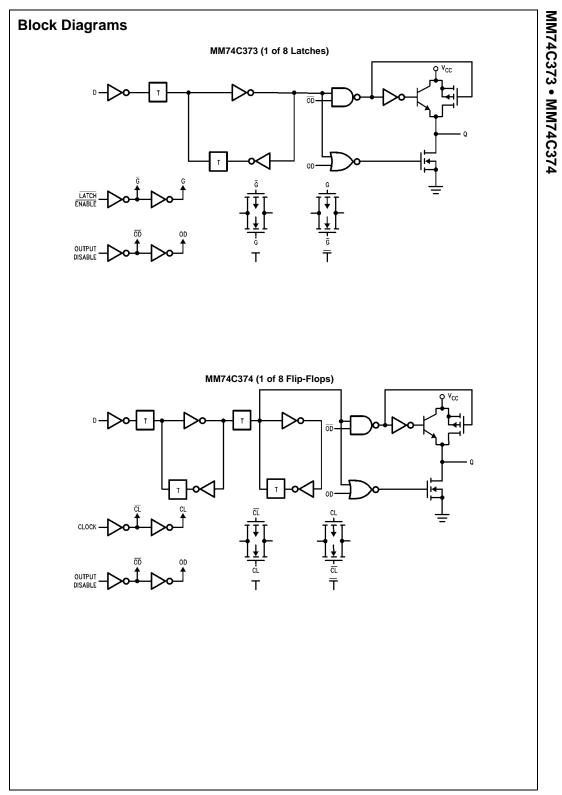

- Wide supply voltage range: 3V to 15V
- High noise immunity: 0.45 V_{CC} (typ.)
- Low power consumption
- TTL compatibility:
- Fan out of 1driving standard TTL
- Bus driving capability
- 3-STATE outputs
- Eight storage elements in one package
- Single CLOCK/LATCH ENABLE and OUTPUT DIS-ABLE control inputs
- 20-pin dual-in-line package with 0.300" centers takes half the board space of a 24-pin package

Ordering Code:

Order Number	Package Number	Package Description
MM74C373M	M20B	20-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-013, 0.300" Wide
MM74C373N	N20A	20-Lead Plastic Dual-In-Line Package (PDIP), JEDEC MS-001, 0.300" Wide
MM74C374M	M20B	20-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-013, 0.300" Wide
MM74C374N	N20A	20-Lead Plastic Dual-In-Line Package (PDIP), JEDEC MS-001, 0.300" Wide

Devices also available in Tape and Reel. Specify by appending the suffix letter "X" to the ordering code.

© 1999 Fairchild Semiconductor Corporation DS005906.prf



Truth Tables

	MM740	C373	
Output	LATCH	D	Q
Disable	ENABLE		
L	Н	Н	Н
L	Н	L	L
L	L	Х	Q
н	Х	Х	Hi-Z

MM74C374					
Output Disable	Clock	D	Q		
L	~	Н	Н		
L	~	L	L		
L	L	Х	Q		
L	Н	Х	Q		
Н	Х	Х	Hi-Z		

 $\begin{array}{l} \mathsf{L} = \mathsf{LOW} \mbox{ logic level} \\ \mathsf{H} = \mathsf{H}\mathsf{IGH} \mbox{ logic level} \\ \mathsf{X} = \mathsf{Irrelevant} \\ \mathcal{I} = \mathsf{LOW-to}\text{-}\mathsf{H}\mathsf{IGH} \mbox{ logic level transition} \\ \mathsf{Q} = \mathsf{Preexisting output level} \\ \mathsf{Hi-Z} = \mathsf{High impedance output state} \end{array}$

Absolute Maximum Ratings(Note 1)

Voltage at Any Pin	-0.3V to V _{CC} + 0.3V
о ,	-0.3 10 V _{CC} $+ 0.3$ V
Operating Temperature Range (T _A)	
MM74C373	-40°C to +85°C
Storage Temperature Range (T_S)	$-65^{\circ}C$ to $+150^{\circ}C$
Power Dissipation	
Dual-In-Line	700 mW
Small Outline	500 mW

Operating V _{CC} Range	3V to 15V
Absolute Maximum V _{CC}	18V
Lead Temperature (T _L)	
(Soldering, 10 seconds)	260°C

Note 1: "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. Except for "Operating Temperature Range" they are not meant to imply that the devices should be operated at these limits. The table of "Electrical Characteristics" provides conditions for actual device operation.

DC Electrical Characteristics

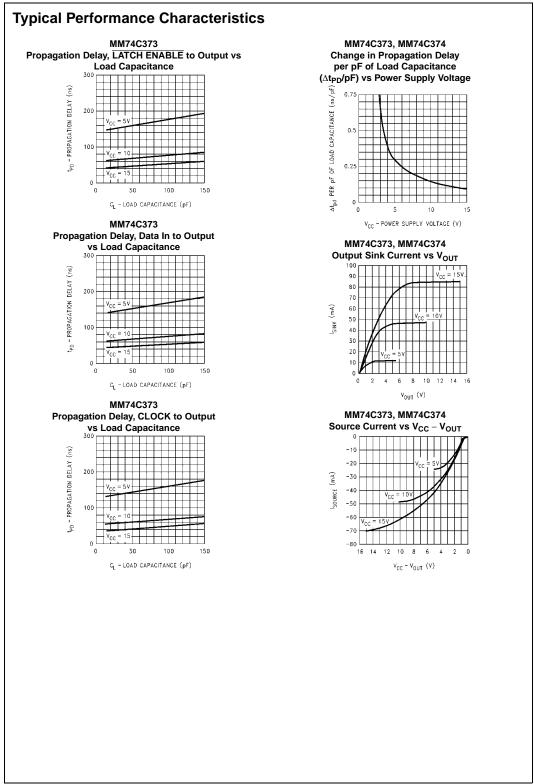
Min/Max limits apply across temperature range unless otherwise noted Symbol Conditions Min Тур Max Units Parameter CMOS TO CMOS Logical "1" Input Voltage $V_{CC} = 5V$ 3.5 V_{IN(1)} ν $V_{CC} = 10V$ 8.0 V V_{IN(0)} Logical "0" Input Voltage $V_{CC} = 5V$ 1.5 V $V_{CC} = 10V$ 2.0 V $V_{CC} = 5V, I_{O} = -10 \ \mu A$ V_{OUT(1)} Logical "1" Output Voltage 4.5 V $V_{CC} = 10V, I_{O} = -10 \ \mu A$ 9.0 V $V_{CC} = 5V$, $I_O = 10 \ \mu A$ V_{OUT(0)} Logical "0" Output Voltage 0.5 V $V_{CC}=10V\text{, }I_{O}=10~\mu\text{A}$ 1.0 V $V_{CC} = 15V, V_{IN} = 15V$ 0.005 1.0 I_{IN(1)} Logical "1" Input Current μΑ Logical "0" Input Current $V_{CC} = 15V, V_{IN} = 0V$ -1.0 -0.005 μΑ I_{IN(0)} 3-STATE Leakage Current V_{CC} = 15V, V_O = 15V 0.005 1.0 μΑ I_{OZ} $V_{CC} = 15V, V_{O} = 0V$ -1.0 -0.005 μΑ $\overline{V_{CC}} = 15V$ Supply Current 0.05 300 μΑ I_{CC} CMOS/LPTTL INTERFACE $V_{CC} = 4.75V$ V_{IN(1)} Logical "1" Input Voltage V V_{CC} – 1.5 V_{IN(0)} Logical "0" Input Voltage $V_{CC} = 4.75V$ 0.8 V $V_{CC} - 0.4$ Logical "1" Output Voltage $V_{CC} = 4.75 V$, $I_O = -360 \ \mu A$ V V_{OUT(1)} $V_{CC} = 4.75V$, $I_{O} = -1.6$ mA V 2.4 $V_{CC} = 4.75V, I_{O} = 1.6 \text{ mA}$ Logical "0" Output Voltage 0.4 V V_{OUT(0)} OUTPUT DRIVE (Short Circuit Current) ISOURCE Output Source Current $V_{CC} = 5V, V_{OUT} = 0V$ -12 -24 mΑ $T_A = 25^{\circ}C$ (Note 2) Output Source Current $V_{CC} = 10V, V_{OUT} = 0V$ -24 -48 mA ISOURCE $T_A = 25^{\circ}C$ (Note 2) Output Sink Current $V_{CC} = 5V, V_{OUT} = V_{CC}$ 6 12 mΑ I_{SINK} $T_A = 25^{\circ}C$ (Note 2) (N-Channel) Output Sink Current 48 I_{SINK} $V_{CC} = 10V$, $V_{OUT} = V_{CC}$ 24 mΑ $T_A = 25^{\circ}C$ (Note 2) (N-Channel)

Note 2: These are peak output current capabilities. Continuous output current is rated at 12 mA max.

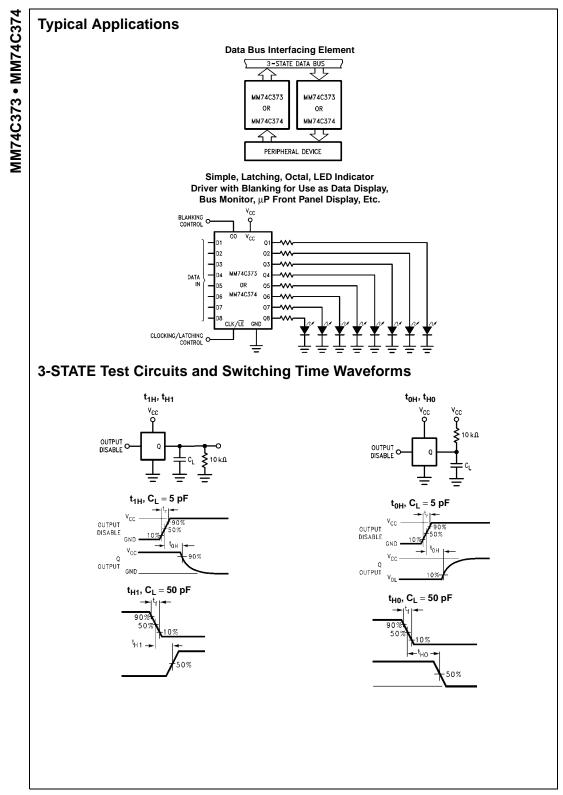
Symbol	Parameter	Conditions	Min	Тур	Max	Units
			Win			
t _{pd0} , t _{pd1}	Propagation Delay,	$V_{CC} = 5V, C_{L} = 50 \text{ pF}$		165	330	ns
	LATCH ENABLE to Output	$V_{CC} = 10V$, $C_L = 50 \text{ pF}$		70	140	ns
		$V_{CC} = 5V, C_L = 150 \text{ pF}$		195	390	ns
		$V_{CC} = 10V, C_{L} = 150 \text{ pF}$		85	170	ns
t _{pd0} , t _{pd1}	Propagation Delay Data	LATCH ENABLE = V _{CC}				
	In to Output	$V_{CC} = 5V, C_L = 50 \text{ pF}$		155	310	ns
		$V_{CC} = 10V, C_L = 50 \text{ pF}$		70	140	ns
		$V_{CC}=5V,\ C_L=150\ pF$		185	370	ns
		$V_{CC} = 10V, C_L = 150 \text{ pF}$		85	170	ns
t _{SET-UP}	Minimum Set-Up Time Data In	t _{HOLD} = 0 ns				
	to CLOCK/LATCH ENABLE	$V_{CC} = 5V$		70	140	ns
		$V_{CC} = 10V$		35	70	ns
f _{MAX}	Maximum LATCH ENABLE					
	Frequency	$V_{CC} = 5V$	3.5	6.7		MHz
		$V_{CC} = 10V$	4.5	9.0		MHz
t _{PWH}	Minimum LATCH ENABLE	V _{CC} 5V		75	150	ns
	Pulse Width	$V_{CC} = 10V$		55	110	ns
t _r , t _f	Maximum LATCH ENABLE	$V_{CC} = 5V$		NA		μs
17 1	Rise and Fall Time	$V_{CC} = 10V$		NA		μs
t _{1H} , t _{0H}	Propagation Delay OUTPUT	$R_L = 10k, C_L = 5 pF$		IN/A		μs
'1H' '0H	DISABLE to High Impedance	$V_{CC} = 5V$		105	210	ns
	State (from a Logic Level)	$V_{CC} = 3V$ $V_{CC} = 10V$		60	120	ns
t _{H1} , t _{H0}	Propagation Delay OUTPUT	$R_L = 10k, C_L = 50 \text{ pF}$		00	120	113
ΥH1, ΥH0	DISABLE to Logic Level	$V_{\rm CC} = 5V$		105	210	ns
	(from High Impedance State)	$V_{CC} = 10V$		45	90	ns
t _{THL} , t _{TLH}	Transition Time	$V_{CC} = 5V, C_1 = 50 \text{ pF}$		-+5 65	130	ns
100,104		$V_{CC} = 10V, C_1 = 50 \text{ pF}$		35	70	ns
		$V_{CC} = 5V, C_{L} = 150 \text{ pF}$		110	220	ns
		$V_{CC} = 10V, C_{L} = 150 \text{ pF}$		70	140	ns
CLE	Input Capacitance	LE Input (Note 4)		7.5	10	pF
	Input Capacitance			7.5	10	p. pF
C _{OD}	mput Capacitance	Input (Note 4)		7.5	10	μr
Curr	Input Capacitance	Any Other Input (Note 4)		5	7.5	pF
C _{IN}	Output Capacitance	High Impedance		5 10	7.5 15	pF pF
C _{OUT}	Culput Capacitance	State (Note 4)		10	15	pi.
C _{PD}	Power Dissipation Capacitance	Per Package (Note 5)		200		pF

Note 3: AC Parameters are guaranteed by DC correlated testing.

Note 4: Capacitance is guaranteed by periodic testing.

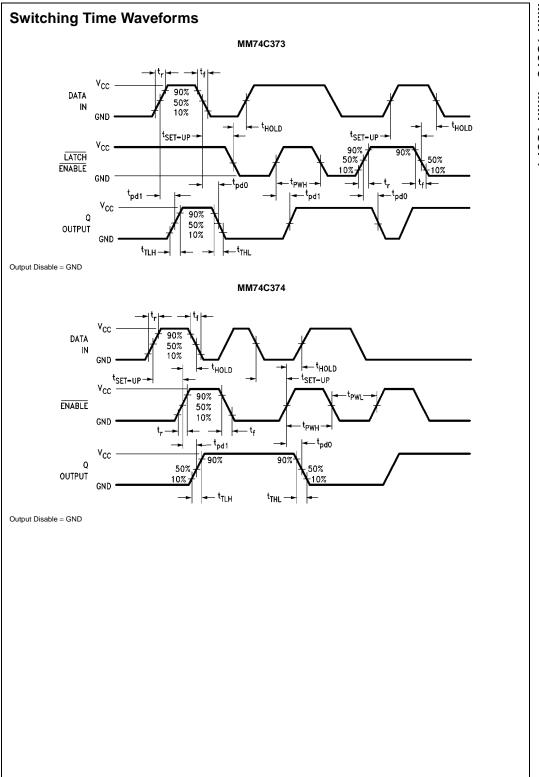

Note 5: C_{PD} determines the no load AC power consumption of any CMOS device. For complete explanation see Family Characteristics Application Note AN-90.

Symbol	Parameter	Conditions	Min	Тур	Max	Un
t _{pd0} , t _{pd1}	Propagation Delay,	$V_{CC} = 5V, C_{L} = 50 \text{ pF}$		150	300	n
F F	CLOCK to Output	$V_{CC} = 10V, C_{L} = 50 \text{ pF}$		65	130	n
		$V_{CC} = 5V, C_{L} = 150 \text{ pF}$		180	360	n
		$V_{CC} = 10V, C_{L} = 150 \text{ pF}$		80	160	n
t _{SET-UP}	Minimum Set-Up Time Data In	t _{HOLD} = 0 ns				1
	to CLOCK/LATCH ENABLE	$V_{CC} = 5V$		70	140	n
		$V_{CC} = 10V$		35	70	n
t _{PWH} , t _{PWL}	Minimum CLOCK Pulse Width	$V_{CC} = 5V$		70	140	n
		$V_{CC} = 10V$		50	100	n
f _{MAX}	Maximum CLOCK Frequency	$V_{CC} = 5V$	3.5	7.0		M
		$V_{CC} = 10V$	5	10		М
t _{1H} , t _{OH}	Propagation Delay OUTPUT	$R_{L} = 10k, C_{L} = 50 \text{ pF}$				
	DISABLE to High Impedance	$V_{CC} = 5V$		105	210	n
	State (from a Logic Level)	$V_{CC} = 10V$		60	120	n
t _{H1} , t _{H0}	Propagation Delay OUTPUT	$R_{L} = 10k, C_{L} = 50 \text{ pF}$				
	DISABLE to Logic Level	$V_{CC} = 5V$		105	210	n
	(from High Impedance State)	$V_{CC} = 10V$		45	90	n
t _{THL} , t _{TLH}	Transition Time	$V_{CC} = 5V, C_{L} = 50 \text{ pF}$		65	130	n
		$V_{CC} = 10V, C_L = 50 \text{ pF}$		35	70	n
		$V_{CC} = 5V, C_{L} = 150 \text{ pF}$		110	220	n
		$V_{CC} = 10V, C_L = 150 \text{ pF}$		70	140	n
t _r , t _f	Maximum CLOCK Rise	$V_{CC} = 5V$	15	>2000		μ
	and Fall Time	$V_{CC} = 10V$	5	>2000		μ
C _{CLK}	Input Capacitance	CLOCK Input (Note 7)		7.5	10	р
C _{OD}	Input Capacitance	OUTPUT DISABLE		7.5	10	р
		Input (Note 7)				1
CIN	Input Capacitance	Any Other Input (Note 7)		5	7.5	р
C _{OUT}	Output Capacitance	High Impedance		10	15	р
		State (Note 7)				
CPD	Power Dissipation Capacitance	Per Package (Note 8)		250		р

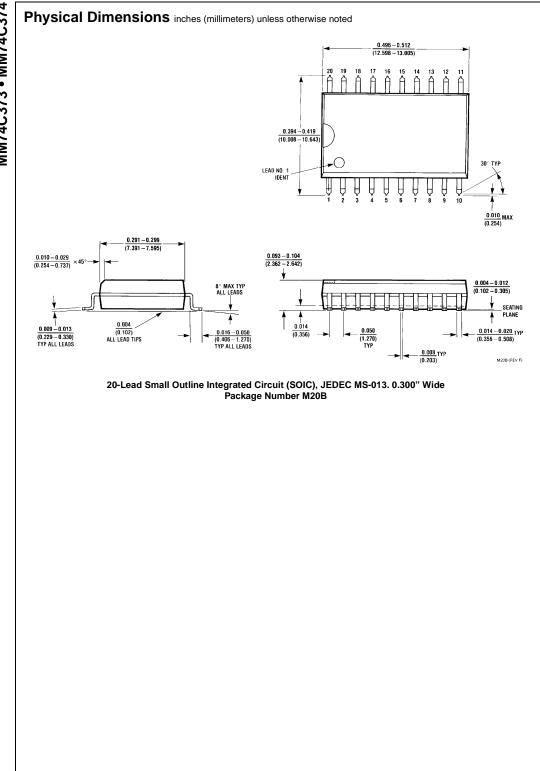

Note 6: AC Parameters are guaranteed by DC correlated testing.

Note 7: Capacitance is guaranteed by periodic testing.

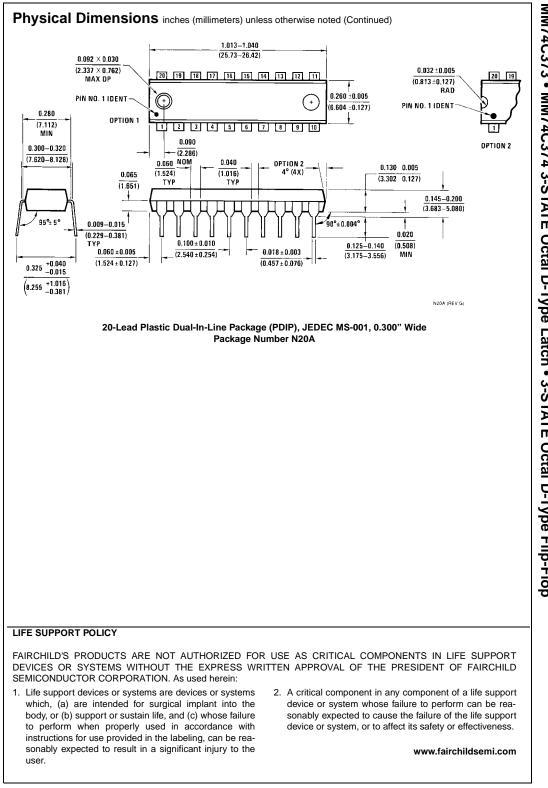
Note 8: CPD determines the no load AC power consumption of any CMOS device. For complete explanation see Family Characteristics Application Note AN-90.



MM74C373 • MM74C374



www.fairchildsemi.com


8

MM74C373 • MM74C374

MM74C373 • MM74C374

MM74C373 • MM74C374 3-STATE Octal D-Type Latch • 3-STATE Octal D-Type Flip-Flop

Fairchild does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and Fairchild reserves the right at any time without notice to change said circuitry and specifications.