- Description

The FA7622CP(E) is a DC-DC converter IC that can directly drive a power MOSFET. This IC has all the necessary protection functions for a power MOSFET. It is optimum for a portable equipment power supply which uses low-voltage input to output comparably large power.

Features

- Drive circuit for connecting a power MOSFET (lo = $\pm 600 \mathrm{~mA}$)
- Built-in voltage step-up circuit to drive a power MOSFET gate: A converter circuit requires only an N -channel power MOSFET.
- Dual control circuit
- Overcurrent limiting circuit
- Overload cutoff circuit with timer and latch circuit
- ON/OFF control pin
- Wide operating range: 3.6 to 28 V
- High-frequency operation: up to 1 MHz
- 20-pin package (DIP/SSOP)

Applications

- Battery power supply for portable equipment

■ Dimensions, mm

- SSOP-20

- DIP-20

- Block diagram

Pin No.	Pin symbol	Description
1	CT	Oscillator timing capacitor
2	RT	Oscillator timing resistor
3	CP	Timer and latch circuit
4	IN2+	Non-inverting input to error amplifier
5	IN2-	Inverting input to error amplifier
6	FB2	Error amplifier output
7	DT2	Dead time adjustment
8	OCL2	Overcurrent limiting circuit 2
9	GND	Ground
10	OUT2	CH.2 output
11	OUT1	CH.1 output
12	VCC2	Power supply 2
13	SW	Switch for boost circuit
14	VCC1	Power supply 1
15	OCL1	Overcurrent limiting circuit 1
16	DT1	Dead time adjustment
17	FB1	Error amplifier output
18	IN1+	Non-inverting input to error amplifier
19	ON/OFF	Output ON/OFF control
20	REF	Reference voltage output

Absolute maximum ratings

Item Supply voltageVoltage boost circuit not used		Vcc 1	28	Unit
Voltage boost circuit used	Vcc 1	20	V	
Supply voltage	Vcc 2	28	V	
ON/OFF pin voltage	Von/OFF	-0.3 to +7	V	
Out pin output current	lout	± 600	mA	
Total power dissipation	Pd	650	mW	
Junction temperature	T_{j}	125	${ }^{\circ} \mathrm{C}$	
Operating temperature	Topr	-30 to +85	${ }^{\circ} \mathrm{C}$	
Storage temperature	$\mathrm{T}_{\mathrm{stg}}$	-40 to +150	${ }^{\circ} \mathrm{C}$	

Recommended operating conditions

Item		Symbol	Min.	Max.	Unit
Supply voltage	Voltage boost circuit not used	Vcc 1	3.6	26	V
	Voltage boost circuit used	Vcc 1	3.6	18	V
Feedback resistance	RNF	100		$\mathrm{k} \Omega$	
Timing capacitance	CT	50	2200	pF	
Timing resistance	RT	24	100	$\mathrm{k} \Omega$	
Oscillation frequency	fosc	50	1000	kHz	

Electrical characteristics $\left(\mathrm{Ta}=25^{\circ} \mathrm{C}, \mathrm{VcC}=6 \mathrm{~V}, \mathrm{RT}=36 \mathrm{k} \Omega, \mathrm{C} T=180 \mathrm{pF}\right)$

Reference voltage section

Item	Symbol	Test condition	Min.	Typ.	Max.	Unit
Output voltage	VREF	IOR $=1 \mathrm{~mA}$	2.400	2.475	2.550	V
Line regulation	LINE	VCC $=3.6$ to $26 \mathrm{~V}, \mathrm{IOR}=1 \mathrm{~mA}$		5	15	mV
Load regulation	LOAD	IOR $=0.1$ to 1 mA		2		mV
Output voltage variation due to temperature change	VTC1	$\mathrm{Ta}=-30$ to $+25^{\circ} \mathrm{C}$	-1		1	$\%$
	VTC2	$\mathrm{Ta}=+25 \mathrm{to}+85^{\circ} \mathrm{C}$	-1		1	$\%$

Oscillator section

Item	Symbol	Test condition	Min.	Typ.	Max.	Unit
Oscillation frequency	fosc	$\mathrm{CT}=180 \mathrm{pF}, \mathrm{RT}=36 \mathrm{k} \Omega$	100	110	120	kHz
Frequency variation 1 (due to supply voltage change)	fdV	$\mathrm{Vcc}=3.6$ to 26 V		1		$\%$
Frequency variation 2 (due to temperature change)	fdT	$\mathrm{Ta}=-30$ to $+25^{\circ} \mathrm{C}$		5		$\%$

Error amplifier section (ch. 1)

Item	Symbol	Test condition	Min.	Typ.	Max.	Unit
Reference voltage	VB		0.832	0.858	0.884	V
Input bias current	IB			5	100	nA
Open-loop voltage gain	Avo			40		dB
Unity-gain bandwidth	ft			1.0		MHz
Maximum output voltage	VoH	No load	1.8			V
	VoL	No load			300	mV
Output source current	IOH	VoH $=0 \mathrm{~V}$	30	60	90	$\mu \mathrm{~A}$

Error amplifier section (ch. 2)

Item	Symbol	Test condition	Min.	Typ.	Max.	Unit
Input offset voltage	Vıo			2	10	mV
Input bias current	IB			5	100	nA
Common-mode input voltage	Vcom		0		1.0	V
Open-loop voltage gain	Avo		70			dB
Unity-gain bandwidth	ft			1.0		MHz
Maximum output voltage	VoH	No load	1.8			V
	VoL	No load			300	mV
Output source current	IOH	VoH $=0$ V	40	80	120	$\mu \mathrm{~A}$

Pulse width modulation circuit section (FB1, FB2 pin)

Item	Symbol	Test condition	Min.	Typ.	Max.	Unit
Input threshold voltage	V $_{\text {THO }}$	Duty cycle $=0 \%$		1.6	1.8	V
Input threshold voltage	V $_{\text {THI }}$	Duty cycle $=100 \%$	0.8	1.0		V

Dead time adjustment circuit section (DT1, DT2 pin)

Item	Symbol	Test condition	Min.	Typ.	Max.	Unit
Input threshold voltage	VTH0	Duty cycle $=0 \%$		1.6	1.8	V
Input threshold voltage	V $_{\text {TH } 1}$	Duty cycle $=100 \%$	0.8	1.0		V
Standby voltage	VSTR	DT1, DT2 pin open	1.8			V

Overcurrent limiting circuit section

Item	Symbol	Test condition	Min.	Typ.	Max.	Unit
Input threshold voltage	VTHOC		180	210	240	mV
Hysteresis voltage	VHYOC			40		mV
Input bias current	loc			50	100	$\mu \mathrm{~A}$
Delay in OCL	tdoc	Overdriving: 50 mV		120		ns

Timer and latch circuit section

Item	Symbol	Test condition	Min.	Typ.	Max.	Unit
Latch-mode threshold voltage	VTHCP		1.00	1.25	1.50	V
Input bias current	IINCP	$\mathrm{V} \mathrm{CP}=1.5 \mathrm{~V}, \mathrm{VFB}=0.3 \mathrm{~V}$			1	$\mu \mathrm{~A}$
CP pin voltage / LOW	VSATC	$\mathrm{ICP}=20 \mu \mathrm{~A}, \mathrm{VFB}=1.0 \mathrm{~V}$			300	mV

Output ON/OFF control circuit section

Item	Symbol	Test condition	Min.	Typ.	Max.	Unit
OFF-to-ON threshold voltage	VTHON				3.0	V
ON-to-OFF threshold voltage	VTH OFF		0.60			V
Input bias current	IIN	VIN $=3 \mathrm{~V}$		180		$\mu \mathrm{~A}$

Undervoltage lock-out circuit section

Item	Symbol	Test condition	Min.	Typ.	Max.
UFF-to-ON threshold voltage	Vccon		2.80	3.00	3.20
ON-to-OFF threshold voltage	VccoF		V		
Voltage hysteresis	VHYS		2.90		V

Output section

Item	Symbol	Test condition	Min.	Typ.	Max.
Unit					
Saturation voltage (H level)	VSAT +	Io $=-50 \mathrm{~mA}$		1.50	2.00
Saturation voltage (L level)	VsAT-	Io $=50 \mathrm{~mA}$	V		

Voltage step-up circuit section

Item	Symbol	Test condition	Min.	Typ.	Max.
Output voltage	Voup	$\mathrm{L}=330 \mu \mathrm{H}, \mathrm{C}=1 \mu \mathrm{~F}$, No load	10.5	12.5	14.0

Overall device

Item	Symbol	Test condition	Min.	Typ.	Max.
Unit					
Stand-by supply current	Iccst	Out pin open		0.1	10
Operating Vcc1 current	Icc1	Normal operation		3.8	5.5
Operating Vcc2 current	Icc2	Normal operation Vcc2=12V OUT1, OUT2 open Duty cycle=50\%	mA		

Description of each circuit

1. Oscillator section

This section charges and discharges an external capacitor CT. The charge current is determined by the external resistor RT connected to the IC. By charging and discharging the capacitor, this section provides a 1.0 to 1.6 V triangle wave at the CT pin. The oscillation frequency can be set between 50 kHz to 1 MHz . The frequency can be calculated approximately as follows:
$\operatorname{fosc}(k H z)=\frac{7.1 \cdot 10^{5}}{\operatorname{RT}(k \Omega) \cdot C T(p F)}$

2. Error amplifier section

Error amplifier ${ }^{(1)}$

As Fig. 3 shows, the inverting input of the error amplifier is connected to the VB reference voltage (0.858 V typ.). The noninverting input IN1+ and output FB1 connect to external terminals.
During ordinary operation, the $\mathrm{IN} 1+$ terminal voltage is almost equal to Vb. The power-supply output Vouta can be determined as follows:

Vouta $=\frac{R_{1}+R_{2}}{R_{2}} \cdot V_{B}$
The DC gain of the error amplifier is 40 dB (typ.), regardless of external parts connected to the IC. Correct the phase by connecting capacitor C 1 between the Vouta and FB1 pins.

Error amplifier (2)

- Voltage step-up or step-down chopper circuit

As Fig. 4 shows, the non-inverting input IN2+, inverting input IN2-, and output FB2 of the error amplifier are connected to external terminals.
The feedback voltage Voutb to the IN2+ pin can be determined as follows:

Voutb $=\frac{\left(R_{3}+R_{4}\right) \cdot R 6}{R_{4} \cdot(R 5+R 6)} \cdot$ Vref

The DC gain Av from the Voutb to FB2 pin is 70 dB (min), when R_{7} is not connected.
When R7 is connected, the Av can be determined as follows:
$A v=\frac{R_{4}}{R_{3}+R_{4}} \cdot\left(1+\frac{R_{7} \cdot\left(R_{5}+R_{6}\right)}{R_{5} \cdot R_{6}}\right)$.

To correct the phase, connect the resistor R8 and capacitor C2 in series between the IN2- and FB2 pins.

Fig. 1 Oscillator

Fig. 2

Fig. 3

Fig. 4

- Inverting chopper circuit

According to the circuit shown in Fig. 5, the power output voltage Voutb can be determined as follows:

Voutb $=-\frac{R_{11}}{R 10} \cdot$ Vref

The Av between the Voutb and FB2 pins can be determined as follows:
$A v+\frac{-R_{11}}{R_{12}}$
To correct the phase, connect the resistor R13 and capacitor C_{3} in series between the IN2- and FB2 pins.
By using this circuit, invert the output polarity of OUT2 with an external transistor to drive a P-channel MOSFET (or PNP transistor).

3. PWM comparator section

As Fig. 6 shows, a PWM comparator has three input terminals. PWM comparator 1 determines the duty cycle of the output from the OUT1 pin. This comparator compares the Ст oscillator Voltage (Pin 1) with the FB1 voltage (Pin 17) or the DT1 voltage (Pin 16), whichever is greater. When the highest of these voltages is lower than the CT voltage, the PWM output is high. When it is higher than CT, the PWM output is low.
PWM comparator 2 determines the duty cycle of the output from the OUT2 pin. To determine the PWM output, this comparator compares the CT oscillator voltage (Pin 1) with the FB2 voltage (Pin 6) or the DT2 voltage (Pin 7) whichever is higher.
During ordinary operation, the OUT1 and OUT2 pin voltages have the same polarity as the output from each comparator.
When the power supply is turned on, the pulse width gradually increases. The time constant for soft-start is determined by the external resistor and capacitor across pins 16 and 7. In Figures 7 and 8, the time ts required for the pulse width (duty-cycle) to reach about 30% after start-up can be determined as follows:
(Units: $\mu \mathrm{F}$ for Cs and $\mathrm{k} \Omega$ for Rs, Rs1, and Rs2)

Fig.7:
ts (ms) $=0.54 \mathrm{Cs} \cdot \mathrm{Rs}$ \qquad (7)

Fig.8:
ts $(\mathrm{ms})=\mathrm{CS}\left(\frac{\mathrm{Rs} 1 \cdot \mathrm{Rs} 2}{\mathrm{Rs} 1+\mathrm{Rs} 2}\right) \cdot \ln \left(\frac{\mathrm{Rs} 1}{0.417 \mathrm{Rs} 1-0.583 \mathrm{Rs} 2}\right)$.
Where, RS1 / RS2 > 0.716

Please connect enough large capacitance between REF and GND pins in order to prevent irregular output pulse caused by minus voltage at DT1 or DT2 pin when IC is shut down.

Fig. 5

Fig. 6

Fig. 7

Fig. 8

4. Timer and latch circuit for overload protection

Figure 9 shows the timer and latch circuit for overload protection and Fig. 10 shows its timing during an overload. If the power supply output decreases due to an overload, the error amplifier output decreases. If the voltage decreases to less than 0.3 V , the switch that clamps the CP pin voltage to the ground disconnects. This charges capacitor Cp from the REF pin through the resistor Rcp and the CP pin voltage increases. When the voltage reaches 1.25 V , OUT1 (OUT2) voltage is clamped to ground.
The N-channel MOSFET (or NPN transistor) connected to the OUT1 (or OUT2) is turned OFF and cuts off the power supply. The time tL from when the circuit is overloaded until the power supply is cut off can be determined as follows:
$\mathrm{tL}(\mathrm{ms})=0.67 \mathrm{CP}(\mu \mathrm{F}) \cdot \mathrm{RcP}(\mathrm{k} \Omega)$ \qquad

5. Overcurrent limiting circuit

This is a pulse-by-pulse overcurrent limiting circuit which detects and limits the peak of each drain current pulse from the main switching transistor (MOSFET).
Figure 11 shows the overcurrent limiting circuit and Fig. 12 shows its timing.
This circuit detects a drain current with a voltage sampling resistor Rs. If a voltage lower than the Vcc1 pin voltage by 210 mV or more is input to OCL1 (OCL2), the OUT1 (OUT2) is clamped to ground. At the same time, DT1 (DT2) is raised to the reference voltage Vref. (This reduces the duty-cycle to 0%)
This circuit has hysteresis to prevent noise from causing malfunction.
The Rs voltage which is propotional to drain current is limited to 210 mV (typ.) and released at 170 mV (typ).

Fig. 9

Fig. 10

Fig. 11

Fig. 12

6. IC ON/OFF control circuit

This control circuit turns the entire IC ON or OFF by an external signal using an ON/OFF control pin to limit the IC's current consumption to $10 \mu \mathrm{~A}$ or less.
Figure 13 shows the IC ON/OFF control circuit and Fig. 14 shows its timing.
To turn the IC OFF, this circuit clamps OUT1 (OUT2) to ground when the ON/OFF pin voltage is controlled to less than 0.60 V . The internal bias current is cut off to turn off the switching transistor.
To turn the IC ON, raise the ON/OFF pin voltage immediately to 3.0 V or more to charge the soft-start capacitor gradually.

7. Voltage boost circuit

By using the circuit shown in Fig. 15, this IC generates a voltage 6.5 V (typ.) higher than the VCC1 input voltage at the VCC2 pin. This circuit allows the IC to drive MOSFET gates directly. With this circuit, the IC can drive a low-level side N-channel MOSFET at 3.6 to 18 V as VCC1 (not possible with conventional ICs). In addition, an N-channel MOSFET can be used on the high-level side of a buck chopper. In Fig. 15, the inductor (L) is about $100 \mu \mathrm{H}$ or more and the capacitor (Cup) should be greater than about $0.1 \mu \mathrm{~F}$. If voltage boost is not necessary, connect the VCC1 and VCC2 pins directly, and SW pin must be opened.

8. Undervoltage lock-out circuit

This circuit prevents a malfunction at a low supply voltage. When the supply voltage VCC1 rises and reaches 3.0V, this circuit is activated. When VCC1 drops below 2.9 V , this circuit clamps OUT1 (OUT2) to ground. The CP pin voltage is reset to low by means of cutting off a power supply input.

9. Output circuit

As Fig. 17 shows, OUT1 and OUT2 with a totempole structure can drive a MOSFET.
Since both the maximum output source and sink currents are 600 mA , a MOSFET can be switched at high speed.

Fig. 13

Fig. 14 Control of output

Fig. 15

Fig. 16

Application circuit

Parts tolerances characteristics are not defined in the circuit design sample shown above. When designing an actual circuit for a product, you must determine parts tolerances and characteristics for safe and economical operation.

