

mos integrated circuit μ PD7759

ADPCM SPEECH SYNTHESIZER LSIs

The μ PD7759 is an external ROM type speech synthesis LSI employing the waveform coding method. In addition to the ROM capability of up to 1 Mbit, the μ PD7759 realizes the synthesis of speech sounds of any length by using the ADPCM data transferred from an external ROM.

As the synthesizing method, it adopts the ADPCM method and the PCM + waveform element method. The ADPCM method is suitable for synthesizing clear and natural speech sounds, and the PCM + waveform element method is for the synthesis of sound effects and melodies. And by using them together, the μ PD7759 realizes the long-time synthesis of high-quality sounds.

Because of the short turn-around time of speech analysis, the μ PD7759 can perform the quick system development using a PROM, or the evaluation of an on-chip ROM type of the μ PD7755 family.

FEATURES

★ ● Synthesizing method : ADPCM, PCM + waveform element methods used together

Sampling frequency : 5, 6 or 8 kHz
Bit rate (speech) : 20 to 32 K bps
Number of Messages : 256 (MAX.)

★ • External speech data ROM

Parameters		Synthesi	zing time
Products	Speech data ROM (External)	Speech (ADPCM) Note1	Melodies & sound effects Note2 (PCM + waveform element)
μPD7759	1 Mbits	50 sec. (TYP.)	340 sec. (TYP.)

Note 1. The synthesizing time for the speech is the value for a 6 kHz sampling.

2. The synthesizing time for the melodies & sound effects is variable according to their tone.

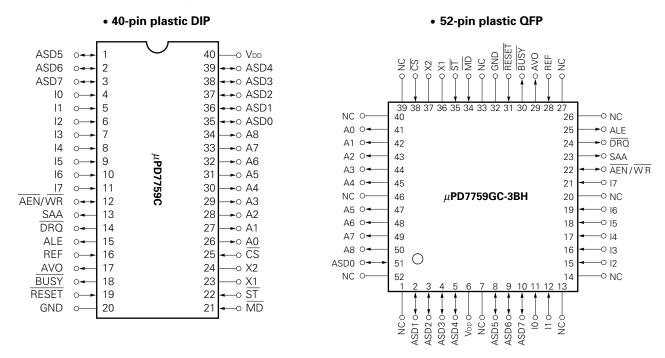
Speech output : Current sink type analog output, 9-bit D/A converter

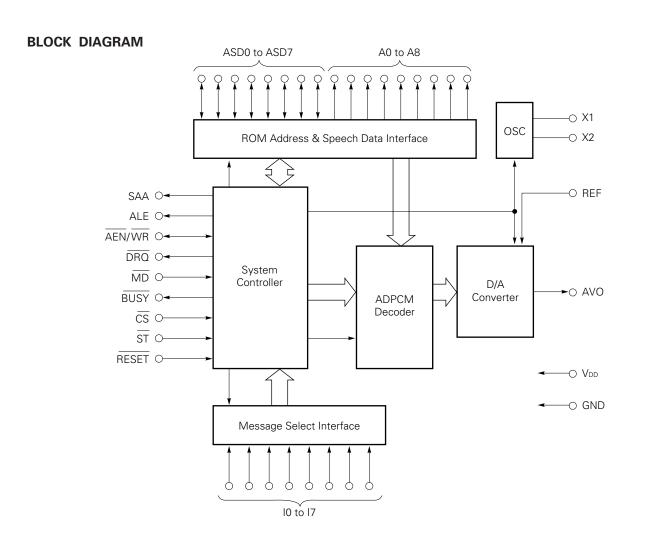
● Host CPU interface : Compatible with a 4/8-bit CPU

Standby mode : Pop-noise preventive circuit incorporated

Supply voltage : 2.7 to 5.5 V

CMOS technology


ORDERING INFORMATION


Part Number	Package	Quality grade
μ PD7759C	40-pin plastic DIP (600 mil)	Standard
иPD7759GC-3BH	52-pin plastic QFP (□14 mm)	Standard

Please refer to "Quality grade on NEC Semiconductor Devices" (Document number IEI-1209) published by NEC Corporation to know the specification of quality grade on the devices and its recommended applications.

The information in this document is subject to change without notice.

PIN CONFIGURATION (Top View)

1. PIN FUNCTIONS *

1.1 COMMON FUNCTION TO ALL MODES

Pin (Abbre- viation)	52-pin QFP Pin No.	40-pin DIP Pin No.	I/O	Function
V _{DD}	6	40	_	Power supply (2.7 to 5.5 V)
DRQ	24	14	Output	Speech synthesis data request.
REF	28	16	Input	D/A converter reference current input. The sink-load current input causes the output current of the D/A converter to change. The D/A converter reference current is passed to VDD via a resistor. In standby mode, REF is set to high impedance.
AVO	29	17	Output	Analog speech signal output. AVO outputs a unipolar sink-load current. The output current is reduced to 0 when the μ PD7759 is in the standby mode. The output current of the D/A converter from AVO is changed according to the input current from REF. Maximum output current of the D/A converter is approx. the 34 times the REF input current.
BUSY	30	18	Output	Active-low BUSY signal output. When inputting ST signal, it outputs a low level signal. MD, ST and WR are invalid while BUSY is low. In standby mode, BUSY is set to high impedance.
RESET	31	19	Input	Reset input. In standby mode, RESET must be at low level more than 12 clock cycles after clock oscillation becomes stable. In operation mode, RESET must be at low level for 12 clock cycles (oscillation clock).
GND	32	20	_	Ground.
X1	36	23	_	Ceramic resonator connection for generating a clock signal. The 640 kHz ceramic resonator can be connected.
X2	37	24	_	In standby mode, the μPD7759 outputs a low-level to X1 and a high-level to X2.
NC	1, 7, 13, 14, 20, 26, 27, 33, 39, 40, 46, 52	_	-	No Connection

1.2 PIN FUNCTION FOR STAND ALONE MODE

Pin (Abbre- viation)	52-pin QFP Pin No.	40-pin DIP Pin No.	I/O	Function
10 11 12 13 14 15 16	11 12 15 16 17 18 19 21	4 5 6 7 8 9 10	Input	Message selection code input. The message selection code signals are positive logics. Ground the pins not used. These pins are connected to the internal latch circuit which latches I0 to I7 data at the rising edge of the ST input. In standby mode, these pins should be set high or low level. If they are biased at or near the typical CMOS threshold, the excess supply current is caused.
ĀĒŅ/WR	22	12	Output/ Input	This signal is at low level while address signal is valid. Controls the latch circuit for the higher 8 bits of the external ROM address.
SAA	23	13	Output	Outputs high level when the start address of a message stored in the directory area of data memory, is being read out.
ALE	25	15	Output	Determines the timing that higher 8 bits of the external ROM address are externally latched. They must be latched at the falling edge of the signal.
MD	34	21	Input	set at high-level.
ST	35	22	Input	Start signal input. When \overline{ST} goes low while \overline{CS} is at low level, the $\mu PD7759$ starts synthesizing the message specified by I0 to I7. In standby mode, this signal resets the standby mode and starts speech synthesis.
cs	38	25	Input	Chip select signal input. ST becomes valid when CS goes low.
A0 A1 A2 A3 A4 A5 A6 A7 A8	41 42 43 44 45 47 48 49 50	26 27 28 29 30 31 32 33 34	Output	Outputs the lower 9 bits of the external ROM address.
ASD0 ASD1 ASD2 ASD3 ASD4 ASD5 ASD6 ASD7	51 2 3 4 5 8 9	35 36 37 38 39 1 2	Input/ Output	 (1) Outputs the higher 8 bits of external ROM address. (2) Inputs 8-bit speech synthesis data from the external ROM. These functions are executed from (1) to (2) on a timeshared basis.

1.3 PIN FUNCTION FOR SLAVE MODE

Pin (Abbre- viation)	52-pin QFP Pin No.	40-pin DIP Pin No.	I/O	Function
10 11 12 13 14 15 16	11 12 15 16 17 18 19	4 5 6 7 8 9 10	Input	Invalid. Set at high or low level.
ĀĒN/WR	22	12	Output/	Inputs write strobe signal for a speech synthesis data.
SAA	23	13	Output	Invalid. Leave this pin open.
ALE	25	15	Output	Invalid. Leave this pin open.
MD	34	21	Input	Slave mode selection input. Transition between two operation mode is not accepted during synthesis or in the standby mode.
ST	35	22	Input	Invalid. Set at high level.
<u>cs</u>	38	25	Input	Chip select signal input. WR becomes valid when CS goes low.
A0 A1 A2 A3 A4 A5 A6 A7	41 42 43 44 45 47 48 49 50	26 27 28 29 30 31 32 33 34	Output	Invalid. Leave these pins open.
ASD0 ASD1 ASD2 ASD3 ASD4 ASD5 ASD6 ASD7	51 2 3 4 5 8 9	35 36 37 38 39 1 2	Input	Input speech synthesis data from an external source.

2. ELECTRICAL SPECIFICATIONS

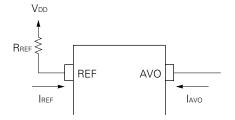
ABSOLUTE MAXIMUM RATINGS (Ta = $25 \, ^{\circ}$ C)

Parameters	Symbol	Conditions	Ratings	Unit
Power supply voltage	V _{DD}		-0.3 to + 7.0	٧
Input voltage	Vı		-0.3 to V _{DD} + 0.3	V
Output voltage	Vo		-0.3 to V _{DD} + 0.3	V
Storage temperature	T _{stg}		-40 to +125	°C
Operating temperature	Topt		-10 to +70	°C

RECOMMENDED OPERATING CONDITIONS

Parameters	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Supply voltage	V _{DD}		2.7		5.5	V
High-level input voltage	V _{IH1}	Applied to I0 to I7, ST, CS, RESET, MD, WR	0.7 V _{DD}		V _{DD}	V
Tigit level input voltage	V _{IH2}	Applied to ASD0 to ASD7, $V_{DD} = 5 \ V \pm 10 \ \%$	2.2	.2	V _{DD}	V
Low-level input voltage	V _{IL1}	Applied to I0 to I7, \overline{ST} , \overline{CS} , \overline{RESET} , \overline{MD} , \overline{WR}	0		0.3 V _{DD}	٧
Low-level iliput voltage	V _{IL2}	Applied to ASD0 to ASD7, $V_{DD} = 5 \text{ V} \pm 10 \%$	0		0.8	V
Clock frequency	fosc		630	640	650	kHz

Remark AC timing test voltage


 $V_{IL} = V_{OL} = 0.3 V_{DD}$

 $V_{IH} = V_{OH} = 0.7 V_{DD}$

DC CHARACTERISTICS (Ta = -10 to +70 °C, V_{DD} = 2.7 to 5.5 V, fosc = 640 kHz)

Parameters	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
High-level output voltage	Vон	Іон = -100 μΑ		V _{DD} -0.5		٧
Low-level output voltage	Vol	$V_{DD} = 5 \text{ V} \pm 10 \text{ %, IoL} = 1.6 \text{ mA}$			0.4	V
Input leak current	Hul	lo to I ₇ , ST , CS , WR , ASD0 to ASD7, MD			3	μΑ
Output leak current	l ILO I	BUSY, A0 to A8			3	μΑ
		(Stand alone, slave mode) V _{DD} = 5 V			10	mA
Supply ourrent	Ірр	(Standby mode) V _{DD} = 5 V			20	μΑ
Supply current		(Stand alone, slave mode) 2.7 V ≦ V _{DD} ≦ 3.5 V			1	mA
		(Standby mode) 2.7 V ≦ V _{DD} ≦ 3.5 V			0.4 3 3 10 20	μΑ
		$V_{DD} = 2.7 \text{ V}, \text{Rref} = 0 \Omega$	140	250	440	μΑ
Reference input current Note	IREF	$V_{DD} = 5.5 \text{ V}, \text{ Rref} = 0 \Omega$	500	760	1200	μΑ
neierence input current	IKEF	V_{DD} = 2.7 V, R_{REF} = 50 $k\Omega$	21	30	39	μΑ
		$V_{DD} = 5.5 \text{ V}, \text{Rref} = 50 \text{ k}\Omega$	68	78	0.4 3 3 10 20 1 10 440 1200 39 88 36 IREF	μΑ
D/A converter output current	lavo	2.7 V ≤ V _{DD} ≤ 5.5 V V _{AVO} = 2.0 V, D/A input: 1 FFH	32 IREF	34 IREF	36 IREF	μΑ
D/A converter output leak current	l Ild I	$0 \text{ V} \leq V_{AVO} \leq V_{DD}$ in the standby mode			5	μΑ

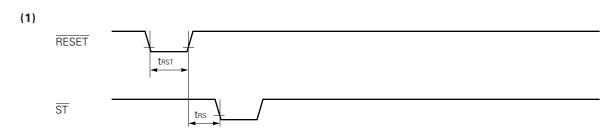
Note Measuring circuit

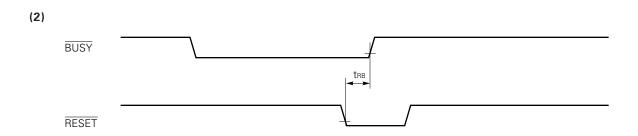
\star AC CHARACTERISTICS (Ta = -10 to +70 °C, VDD = 2.7 to 5.5 V, fosc = 640 kHz)

TIMING REQUIREMENTS (common to all modes)

Parameters	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
BUSY rise time	t _{r1}	$C_L = 150 \text{ pF}, V_{DD} = 5 \text{ V} \pm 10 \%$			800	ns
	t _{r2}	C _L = 150 pF, V _{DD} = 2.7 to 5.5 V			2	μs
BUSY fall time	t f1	$C_L = 150 \text{ pF}, V_{DD} = 5 \text{ V} \pm 10 \%$			800	ns
	t _{f2}	C _L = 150 pF, V _{DD} = 2.7 to 5.5 V			2	μs
BUSY output stop time	tпв	from RESET ↓			9.5	μs

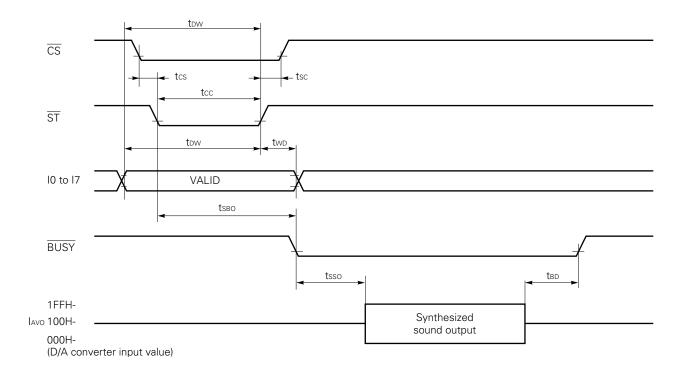
2.1 STAND ALONE MODE

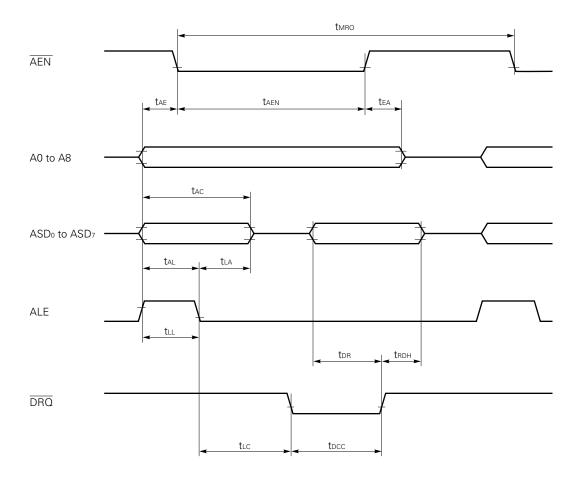

(1) TIMING REQUIREMENTS


Parameters	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
RESET pulse width	t RST		18.5			μs
CS set up time	tcs	for $\overline{ST}\ \downarrow$	0			ns
CS hold time	t sc	from ST ↑	0			ns
ST set up time	trs	In operation mode, from RESET ↑	200			μs
or set up time	ths	In standby mode, from RESET ↑	1.6			ms
ST pulse width	tcc	2.7 V ≤ V _{DD} ≤ 5.5 V	2			μs
or pulse with	tcc	4.5 V ≤ V _{DD} ≤ 5.5 V	350			ns
Message select code set up time	tpw	$2.7 \text{ V} \leq \text{V}_{DD} \leq 5.5 \text{ V, from } \overline{\text{ST}} \uparrow$	5			μs
Message select code set up time	LDW	$4.5 \text{ V} ≤ \text{V}_{DD} ≤ 5.5 \text{ V, from } \overline{\text{ST}} \uparrow$	0 0 200 1.6 2 350			ns
Message select code hold time	two	from ST ↑	0			ns
Speech data set up time	t DR	for DRQ ↓	2		7.5	μs
Speech data hold time	tпрн	from DRQ ↑			1.25	μs

(2) SWITCHING CHARACTERISTICS

Parameters	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
BUSY output delay	tsво	In operation mode, from $\overline{\text{ST}}$ \downarrow		6.25	10	μs
Speech output delay	tsso	In operation mode, from $\overline{ ext{BUSY}}$ \downarrow		2.1	2.2	ms
BUSY hold time	t BD	from synthesis			15	μs
ALE pulse width	tll			3.13		μs
Higher address set up time	tal	for ALE ↓		3.13		μs
Trigiler address set up tille	t AE	for AEN ↓		0		μs
Higher address hold time	tLA	from ALE ↓		3.13		μs
Trigiter address floid time	t EA	from AEN ↑		0		μs
AEN pulse width	taen			14.1		μs
DRQ output delay	tLC	from ALE ↓		3.13		μs
Higher address pulse width	tac			6.25		μs
DRQ pulse width	tocc			7.81		μs
ROM read cycle time	tmro			37.5		μs


TIMING CHART (at reset)



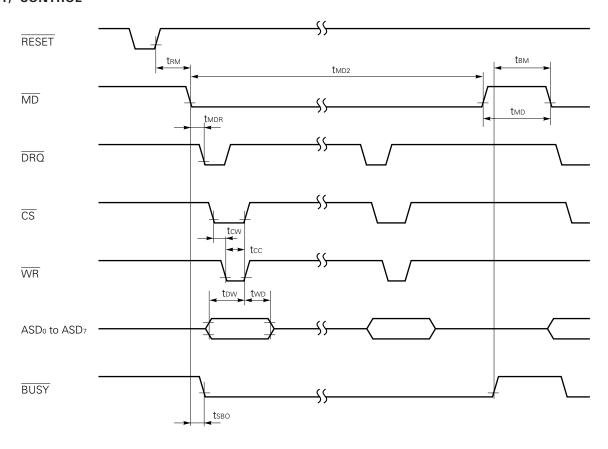
TIMING CHART (Stand alone mode)

(1) CONTROL

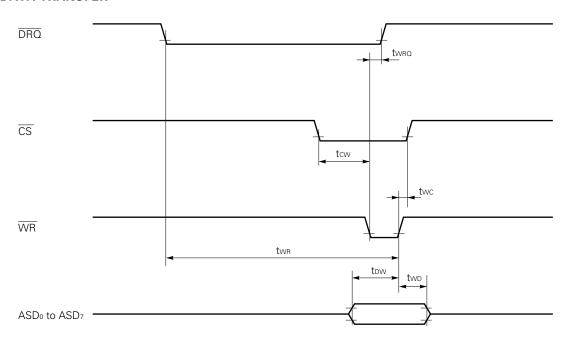
(2) MEMORY ACCESS

2.2 SLAVE MODE

(1) TIMING REQUIREMENTS


Parameters	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
	tпм	from RESET ↑	200			μs
MD set up time	tвм	from BUSY ↑	0			ns
	t MD	from MD ↑	6.2			μs
MD pulse width	t _{MD2}		6.2			μs
Speech data set up time	tow	for WR ↑, 5 V ± 10 %	350			ns
Speech data hold time	two	from WR ↑, 5 V ± 10 %	0			ns
WR input stop time	twr	from DRQ ↓			31.7	μs
WR pulse width	tcc	5 V ± 10 %	350			ns
CS set up time	tcw	for WR ↓	0			ns
CS hold time	twc	from WR ↑	0			ns

(2) SWITCHING CHARACTERISTICS


Parameters	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
BUSY output delay	tsво	from $\overline{\text{MD}}$ \downarrow			9.5	μs
		In operation mode, from $\overline{\text{MD}}$ \downarrow	50		70	μs
DRQ output delay	tmdr	In standby mode, after $\overline{\text{RESET}}$ input, from $\overline{\text{MD}}$ \downarrow	50		50000	
DRQ output stop time	t wro	from WR ↓			3	μs

TIMING CHART (Slave mode)

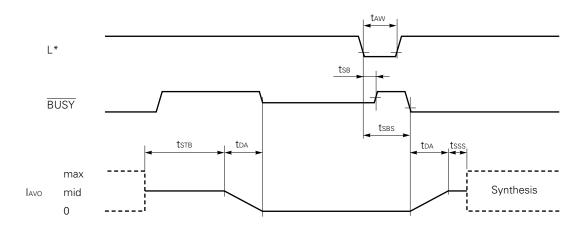
(1) CONTROL

(2) DATA TRANSFER

2.3 STANDBY MODE

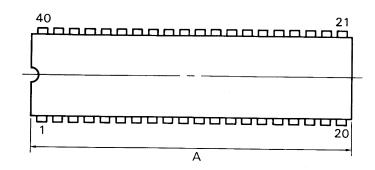
(1) TIMING REQUIREMENTS

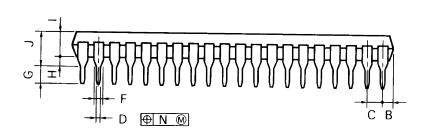
Parameters	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Standby escape signal L*Note pulse width	taw	V _{DD} = 5 V ± 10 %	350			ns

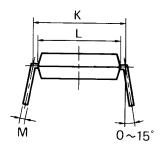

(2) SWITCHING CHARACTERISTICS

Parameters	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Operation mode hold time	tsтв	after synthesis		2.9	3	S
D/A converter activate /inactivate time	t DA			46.5	47	ms
BUSY set up time	tsв	from L* ↓		6.25	10	μs
Synthesis start time	tsss	after D/A converter activation		2.1	2.2	ms
BUSY output delay	tsss	In standby mode, oscillation start time is included.		4	80	ms

Note L*: Signal to release standby mode.

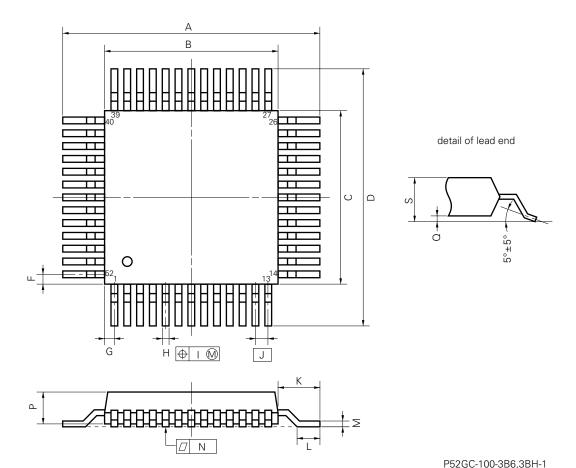

 $= \begin{cases} \overline{CS} \wedge \overline{ST} \ : \ When \ operation \ mode \ is \ stand \ alone \ mode. \\ \overline{CS} \wedge \overline{WR} \ : \ When \ operation \ mode \ is \ slave \ mode \end{cases}$


TIMING CHART (Standby mode)



3. PACKAGE DRAWINGS

40PIN PLASTIC DIP (600 mil)


P40C-100-600A

NOTES

- Each lead centerline is located within 0.25 mm (0.01 inch) of its true position (T.P.) at maximum material condition.
- 2) Item "K" to center of leads when formed parallel.

ITEM	MILLIMETERS	INCHES
Α	53.34 MAX.	2.100 MAX.
В	2.54 MAX.	0.100 MAX.
С	2.54 (T.P.)	0.100 (T.P.)
D	0.50 ^{± 0.10}	0.020 + 0.004
F	1.2 MIN.	0.047 MIN.
G	3.6 ^{± 0.3}	0.142 ^{±0.012}
Н	0.51 MIN.	0.020 MIN.
1	4.31 MAX.	0.170 MAX.
J	5.72 MAX.	0.226 MAX.
К	15.24 (T.P.)	0.600 (T.P.)
L	13.2	0.520
М	0.25 -0.05	0.010 + 0.004
N	0.25	0.01

★ 52 PIN PLASTIC QFP (□14)

NOTE

Each lead centerline is located within 0.20 mm (0.008 inch) of its true position (T.P.) at maximum material condition.

		P52GC-100-3B6,3BH-1
ITEM	MILLIMETERS	INCHES
Α	17.6±0.4	0.693±0.016
В	14.0±0.2	0.551+0.009
С	14.0±0.2	0.551+0.009
D	17.6±0.4	0.693±0.016
F	1.0	0.039
G	1.0	0.039
Н	0.40±0.10	0.016+0.004
I	0.20	0.008
J	1.0 (T.P.)	0.039 (T.P.)
K	1.8±0.2	0.071+0.008
L	0.8±0.2	0.031+0.009
М	$0.15^{+0.10}_{-0.05}$	0.006+0.004
N	0.12	0.005
Р	2.7	0.106
Q	0.1±0.1	0.004±0.004
S	3.0 MAX.	0.119 MAX.

4. RECOMMENDED SOLDERING CONDITIONS

The following conditions (see tables below) must be met when soldering the μ PD7759. Please consult with our sales offices in case other soldering process is used, or in case soldering is done under different conditions.

For more details, refer to our document "SEMICONDUCTOR DEVICE MOUNTING TECHNOLOGY MANUAL" (IEI-1207).

Soldering Process	Soldering Conditions	Symbol
Wave Soldering	Solder temperature: 260 °C or below, Flow time: 10 seconds or below, Temperature of pre-heat: 120 °C or below (Plastic surface temperature), Number of flow process: 1	WS60-00-1
Infrared Ray Reflow	Peak package's surface temperature: 230 °C or below, Reflow time: 30 seconds or below (210 °C or higher), Number of reflow process: 1	IR30-00-1
VPS	Peak package's temperature: 215 °C or below, Reflow time: 40 seconds or below (200 °C or higher), Number of reflow process: 1	VP15-00-1
Partial Heating Method	Terminal temperature: 300 °C or below, Time: 3 seconds or below (Per one side of the device)	_

Caution Do not apply more than one soldering method at any one time, except for "Partial heating method".

\bigcirc TYPE OF THROUGH HOLE DEVICE μ PD7759C:40-pin plastic DIP (600mil)

Soldering Process	Soldering Conditions
Wave Soldering (only lead part)	Solder Temperature: 260 °C or below Flow time: 10 seconds or below
Partial Heating Method	Terminal temperature: 260 °C or below Time: 10 seconds or below

Caution Do not jet molten solder on the surface of package.

The μ PD7759 has the following user's manual as a separate volume. Please use it for reference.

 \bullet μ PD7755 family User's Manual: IEU-1218

No part of this document may be copied or reproduced in any form or by any means without the prior written consent of NEC Corporation. NEC Corporation assumes no responsibility for any errors which may appear in this document.

NEC Corporation does not assume any liability for infringement of patents, copyrights or other intellectual property rights of third parties by or arising from use of a device described herein or any other liability arising from use of such device. No license, either express, implied or otherwise, is granted under any patents, copyrights or other intellectual property rights of NEC Corporation or others.

The devices listed in this document are not suitable for use in aerospace equipment, submarine cables, nuclear reactor control systems and life support systems. If customers intend to use NEC devices for above applications or they intend to use "Standard" quality grade NEC devices for applications not intended by NEC, please contact our sales people in advance.

Application examples recommended by NEC Corporation

Standard: Computer, Office equipment, Communication equipment, Test and Measurement equipment, Machine tools, Industrial robots, Audio and Visual equipment, Other consumer products, etc.

Special: Automotive and Transportation equipment, Traffic control systems, Antidisaster systems, Anticrime systems, etc.

M4 92.6