LH51BV1000J

FEATURES

- Access time: 70 ns (MAX.)
- Current consumption: Operating: 30 mA (MAX.)
 5 mA (MAX.) (t_{RC}, t_{WC} = 1 μs) Standby: 60 μA (MAX.)
- Data Retention: 1.0 μ A (MAX.) (V_{CCDR} = 3 V, T_A = 25°C)
- Single power supply: 2.7 V to 3.6 V
- Operating temperature: -25°C to +85°C
- Fully-static operation
- Three-state output
- Not designed or rated as radiation hardened
- Package: 32-pin 6 × 10 mm CSP
- N-type bulk silicon

DESCRIPTION

The LH51BV1000JY is a static RAM organized as 131,072 \times 8 bits which provides low power standby mode. It is fabricated using silicon-gate CMOS process technology.

PIN CONNECTIONS

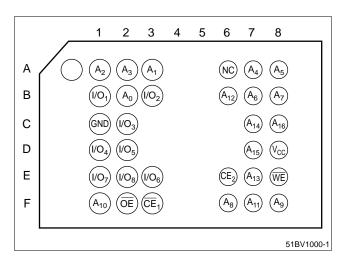


Figure 1. Pin Connections for CSP Package

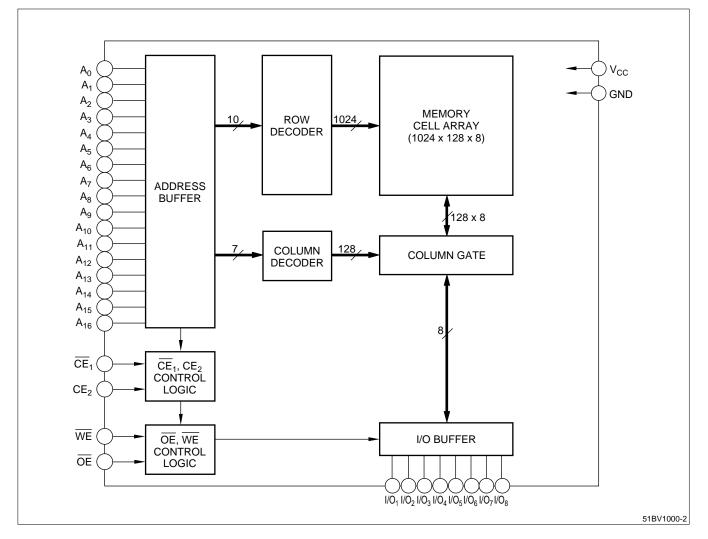


Figure 2. LH51BV1000JY Block Diagram

PIN DESCRIPTION

SIGNAL	PIN NAME
$A_0 - A_{16}$	Address inputs
CE1	Chip enable 1
CE ₂	Chip enable 2
WE	Write enable
OE	Output enable

SIGNAL	PIN NAME
I/O ₁ - I/O ₈	Data inputs and outputs
V _{CC}	Power supply
GND	Ground
NC	No connection

TRUTH TABLE

CE1	CE2	WE	OE	MODE	I/O1 – I/O8	SUPPLY CURRENT
Н				Standby	High impedance	Standby (I _{SB})
	L			Standby	High impedance	Standyby (I _{SB})
L	Н	L		Write	Data input	Active (Icc)
L	Н	Н	L	Read	Data output	Active (I _{CC})
L	Н	Н	Н	Output disable	High impedance	Active (I _{CC})

NOTE:

1. — = Don't care, L = Low, H = High

ABSOLUTE MAXIMUM RATINGS

PARAMETER	SYMBOL	SYMBOL RATING		NOTE
Supply voltage	Vcc	-0.5 to +4.6	V	1
Input voltage	V _{IN}	-0.5 to V _{CC} + 0.3	V	1, 2
Operating temperature	T _{OPR}	-25 to +85	°C	_
Storage temperature	T _{STG}	-65 to +150	°C	_

NOTE:

1. The maximum applicable voltage on any pin with respect to GND.

2. Undershoot of -3.0 V is allowed width of pulse below 50 ns.

RECOMMENDED OPERATING CONDITIONS (T_A = -25^{\circ}C to +85^{\circ}C)

PARAMETER	SYMBOL	MIN.	TYP.	MAX.	UNIT	NOTE
Supply voltage	Vcc	2.7	3.0	3.6	V	
Input voltage	VIH	2.2		V _{CC} + 0.3	V	
input voitage	VIL	-0.3		0.4	V	1

NOTE:

1. Undershoot of -3.0 V is allowed width of pulse below 50 ns.

DC ELECTRICALCHARACTERISTICS ($T_A = -25^{\circ}C$ to $+85^{\circ}C$, $V_{CC} = 2.7$ V to 3.6 V)

PARAMETER	SYMBOL	CONDITIONS		MIN.	TYP. ¹	MAX.	UNIT		
Input leakage current	ILI	$V_{IN} = 0 V \text{ to } V_{CC}$		-1.0		1.0	μΑ		
Output leakage current	ILO		-1.0		1.0	μA			
Operating supply			tcycle = MIN.			30	~^^		
current	tandby current	$\label{eq:cell} \begin{array}{l} \overline{CE}_1 = V_{IL}, V_{IN} = V_{IL} \text{ or } V_{IH} \\ CE_2 = V_{IH}, I_{I/O} = 0 \mbox{ mA} \end{array}$	t _{CYCLE} = 1.0 μs			5	mA		
Standby current	I _{SB}	CE_1 , $CE_2 \ge V_{CC} - 0.2$ V or CE	2≤0.2 V		0.6	60	μA		
Standby current	I _{SB1}	$\begin{array}{c c} \hline CE_1 = V_{IH} \text{ or } CE_2 = V_{IL} \text{ or } \\ \hline CE_1 = V_{IH} \text{ or } WE = V_{IL} \\ V_{I/O} = 0 \text{ V to } V_{CC} \end{array}$ $\begin{array}{c c} \hline CE_1 = V_{IL}, V_{IN} = V_{IL} \text{ or } V_{IH} \\ \hline CE_2 = V_{IH}, I_{I/O} = 0 \text{ mA} \end{array} \qquad \begin{array}{c c} t_{CYCLE} = \\ MIN. \end{array}$ $\begin{array}{c c} \hline CE_1 = V_{IL}, V_{IN} = V_{IL} \text{ or } V_{IH} \\ CE_2 = V_{IH}, I_{I/O} = 0 \text{ mA} \end{array} \qquad \begin{array}{c c} t_{CYCLE} = \\ 1.0 \ \mu\text{s} \end{array}$ $\begin{array}{c c} \hline CE_1, CE_2 \ge V_{CC} - 0.2 \text{ V or } CE_2 \le 0.2 \text{ V} \end{array}$ $\begin{array}{c c} \hline CE_1 = V_{IH} \text{ or } CE_2 = V_{IL} \\ \hline I_{OL} = 2.0 \text{ mA}, V_{CC} \ge 3 \text{ V} \end{array}$			1.0	mA			
	Vol	I_{OL} = 2.0 mA, $V_{CC} \ge 3 V$				0.4			
Output voltage	VOL	$I_{OL} = -0.1 \text{ mA}$				0.2	V		
	V _{OH}	$I_{OH} = -2.0 \text{ mA}, V_{CC} \ge 3$	3 V	2.4					
	VOH	I _{OH} = -0.1 mA		V _{CC} – 0.2		_			

NOTE:

1 Typical values at V_{CC} = 5.0 V, T_A = 25 ^{\circ}C

AC ELECTRICAL CHARACTERISTICS AC Test Conditions

PARAMETER	MODE	NOTE
Input pulse level	0.4 V to 2.4 V	
Input rise and fall time	5 ns	_
Input and output timing ref. level	1.5 V	_
Output load	1 TTL + CL (100 pF)	1

NOTE:

1. Including scope and jig capacitance.

READ CYCLE (T_A = -25°C to +85°C, V_{CC} = 2.7 V to 3.6 V)

PARAMETER	SYMBOL	MIN.	MAX.	UNIT	NOTE
Read cycle time	t _{RC}	70		ns	
Address access time	t _{AA}		70	ns	
CE ₁ access time	t _{ACE1}		70	ns	
CE ₂ access time	t _{ACE2}		70	ns	
Output enable to output valid	t _{OE}		40	ns	
Output hold from address change	t _{OH}	10		ns	
CE ₁ Low to output active	t _{LZ1}	5		ns	1
CE ₂ High to output active	t _{LZ2}	5	_	ns	1
OE Low to output active	toLZ	0		ns	1
CE ₁ High to output in High impedance	t _{HZ1}		30	ns	1
CE ₂ Low to output in High impedance	t _{HZ2}		30	ns	1
OE High to output in High impedance	t _{OHZ}		30	ns	1

NOTE:

1. Active output to High impedance to output active tests specified for a $\pm 200 \text{ mV}$ transition from steady state levels into the test load.

WRITE CYCLE (T_A = -25°C to +85°C, V_{CC} = 2.7 V to 3.6 V)

PARAMETER	SYMBOL	MIN.	MAX.	UNIT	NOTE
Write cycle time	t _{WC}	70		ns	
Chip enable to end of write	t _{CW}	60	_	ns	
Address valid to end of write	t _{AW}	60	_	ns	
Address setup time	t _{AS}	0	_	ns	
Write pulse width	t _{WP}	55	_	ns	
Write recovery time	t _{WR}	0	_	ns	
Input data setup time	t _{DW}	30		ns	
Input data hold time	t _{DH}	0	_	ns	
WE High to output active	tow	5	_	ns	1
WE Low to output in High impedance	twz		30	ns	1
OE High to output in High impedance	tонz		30	ns	1

NOTE:

1. Active output to High impedance to output active tests specified for a $\pm 200 \text{ mV}$ transition from steady state levels into the test load.

DATA RETENTION CHARACTERISTICS (T_A = -25°C to +850°C)

PARAMETER	SYMBOL	CONDITIONS		MIN.	TYP. ¹	MAX.	UNIT	NOTES	
Data retention supply voltage	V _{CCDR}	$\begin{array}{c} CE_2 \leq 0.2 \ V \ or \\ \overline{CE}_1 \geq V_{CCDR} \ \ 0.2 \ V \end{array}$		2.0		3.6	V	2	
V _{CCDR} = 3 V	$T_A = 25^{\circ}C$	_	0.5	1.0	μΑ				
Data retention supply current	ICCDR	$CE_2 \le 0.2 \text{ V or}$ $CE_1 \ge V_{CCDR} - 0.2 \text{ V}$		$T_A = 40^{\circ}C$			3.0		
						50	μΑ	2	
Chip enable setup time	tCDR	_		0			ms		
Chip enable hold time	t _R	_		5			ms		

NOTES:

1. Typical value at $T_A = 25^{\circ}C$

2. $CE_2 \geq V_{CCDR}$ - 0.2 V or $CE_2 \leq 0.2$ V

PIN CAPACITANCE ($T_A = 25^{\circ}C$, f = 1 MHz)

PARAMETER	SYMBOL	CONDITIONS	MIN.	TYP.	MAX.	UNIT	NOTE
Input capacitance	C _{IN}	V _{IN} = 0 V			8	pF	1
I/O capacitance	C _{I/O}	$V_{I/O} = 0 V$			10	pF	1

NOTE:

1. This parameter is sampled and not production tested.

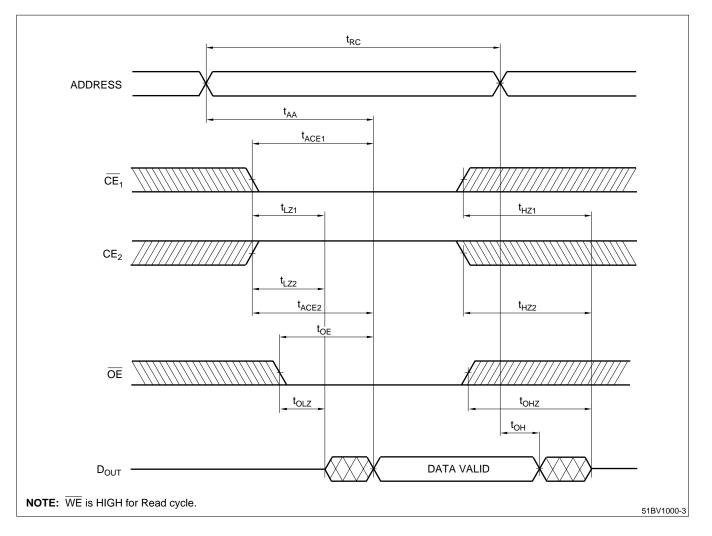


Figure 3. Read Cycle

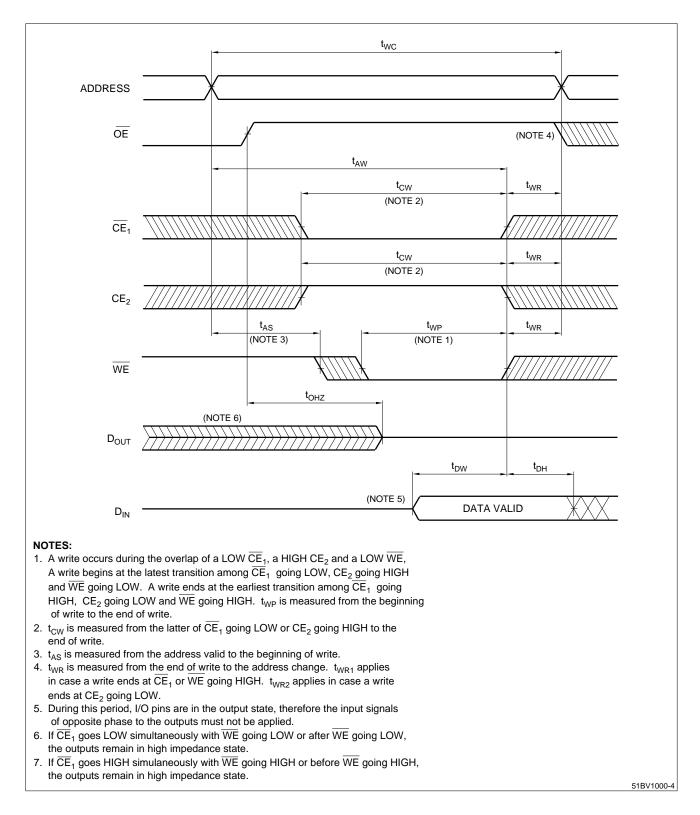


Figure 4. Write Cycle (OE Controlled)

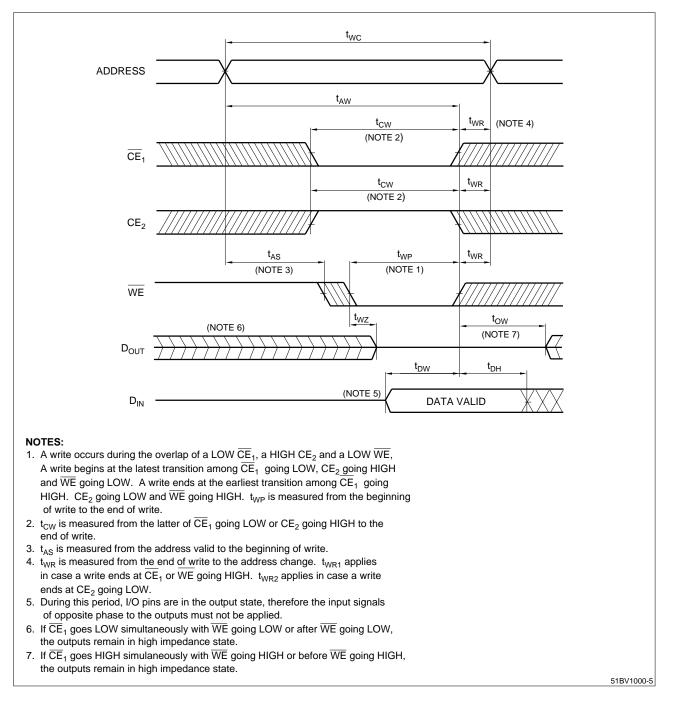


Figure 5. Write Cycle (OE Low Fixed)

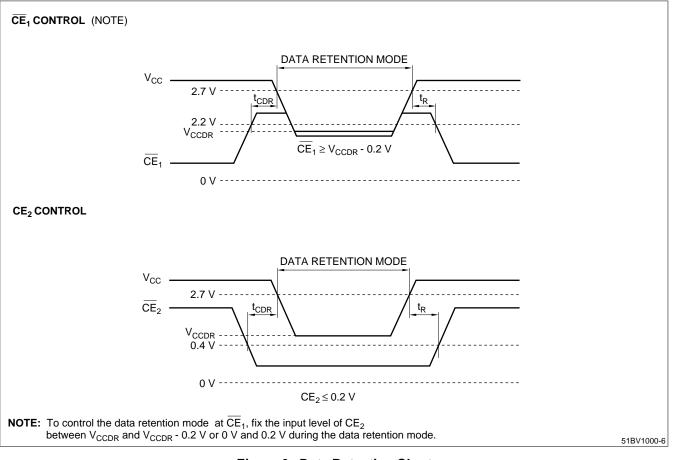
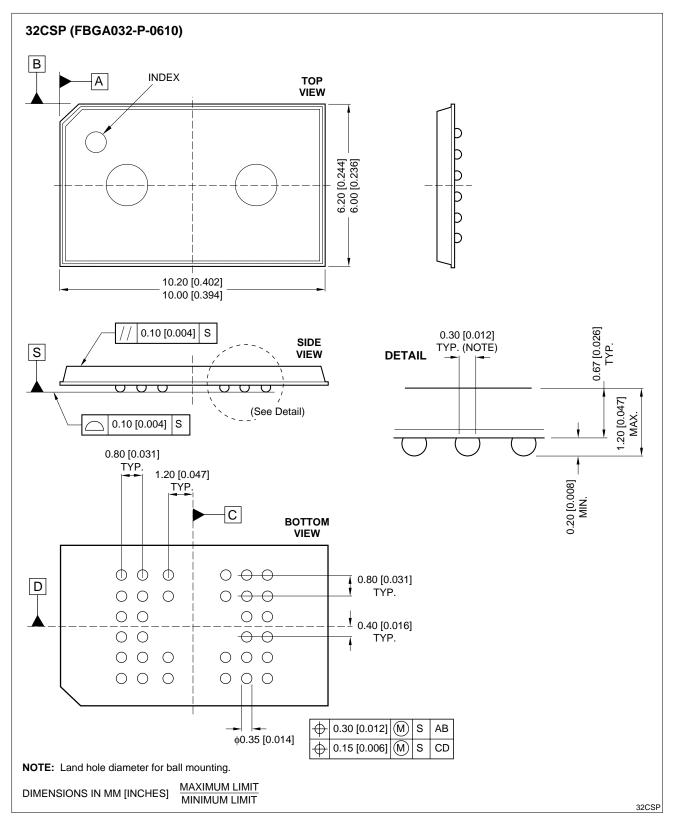
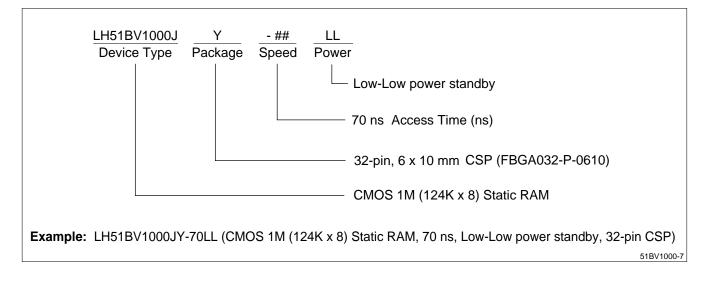




Figure 6. Data Retention Chart (CE₁ Controlled)

PACKAGE DIAGRAM

ORDERING INFORMATION

