

General Description

The MAX4741/MAX4742/MAX4743 are low on-resistance, low-voltage, dual single-pole/single-throw (SPST) analog switches that operate from a single +1.6V to +3.6V supply. These devices have fast switching speeds (ton = 24ns, toff = 16ns max), handle Rail-to-Rail® analog signals, and consume less than 1µW of quiescent power. The MAX4743 has break-beforemake switching.

When powered from a +3V supply, the MAX4741/ MAX4742/MAX4743 feature low 0.8Ω (max) on-resistance (R_{ON}), with 0.08Ω (max) R_{ON} matching and 0.18Ω R_{ON} flatness. The digital logic input is 1.8V CMOS compatible when using a single +3V supply.

The MAX4741 has two normally open (NO) switches. the MAX4742 has two normally closed (NC) switches. and the MAX4743 has one NO switch and one NC switch. The MAX4741/MAX4742/MAX4743 are available in 8-pin SOT23 and 8-pin µMAX packages.

Applications

Power Routing

Battery Powered Systems

Audio and Video Signal Routing

Low-Voltage Data-Acquisition Systems

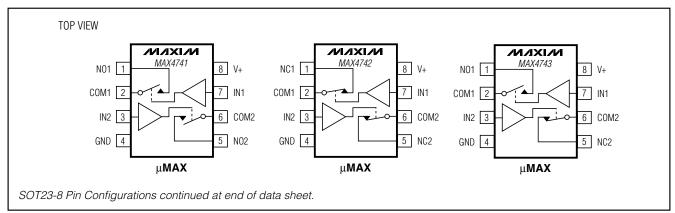
Communications Circuits

PCMCIA Cards

Cellular Phones

Modems

Hard Drives


Features

- ♦ Low Ron:
 - 0.8Ω max (+3V Supply) 2.5 Ω max (+1.8V Supply)
- ♦ 0.18Ω max Ron Flatness (+3V Supply)
- ♦ +1.6V to +3.6V Single-Supply Operation
- ♦ Available in SOT23 and µMAX Packages
- ♦ High-Current Handling Capacity (150mA continuous)
- ♦ 1.8V CMOS Logic Compatible (+3V Supply)
- ♦ Fast Switching: toN = 24ns, toFF = 16ns

Ordering Information

PART	TEMP. RANGE	PIN- PACKAGE	TOP MARK
MAX4741EKA	-40°C to +85°C	8 SOT23-8	AAIY
MAX4741EUA	-40°C to +85°C	8 μΜΑΧ	
MAX4742EKA	-40°C to +85°C	8 SOT23-8	AAIZ
MAX4742EUA	-40°C to +85°C	8 μΜΑΧ	
MAX4743EKA	-40°C to +85°C	8 SOT23-8	AAJA
MAX4743EUA	-40°C to +85°C	8 μΜΑΧ	

Pin Configurations

Rail-to-Rail is a registered trademark of Nippon Motorola, Inc.

NIXIN

ABSOLUTE MAXIMUM RATINGS

Voltages Referenced to GND V+, IN0.3V	+ 4\/
COM_, NO_, NC_ (Note 1)0.3V to (V+ +	
Continuous Current COM_ , NO_, NC±1	150mA
Peak Current COM_, NO_, NC_	
(pulsed at 1ms 10% duty cycle)±3	300mA
Continuous Power Dissipation ($T_A = +70^{\circ}C$)	
8-Pin SOT23 (derate 7.52mW/°C above +70°C)6	
8-Pin µMAX (derate 4.5mW/°C above +70°C)3	62mW

Operating Temperature Range	40°C to +85°C
Maximum Junction Temperature	+150°C
Storage Temperature Range	
Lead Temperature (soldering, 10s)	+300°C

Note 1: Signals on COM_, NO_, or NC_ exceeding V+ or GND are clamped by internal diodes. Limit forward current to maximum current rating.

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

ELECTRICAL CHARACTERISTICS—Single +3V Supply

 $(V+=+2.7V \text{ to } +3.6V, V_{IH}=+1.4V, V_{IL}=+0.5V, T_A=T_{MIN} \text{ to } T_{MAX}, \text{ unless otherwise specified. Typical values are at } V+=+3.0V, T_A=+25^{\circ}C.)$ (Notes 2, 3)

PARAMETER	SYMBOL	CONDITIONS	TA	MIN	TYP	MAX	UNITS	
ANALOG SWITCH	•						•	
Analog Signal Range	V _{COM} _, V _{NO} _, V _{NC} _			0		V+	V	
On-Resistance	Day	V+ = 2.7V,	+25°C		0.5	0.8	Ω	
On-nesistance	RON	I _{COM} _ = 100mA, V _{NO} _ or V _{NC} _ = 1.5V	T _{MIN} to T _{MAX}			0.9	52	
On-Resistance Match	ADay	V+ = 2.7V,	+25°C		0.05	0.08		
Between Channels (Note 4)	ΔR _{ON}	ICOM_ = 100mA, V _{NO_} or V _{NC_} = 1.5V	T _{MIN} to T _{MAX}			0.09	Ω	
On-Resistance Flatness	D	,	+25°C		0.05	0.18		
(Note 5)	RFLAT(ON)	ICOM_ = 100mA, V _{NO_} or V _{NC_} = 1V, 1.5V, 2V	T _{MIN} to T _{MAX}			0.20	Ω	
NO_ or NC_ Off-Leakage	I _{NO_(OFF)} ,	V+ = 3.3V,	+25°C	-1		1	Λ	
Current	INC_(OFF)	V _{COM} = 0.3V, 3V, V _{NO} or V _{NC} = 3V, 0.3V	T _{MIN} to T _{MAX}	-5		5	mA nA	
	V+ = 3.3V,	V+ = 3.3V, V _{COM} _ = 0.3V, 3V	+25°C	-1		1		
COM_ Off-Leakage Current	ICOM_(OFF)	V_{NO} or V_{NC} = 3V, 0.3V or floating	T _{MIN} to T _{MAX}	-5		5	nA	
COM On London Comment	loou (o: "	V+ = 3.3V, V _{COM} _ = 3V, 0.3V;	+25°C	-2		2	nA	
COM_ On-Leakage Current	ICOM_(ON)	V_{NO} or V_{NC} = 3V, 0.3V or floating	T _{MIN} to T _{MAX}	-10		10	IIA	

ELECTRICAL CHARACTERISTICS—Single +3V Supply (continued)

 $(V+=+2.7V \text{ to } +3.6V, V_{IH}=+1.4V, V_{IL}=+0.5V, T_A=T_{MIN} \text{ to } T_{MAX}, \text{ unless otherwise specified. Typical values are at } V+=+3.0V, T_A=+25^{\circ}C.)$ (Notes 2, 3)

PARAMETER SYMBOL CONDITIONS		TA	MIN	TYP	MAX	UNITS	
TERISTICS						-	
ton	V _{NO} _, V _{NC} _ = 1.5V, B _L = 50Q, C _L = 35pF	+25°C		18	24	ns	
3011	Figure 1	T _{MIN} to T _{MAX}			28		
torr	V _{NO_} , V _{NC_} = 1.5V,	+25°C		12	16	ns	
1OFF	Figure 1	T _{MIN} to T _{MAX}			18	115	
topia	V _{NO_} , V _{NC_} = 1.5V,	+25°C		6		ne	
rBBM	Figure 1 (MAX4743)	T _{MIN} to T _{MAX}	1			ns	
Q	V _{GEN} = 0, R _{GEN} = 0, C _L = 1.0nF, Figure 3	+25°C		28		рС	
Coff	f = 1MHz, Figure 4	+25°C		32		pF	
C _{COM_(OFF)}	f = 1MHz, Figure 4	+25°C		32		рF	
C _{COM_(ON)}	f = 1MHz, Figure 4	+25°C		44		рF	
BW	Signal = 0, $R_{IN} = R_{OUT} = 50\Omega$, $C_L = 5pF$, Figure 2			100		MHz	
V _{ISO}	$f = 1MHz$, $V_{COM} = 1V_{RMS}$, $R_L = 50\Omega$, $C_L = 5pF$, Figure 2	+25°C		-55		dB	
	$f = 1MHz$, $V_{COM} = 1V_{RMS}$, $R_L = 50\Omega$, $C_L = 5pF$, Figure 2	+25°C		-110		dB	
THD	$f = 20$ Hz to 20 kHz, $V_{COM} = 2$ Vp-p, $R_L = 32\Omega$	+25°C		0.02		%	
Ш		•				1	
VIH			1.4			V	
VIL					0.5	V	
I _{IN}	V _{IN} _ = 0 or V+		-1	0.005	1	μΑ	
V+			1.6		3.6	V	
l+	V+ = 3.6V, V _{IN} _ = 0 or V+, all channels on or off	+25°C			0.2	μΑ	
	ton toff tbbm Q Coff Ccom_(off) Ccom_(on) BW Viso THD Vih Vil Iin V+	TERISTICS ton VNO_, VNC_ = 1.5V, RL = 50Ω, CL = 35pF, Figure 1 toff VNO_, VNC_ = 1.5V, RL = 50Ω, CL = 35pF, Figure 1 tbbm VNO_, VNC_ = 1.5V, RL = 50Ω, CL = 35pF, Figure 1 (MAX4743) Q VGEN = 0, RGEN = 0, CL = 1.0nF, Figure 3 COFF f = 1MHz, Figure 4 CCOM_(OFF) f = 1MHz, Figure 4 CCOM_(ON) f = 1MHz, Figure 4 BW Signal = 0, RIN = ROUT = 50Ω, CL = 5pF, Figure 2 VISO f = 1MHz, VCOM_ = 1VRMS, RL = 50Ω, CL = 5pF, Figure 2 THD f = 20Hz to 20kHz, VCOM_ = 2Vp-p, RL = 32Ω VIH VIL In VIN_ = 0 or V+	TERISTICS ton VNO_, VNC_ = 1.5V, RL = 50Ω, CL = 35pF, Figure 1 +25°C TMIN to TMAX +25°C toff RL = 50Ω, CL = 35pF, Figure 1 +25°C TMIN to TMAX +25°C TMIN to TMAX +25°C TMIN to TMAX +25°C TMIN to TMAX +25°C Q VGEN = 0, RGEN = 0, CL = 1.0nF, Figure 3 +25°C COFF f = 1MHz, Figure 4 +25°C CCOM_(OFF) f = 1MHz, Figure 4 +25°C CCOM_(ON) f = 1MHz, Figure 4 +25°C BW Signal = 0, RIN = ROUT = 50Ω, CL = 5pF, Figure 2 +25°C VISO f = 1MHz, VCOM_ = 1VRMS, RL = 50Ω, CL = 5pF, Figure 2 +25°C THD f = 20Hz to 20kHz, VCOM_ = 1VRMS, RL = 50Ω, CL = 5pF, Figure 2 +25°C THD f = 20Hz to 20kHz, VCOM_ = 2Vp-p, RL = 32Ω +25°C VIH VIL IIN VIN_ = 0 or V+ V+ V+ +25°C	TERISTICS ton VNO_, VNC_ = 1.5V, RL = 50Ω, CL = 35pF, Figure 1 +25°C TMIN to TMAX 1 Q VGEN = 0, RGEN = 0, CL = 1.5V, RL = 50Ω, CL = 35pF, Figure 3 +25°C COFF f = 1MHz, Figure 4 +25°C COFF f = 1MHz, Figure 4 +25°C CCOM_(OFF) f = 1MHz, Figure 4 +25°C CCOM_(ON) f = 1MHz, Figure 4 +25°C BW Signal = 0, RIN = ROUT = 50Ω, CL = 5pF, Figure 2 +25°C VISO f = 1MHz, VCOM_ = 1VRMS, RL = 50Ω, CL = 5pF, Figure 2 +25°C THD f = 20Hz to 20kHz, VCOM_ = 2Vp-p, RL = 32Ω +25°C VIH VIL II.4 VIH VIL II.6 VH V+ 25°C	TERISTICS ton VNO_, VNC_ = 1.5V, RL = 50Ω, CL = 35pF, Figure 1 +25°C 18 toff VNO_, VNC_ = 1.5V, RL = 50Ω, CL = 35pF, Figure 1 +25°C 12 Toff VNO_, VNC_ = 1.5V, RL = 50Ω, CL = 35pF, Figure 1 (MAX4743) +25°C 6 Toff RL = 50Ω, CL = 35pF, Figure 1 (MAX4743) Toff 1 Q VGEN = 0, RGEN = 0, CL = 1.0nF, Figure 3 +25°C 28 COFF f = 1MHz, Figure 4 +25°C 32 CCOM_(OFF) f = 1MHz, Figure 4 +25°C 32 CCOM_(ON) f = 1MHz, Figure 4 +25°C 44 BW Signal = 0, RIN = ROUT = 50Ω, CL = 5pF, Figure 2 100 VISO f = 1MHz, VCOM_ = 1VRMS, RL = 50Ω, CL = 5pF, Figure 2 +25°C -55 f = 1MHz, VCOM_ = 1VRMS, RL = 50Ω, CL = 5pF, Figure 2 +25°C -110 THD f = 20Hz to 20kHz, VCOM_ = 2Vp-p, RL = 32Ω +25°C 0.02 VIH VIL 1.4 VIII VIN_ = 0 or V+ -1 0.005	TERISTICS ton VNO_, VNC_ = 1.5V, RL = 50Ω, CL = 35pF, Figure 1 +25°C 18 24 toff RL = 50Ω, CL = 35pF, Figure 1 TMIN to TMAX 28 toff VNO_, VNC_ = 1.5V, RL = 50Ω, CL = 35pF, Figure 1 (MAX4743) +25°C 12 16 tbbm VNO_, VNC_ = 1.5V, RL = 50Ω, CL = 35pF, Figure 1 (MAX4743) +25°C 6 6 Tbbm VGEN = 0, RGEN = 0, CL = 1.0nF, Figure 3 +25°C 28 28 COFF f = 1MHz, Figure 4 +25°C 32 2 CCOM_(OFF) f = 1MHz, Figure 4 +25°C 32 32 CCOM_(ON) f = 1MHz, Figure 4 +25°C 44 425°C 44 BW Signal = 0, RIN = ROUT = 50Ω, CL = 50F, Figure 2 100 50Ω, CL = 50F, Figure 2 +25°C -55 Interpretation of the color of	

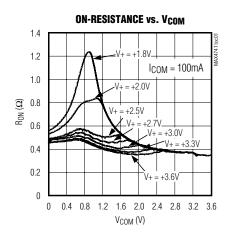
ELECTRICAL CHARACTERISTICS—Single +1.8V Supply

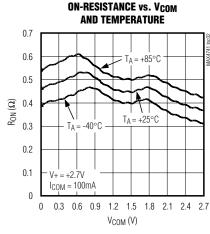
 $(V+=+1.8V,\,V_{IH}=+1.0V,\,V_{IL}=0.4V,\,T_{A}=T_{MIN}\,to\,T_{MAX},\,unless\,otherwise\,specified.\,Typical\,values\,are\,at\,T_{A}=+25^{\circ}C.)\,(Notes\,2,\,3)$

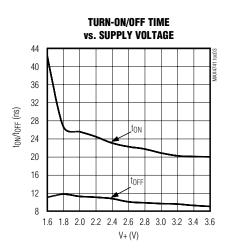
PARAMETER	SYMBOL	CONDITIONS	TA	MIN	TYP	MAX	UNITS	
ANALOG SWITCH	•							
Analog Signal Range	VCOM_, VNO_, VNC_			0		V+	V	
On-Resistance	Ron	I _{COM} _ = 10mA,	+25°C		1.3	2.5	Ω	
	011	V_{NO} or $V_{NC} = 0.9V$	T _{MIN} to T _{MAX}			5		
NO_ or NC_ Off-Leakage	INO_(OFF),	$V_{COM} = 0.3V, 1.5V;$ V_{NO} or $V_{NC} = 1.5V,$	+25°C	-1		1	nA	
Current	INC_(OFF)	0.3V	T _{MIN} to T _{MAX}	-5		5	117 (
COM Off Lookage Current	1	V _{COM} = 0.3V, 1.5V;	+25°C	-1		1	^	
COM_ Off-Leakage Current	ICOM_(OFF)	V_{NO} or V_{NC} = 1.5V, 0.3V	T _{MIN} to T _{MAX}	-5		5	- nA	
		V _{COM} _= 0.3V, 1.5V, +25°C	+25°C	-2		2		
COM_ On-Leakage Current	ICOM_(ON)	V_{NO} or V_{NC} = 0.3V, 1.5V, or floating	T _{MIN} to T _{MAX}	-10		10	mA	
SWITCH DYNAMIC CHARACTE	RISTICS						•	
T 0 T		$V_{NO_}$, $V_{NC_}$ = 1.5V, R_L = 50 Ω , C_L = 35pF, Figure 1	+25°C		25	35	ns	
Turn-On Time	ton		T _{MIN} to T _{MAX}			40		
		$V_{NO_}$, $V_{NC_}$ = 1.5V, R_L = 50 Ω , C_L = 35pF, Figure 1	+25°C		16	25	ns	
Turn-Off Time	tOFF		T _{MIN} to T _{MAX}			30		
		V _{NO} _, V _{NC} _ = 1.5V,	+25°C		10			
Break-Before-Make (Note 6)	tBBM	$R_L = 50\Omega$, $C_L = 35pF$, Figure 1 (MAX4743)	T _{MIN} to T _{MAX}	1			ns	
Charge Injection	Q	$V_{GEN} = 0$, $R_{GEN} = 0$, $C_L = 1$ nF, Figure 2	+25°C		16		рС	
Off-Isolation (Note 7)	V _{ISO}	$f = 1 MHz, V_{NO} = V_{NC}$ $= 1 V_{RMS}, R_L = 50\Omega,$ $C_L = 5pF, Figure 2$	+25°C		-50		dB	
Crosstalk (Note 8)		$f = 1 \text{MHz}, V_{\text{COM}} = 1 \text{V}_{\text{RMS}},$ $R_{\text{L}} = 50 \Omega,$ $C_{\text{L}} = 5 \text{pF}, \text{Figure 2}$	+25°C		-110		dB	

4 ______ *MAXIM*

ELECTRICAL CHARACTERISTICS—Single +1.8V Supply (continued)

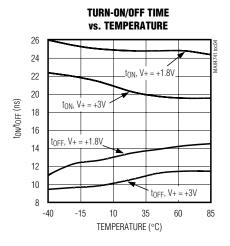

 $(V+=+1.8V, V_{IH}=+1.0V, V_{IL}=0.4V, T_A=T_{MIN}$ to T_{MAX} , unless otherwise specified. Typical values are at $T_A=+25$ °C.) (Notes 2, 3)

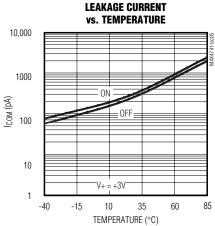

PARAMETER	SYMBOL	CONDITIONS	TA	MIN	TYP	MAX	UNITS
LOGIC INPUT							
Input Logic High	VIH			1			V
Input Logic Low	VIL					0.4	V
Input Leakage Current	IIN	V _{IN} _ = 0 or V+		-1		1	μΑ

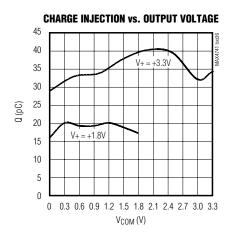

- **Note 2:** The algebraic convention, where the most negative value is a minimum and the most positive value is a maximum, is used in this data sheet.
- Note 3: SOT23 packaged parts are 100% tested at +25°C. Limits across the full temperature range are guaranteed by design and correlation. μMAX packaged parts -40°C specifications are guaranteed by design.
- Note 4: $\Delta R_{ON} = R_{ON(MAX)} R_{ON(MIN)}$.
- **Note 5:** Flatness is defined as the difference between the maximum and the minimum value of on-resistance as measured over the specified analog signal ranges.
- Note 6: Guaranteed by design.
- **Note 7:** Off-Isolation = $20log_{10}(V_{COM}/V_{NO})$, V_{COM} = output, V_{NO} = input to off switch.
- Note 8: Between two switches.

Typical Operating Characteristics

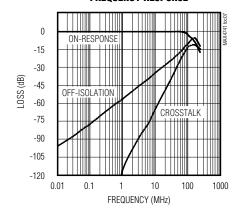
 $(T_A = +25^{\circ}C, unless otherwise noted.)$

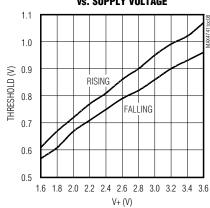


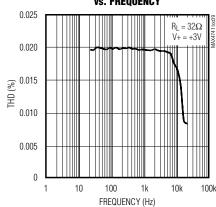


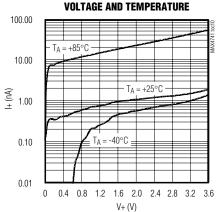


Typical Operating Characteristics (continued)


 $(T_A = +25^{\circ}C, \text{ unless otherwise noted.})$




FREQUENCY RESPONSE


LOGIC THRESHOLD VOLTAGE vs. SUPPLY VOLTAGE

TOTAL HARMONIC DISTORTION vs. FREQUENCY

SUPPLY CURRENT vs. SUPPLY

Pin Description

	PIN								
MAX	MAX4741		MAX4742		MAX4743		MAX4743		FUNCTION
μМΑΧ	SOT23-8	μ МАХ	SOT23-8	μ МАХ	SOT23-8				
1	8	_	_	1	8	NO1	Analog Switch 1 Normally Open		
_	_	1	8	_	_	NC1	Analog Switch 1 Normally Closed		
2	7	2	7	2	7	COM1	Analog Switch 1 Common		
3	6	3	6	3	6	IN2	Logic Control Input Switch 2		
4	5	4	5	4	5	GND	Ground		
5	3	_	_	_	_	NO2	Analog Switch 2 Normally Open		
_	_	5	3	5	3	NC2	Analog Switch 2 Normally Closed		
6	4	6	4	6	4	COM2	Analog Switch 2 Common		
7	1	7	1	7	1	IN1	Logic Control Input Switch 1		
8	2	8	2	8	2	V+	Positive Supply Voltage		

Detailed Description

The MAX4741/MAX4742/MAX4743 are low 0.8Ω max (at V+ = +3V) on-resistance, low-voltage, dual analog switches that operate from a +1.6V to +3.6V single supply. CMOS switch construction allows switching analog signals that are within the supply voltage range (GND to V+).

When powered from a +3V supply, the 0.8 Ω max R_{ON} allows high continuous currents to be switched in a variety of applications.

Applications Information

Proper power-supply sequencing is recommended for all CMOS devices. Do not exceed the absolute maximum ratings, because stresses beyond the listed ratings can cause permanent damage to the devices. Always sequence V+ on first, followed by NO_, NC_, or COM_.

Although it is not required, power-supply bypassing improves noise margin and prevents switching noise propagation from the V+ supply to other components. A $0.1\mu F$ capacitor, connected from V+ to GND, is adequate for most applications.

Logic Inputs

The MAX4741/MAX4742/MAX4743 logic inputs can be driven up to +3.6V regardless of the supply voltage. For example, with a +1.8V supply, IN_ may be driven low to GND and high to +3.6V. Driving IN_ rail-to-rail minimizes power consumption.

Analog Signal Levels

Analog signals that range over the entire supply voltage (V+ to GND) can be passed with very little change in onresistance (see *Typical Operating Characteristics*). The switches are bidirectional, so the NO_, NC_, and COM_pins can be used as either inputs or outputs.

Layout

High-speed switches require proper layout and design procedures for optimum performance. Reduce stray inductance and capacitance by keeping traces short and wide. Ensure that bypass capacitors are as close to the device as possible. Use large ground planes where possible.

Test Circuits/Timing Diagrams

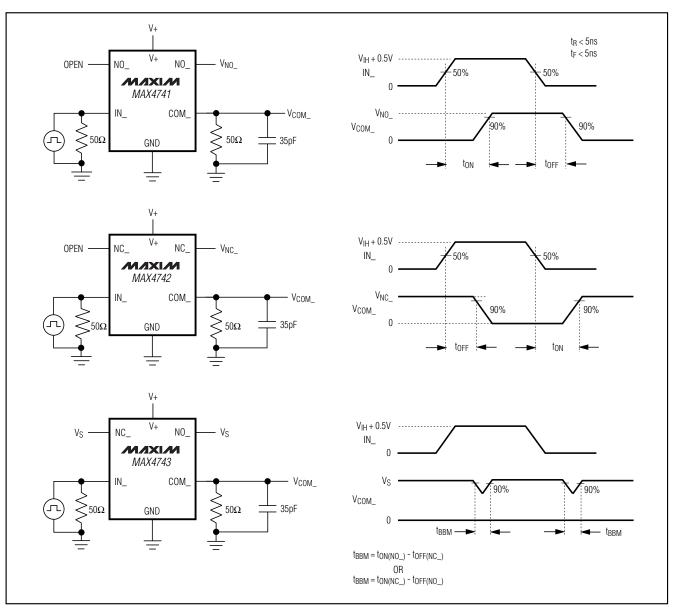


Figure 1. Switching Times

8 ______ NIXI/N

Test Circuits/Timing Diagrams (continued)

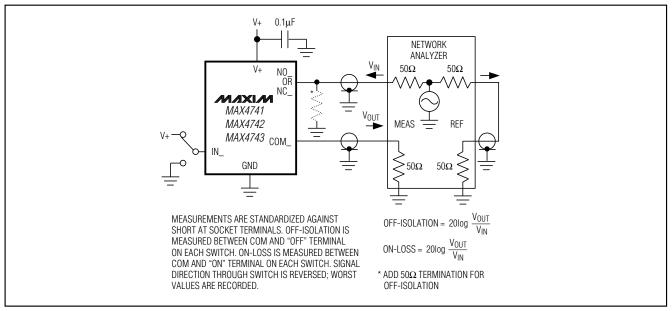


Figure 2. Off-Isolation, On-Loss, and Crosstalk

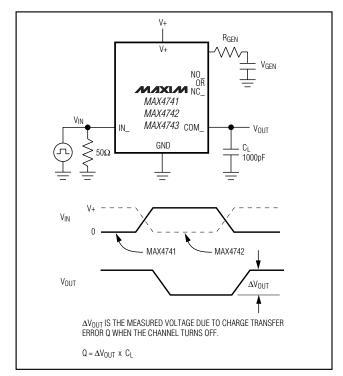


Figure 3. Charge Injection

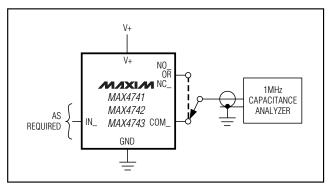
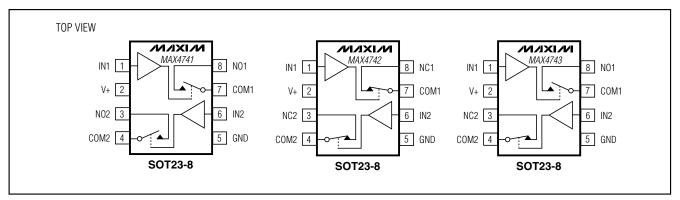
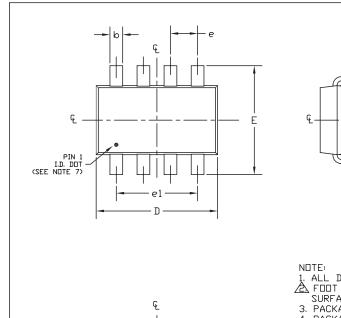



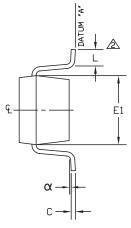
Figure 4. NO_, NC_, and COM_ Capacitance

Pin Configurations (continued)

Chip Information

TRANSISTOR COUNT = 121 PROCESS = CMOS


10 ______ **////XI///**


MAX4741/MAX4742/MAX4743

SOT23, 8L.EPS

0.8Ω, Low-Voltage, Single-Supply Dual SPST **Analog Switches**

Package Information

SYMBOL	MIN	MAX
Α	0.90	1.45
A1	0.00	0.15
A2	0.90	1.30
b	0.28	0.45
С	0.09	0.20
D	2.80	3.00
E	2.60	3.00
E1	1.50	1.75
L	0.10	0.60
е	0.65	ref
e1	1.95	ref
α	0-	10-

NOTE:

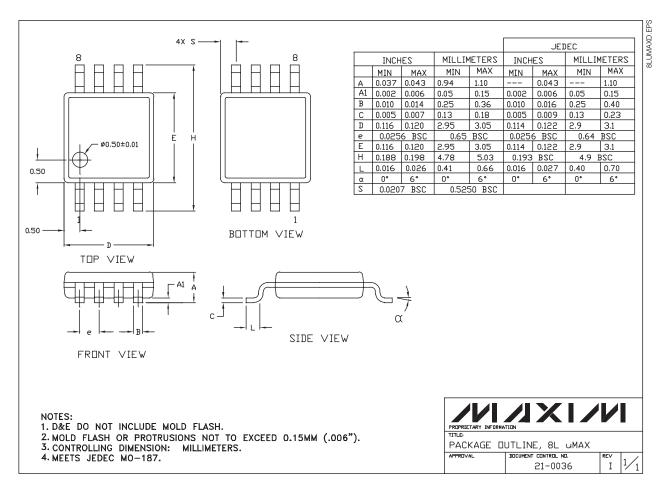
1. ALL DIMENSIONS ARE IN MILLIMETERS.

FOOT LENGTH MEASURED REFERENCE TO FLAT FOOT
SURFACE PARALLEL TO DATUM "A".

3. PACKAGE OUTLINE EXCLUSIVE OF MOLD FLASH & METAL BURR.

4. PACKAGE OUTLINE INCLUSIVE OF SOLDER PLATING.

5. EIAJ REF. NUMBER' SC-74 (6 LEAD VERSION)


- CUPLANARITY 4 MILS. MAX.
 PIN 1 I.D. DUT IS 0.3 MM Ø MIN. LUCATED ABOVE PIN 1.
- 8. MEETS JEDEC MO178.

MIXIM

A2

Package Information (continued)

Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.