V850/SB1 ${ }^{\text {TM }}$
 32-/16-BIT SINGLE-CHIP MICROCONTROLLERS

DESCRIPTION

The μ PD703031A, 703031AY, 703033A, 703033AY, 70F3033A, and 70F3033AY (V850/SB1) are 32-/16-bit single-chip microcontrollers of the V850 Family ${ }^{\text {TM }}$ for AV equipment. 32-bit CPU, ROM, RAM, timer/counters, serial interfaces, A/D converter, DMA controller, and so on are integrated on a single chip.

The μ PD70F3033A and 70F3033AY have flash memory in place of the internal mask ROM of the μ PD703033A and 703033 AY . Because flash memory allows the program to be written and erased electrically with the device mounted on the board, these products are ideal for the evaluation stages of system development, small-scale production, and rapid development of new products.

Detailed function descriptions are provided in the following user's manuals. Be sure to read them before designing.

> V850/SB1, V850/SB2TM User's Manual Hardware: U13850E V850 Family User's Manual Architecture: U10243E

FEATURES

O Number of instructions: 74
O Minimum instruction execution time: 50 ns (@ internal 20 MHz operation)
O General-purpose registers: 32 bits $\times 32$ registers
O Instruction set: Signed multiplication, saturation operations, 32-bit shift instructions, bit manipulation instructions, load/store instructions
O Memory space: 16 MB linear address space
O Internal memory ROM: 128 KB (μ PD703031A, 703031AY: mask ROM)
256 KB (μ PD703033A, 703033AY: mask ROM)
256 KB (μ PD70F3033A, 70F3033AY: flash memory)
RAM: 12 KB (μ PD703031A, 703031AY)
16 KB (μ PD703033A, 703033AY, 70F3033A, 70F3033AY)
O Interrupt/exception: μ PD703031A, 703033A, 70F3033A (external: 8 , internal: 30 sources, exception: 1 source) μ PD703031AY, 703033AY, 70F3033AY (external: 8 , internal: 31 sources, exception: 1 source)
O I/O lines Total: 83
O Timer/counters: 16-bit timer (2 channels: TM0, TM1) 8-bit timer (6 channels: TM2 to TM7)
O Watch timer: 1 channel
O Watchdog timer: 1 channel

O Serial interface

- Asynchronous serial interface (UART0, UART1)
- Clocked serial interface (CSIO to CSI3)
- 3-wire variable length serial interface (CSI4)
- $I^{2} C$ bus interface ($I^{2} C 0, I^{2} C 1$) (μ PD703031AY, 703033AY, 70F3033AY only)

O 10-bit resolution A/D converter: 12 channels
O DMA controller: 6 channels
O Real-time output port: 8 bits $\times 1$ channel or 4 bits $\times 2$ channels
O ROM correction: 4 places can be corrected
O Power-saving function: HALT/IDLE/STOP modes
O Packages: 100-pin plastic LQFP (fine pitch) (14×14)
100-pin plastic QFP (14×20)
O μ PD70F3033A, 70F3033AY

- Can be replaced with μ PD703033A and 703033AY (internal mask ROM) in mass production

APPLICATIONS

O AV equipment (audio, car audio, VCR, TV, etc.)

ORDERING INFORMATION

Part Number	Package	Internal ROM
μ PD703031AGC-xxx-8EU	100-pin plastic LQFP (fine pitch) (14×14)	Mask ROM (128 KB)
μ PD703031AYGC-xxx-8EU	100-pin plastic LQFP (fine pitch) (14×14)	Mask ROM (128 KB)
μ PD703031AGF- $\times \times \times$-3BA	100-pin plastic QFP (14×20)	Mask ROM (128 KB)
μ PD703031AYGF-xxx-3BA	100-pin plastic QFP (14×20)	Mask ROM (128 KB)
μ PD703033AGC- $\times x \times-8 E U$	100-pin plastic LQFP (fine pitch) (14×14)	Mask ROM (256 KB)
μ PD703033AYGC-xxx-8EU	100-pin plastic LQFP (fine pitch) (14×14)	Mask ROM (256 KB)
$\mu \mathrm{PD} 703033 \mathrm{AGF}-\times x \times-3 \mathrm{BA}$	100-pin plastic QFP (14×20)	Mask ROM (256 KB)
μ PD703033AYGF-xxx-3BA	100-pin plastic QFP (14×20)	Mask ROM (256 KB)
μ PD70F3033AGC-8EU ${ }^{\text {Note }}$	100-pin plastic LQFP (fine pitch) (14×14)	Flash memory (256 KB)
μ PD70F3033AYGC-8EU ${ }^{\text {Note }}$	100-pin plastic LQFP (fine pitch) (14×14)	Flash memory (256 KB)
μ PD70F3033AGF-3BA ${ }^{\text {Note }}$	100-pin plastic QFP (14×20)	Flash memory (256 KB)
μ PD70F3033AYGF-3BA ${ }^{\text {Note }}$	100-pin plastic QFP (14×20)	Flash memory (256 KB)

Note Under development

Remarks 1. $x \times x$ indicates ROM code suffix.
2. ROMless versions are not provided.

PIN CONFIGURATION (Top View)

100-pin plastic LQFP (fine pitch) (14×14)

- μ PD703031AGC-×xx-8EU
- μ PD703031AYGC-×××-8EU
- μ PD70F3033AGC-8EU
- μ PD703033AGC-×××-8EU
- μ PD703033AYGC-×××-8EU
- μ PD70F3033AYGC-8EU

Notes 1. IC: Connect directly to Vss (μ PD703031A, 703031AY, 703033A, 703033AY). Vpp: Connect to Vss in normal operation mode (μ PD70F3033A, 70F3033AY).
2. SCL0, SCL1, SDA0, and SDA1 are available only in the μ PD703031AY, 703033AY, and 70F3033AY.

100-pin plastic QFP (14×20)

- μ PD703031AGF-×××-3BA
- μ PD703031AYGF-×××-3BA
- μ PD703033AGF-xxx-3BA
- μ PD703033AYGF-×××-3BA
- μ PD70F3033AGF-3BA
- μ PD70F3033AYGF-3BA

Notes 1. IC: Connect directly to Vss (μ PD703031A, 703031AY, 703033A, 703033AY).
VpP: Connect to Vss in normal operation mode (μ PD70F3033A, 70F3033AY).
2. SCL0, SCL1, SDA0, and SDA1 are available only in the μ PD703031AY, 703033AY, and 70F3033AY.

PIN IDENTIFICATION

A1 to A21:	Address Bus	P80 to P83:	Port 8
AD0 to AD15:	Address/Data Bus	P90 to P96:	Port 9
ADTRG:	AD Trigger Input	P100 to P107:	Port 10
ANIO to ANI11:	Analog Input	P110 to P113:	Port 11
ASCK0, ASCK1:	Asynchronous Serial Clock	$\overline{\mathrm{RD}}$:	Read
ASTB:	Address Strobe	REGC:	Regulator Clock
AVdD:	Analog Power Supply	RESET:	Reset
AVref:	Analog Reference Voltage	RTP0 to RTP7:	Real-time Output Port
AVss:	Analog Ground	RTPTRG:	RTP Trigger Input
BVdD:	Power Supply for Bus Interface	$\mathrm{R} / \overline{\mathrm{W}}$:	Read/Write Status
BVss:	Ground for Bus Interface	RXD0, RXD1:	Receive Data
CLKOUT:	Clock Output	$\overline{\text { SCK0 }}$ to $\overline{\text { SCK4 }}$:	Serial Clock
$\overline{\text { DSTB: }}$	Data Strobe	SCL0, SCL1:	Serial Clock
EVdD:	Power Supply for Port	SDA0, SDA1:	Serial Data
EVss:	Ground for Port	SIO to SI4:	Serial Input
HLDAK:	Hold Acknowledge	SO0 to SO4:	Serial Output
HLDRQ:	Hold Request	TI00, TIO1, TI10,	Timer Input
IC:	Internally Connected	TI11, TI2 to TI5	
INTP0 to INTP6:	Interrupt Request from Peripherals	TO0 to TO5:	Timer Output
KR0 to KR7:	Key Return	TXD0, TXD1:	Transmit Data
LBEN:	Lower Byte Enable	$\overline{\text { UBEN: }}$	Upper Byte Enable
NMI:	Non-Maskable Interrupt Request	VDD:	Power Supply
P00 to P07:	Port 0	VPP:	Programming Power Supply
P10 to P15:	Port 1	Vss:	Ground
P20 to P27:	Port 2	WAIT:	Wait
P30 to P37:	Port 3	WRH:	Write Strobe High Level Data
P40 to P47:	Port 4	WRL:	Write Strobe Low Level Data
P50 to P57:	Port 5	X1, X2:	Crystal for Main Clock
P60 to P65:	Port 6	XT1, XT2:	Crystal for Sub-clock
P70 to P77:	Port 7		

INTERNAL BLOCK DIAGRAM

Notes 1. μ PD703031A, 703031AY: 128 KB (mask ROM) μ PD703033A, 703033AY: 256 KB (mask ROM) μ PD70F3033A, 70F3033AY: 256 KB (flash memory)
2. μ PD703031A, 703031AY: 12 KB
μ PD703033A, 703033AY, 70F3033A, 70F3033AY: 16 KB
3. $I^{2} C$ bus interface and SDAn and SCLn pins are available only in the μ PD703031AY, 703033AY, and 70F3033AY.
4. μ PD70F3033A, 70F3033AY
5. $\mu \mathrm{PD} 703031 \mathrm{~A}, 703031 \mathrm{AY}, 703033 \mathrm{~A}, 703033 \mathrm{AY}$

CONTENTS

1. DIFFERENCES AMONG PRODUCTS 8
1.1 Differences of μ PD703031A, 703031AY, 703033A, 703033AY, 70F3033A, and 70F3033AY 8
2. PIN FUNCTIONS 9
2.1 Port Pins 9
2.2 Non-Port Pins 11
2.3 Pin I/O Circuits and Recommended Connection of Unused Pins 15
3. PROGRAMMING FLASH MEMORY (μ PD70F3033A, 70F3033AY ONLY) 19
3.1 Selecting Communication Mode 19
3.2 Function of Flash Memory Programming 20
3.3 Connecting Dedicated Flash Programmer 20
4. ELECTRICAL SPECIFICATIONS 22
4.1 Flash Memory Programming Mode (μ PD70F3033A, 70F3033AY only) 47
5. PACKAGE DRAWINGS 48
6. RECOMMENDED SOLDERING CONDITIONS 50

1. DIFFERENCES AMONG PRODUCTS

1.1 Differences of μ PD703031A, 703031AY, 703033A, 703033AY, 70F3033A, and 70F3033AY

Part Number Item	$\mu \mathrm{PD} 703031 \mathrm{~A}$	$\mu \mathrm{PD} 703031 \mathrm{AY}$	$\mu \mathrm{PD} 703033 \mathrm{~A}$	$\mu \mathrm{PD} 703033 \mathrm{AY}$	μ PD70F3033A	$\mu \mathrm{PD} 70 \mathrm{~F} 3033 \mathrm{AY}$
Internal ROM	128 KB (mask ROM)		256 KB (mask ROM)		256 KB (flash memory)	
Flash memory programming pin	None				Provided (VPP)	
Flash memory programming mode	None				Provided (VPP = 7.8V)	
$I^{2} \mathrm{C}$ bus interface pins (SCLO, SCL1, SDA0, SDA1)	None	Provided	None	Provided	None	Provided
Electrical specifications	Current consumption, etc. differs.					
Others	Noise immunity and noise radiation differ because circuit scale and mask layout differ.					

Cautions 1. There are differences in noise immunity and noise radiation between the flash memory and mask ROM versions. When pre-producing an application set with the flash memory version and then mass-producing it with the mask ROM version, be sure to conduct sufficient evaluations for the commercial samples (not engineering samples) of the mask ROM version.
2. When replacing the flash memory versions with mask ROM versions, write the same code in the empty area of the internal ROM.

2. PIN FUNCTIONS

2.1 Port Pins

Pin Name	I/O	PULL	Function	Alternate Function
P00	I/O	Yes	Port 0 8-bit I/O port Input/output can be specified in 1-bit units.	NMI
P01				INTP0
P02				INTP1
P03				INTP2
P04				INTP3
P05				INTP4/ADTRG
P06				INTP5/RTPTRG
P07				INTP6
P10	I/O	Yes	Port 1 6-bit I/O port Input/output can be specified in 1-bit units.	SIO/SDA0
P11				SO0
P12				$\overline{\text { SCK0/SCL0 }}$
P13				SI1/RXD0
P14				SO1/TXD0
P15				SCK1/ASCK0
P20	I/O	Yes	Port 2 8-bit I/O port Input/output can be specified in 1-bit units.	SI2/SDA1
P21				SO2
P22				SCK2/SCL1
P23				SI3/RXD1
P24				SO3/TXD1
P25				$\overline{\text { SCK3/ASCK1 }}$
P26				TI2/TO2
P27				TI3/TO3
P30	I/O	Yes	Port 3 8-bit I/O port Input/output can be specified in 1-bit units.	TIOO
P31				TI01
P32				TI10/SI4
P33				TI11/SO4
P34				TO0/A13/SCK4
P35				TO1/A14
P36				T14/TO4/A15
P37				TI5/TO5
P40 to P47	I/O	No	Port 4 8-bit I/O port Input/output can be specified in 1-bit units.	AD0 to AD7
P50 to P57	I/O	No	Port 5 8-bit I/O port Input/output can be specified in 1-bit units.	AD8 to AD15

Remark PULL: On-chip pull-up resistor

Pin Name	1/O	PULL	Function	Alternate Function
P60 to P65	I/O	No	Port 6 6-bit I/O port Input/output can be specified in 1-bit units.	A16 to A21
P70 to P77	Input	No	Port 7 8-bit input port	ANIO to ANI7
P80 to P83	Input	No	Port 8 4-bit input port	ANI8 to ANI11
P90	I/O	No	Port 9	LBEN/WRL
P91			7-bit I/O port	UBEN
P92				R/W/ $/ \overline{\text { WRH }}$
P93				$\overline{\text { DSTB/RD }}$
P94				ASTB
P95				HLDAK
P96				$\overline{\text { HLDRQ }}$
P100	I/O	Yes	Port 10	RTP0/A5/KR0
P101			8-bit I/O port	RTP1/A6/KR1
P102				RTP2/A7/KR2
P103				RTP3/A8/KR3
P104				RTP4/A9/KR4
P105				RTP5/A10/KR5
P106				RTP6/A11/KR6
P107				RTP7/A12/KR7
P110	I/O	Yes	Port 11	A1/ $\overline{\text { WAIT }}$
P111			4-bit I/O port	A2
P112				A3
P113				A4

Remark PULL: On-chip pull-up resistor

2.2 Non-Port Pins

Pin Name	1/O	PULL	Function	Alternate Function
A1	Output	Yes	Low-order address bus used for external memory expansion	P110/WAIT
A2				P111
A3				P112
A4				P113
A5				P100/RTP0/KR0
A6				P101/RTP1/KR1
A7				P102/RTP2/KR2
A8				P103/RTP3/KR3
A9				P104/RTP4/KR4
A10				P105/RTP5/KR5
A11				P106/RTP6/KR6
A12				P107/RTP7/KR7
A13				P34/TO0/SCK4
A14				P35/TO1
A15				P36/TO4/T14
A16 to A21	Output	No	High-order address bus used for external memory expansion	P60 to P65
AD0 to AD7	1/O	No	16-bit multiplexed address/data bus used for external memory expansion	P40 to P47
AD8 to AD15				P50 to P57
ADTRG	Input	Yes	A/D converter external trigger input	P05/INTP4
ANIO to ANI7	Input	No	Analog input to A/D converter	P70 to P77
ANI8 to ANI11				P80 to P83
ASCKO	Input	Yes	Baud rate clock input for UART0	P15/SCK1
ASCK1			Baud rate clock input for UART1	P25/SCK3
ASTB	Output	No	External address strobe output	P94
AV ${ }_{\text {dD }}$	-	-	Positive power supply for A/D converter and alternate port	-
AVref	Input	-	Reference voltage input for A/D converter	-
AVss	-	-	Ground potential for A/D converter and alternate port	-
BVDD	-	-	Positive power supply for bus interface and alternate port	-
BVss	-	-	Ground potential for bus interface and alternate port	-
CLKOUT	Output	-	Internal system clock output	-
$\overline{\text { DSTB }}$	Output	No	External data strobe output	$\mathrm{P93} / \overline{\mathrm{RD}}$
EVdo	-	-	Positive power supply for I/O ports and alternate-function pins (except bus interface alternate port)	-
EVss	-	-	Ground potential for I/O ports and alternate-function pins (except bus interface alternate port)	-
HLDAK	Output	No	Bus hold acknowledge output	P95
$\overline{\text { HLDRQ }}$	Input	No	Bus hold request input	P96
IC	-	-	Internally connected (μ PD703031A, 703031AY, 703033A, 703033AY only)	-

Remark PULL: On-chip pull-up resistor

Pin Name	1/O	PULL	Function	Alternate Function
INTP0	Input	Yes	External interrupt request input (analog noise elimination)	P01
INTP1				P02
INTP2				P03
INTP3				P04
INTP4	Input	Yes	External interrupt request input (digital noise elimination)	P05/ADTRG
INTP5				P06/RTPTRG
INTP6	Input	Yes	External interrupt request input (digital noise elimination supporting remote controller)	P07
KR0	Input	Yes	Key return input	P100/RTP0/A5
KR1				P101/RTP1/A6
KR2				P102/RTP2/A7
KR3				P103/RTP3/A8
KR4				P104/RTP4/A9
KR5				P105/RTP5/A10
KR6				P106/RTP6/A11
KR7				P107/RTP7/A12
$\overline{\text { LBEN }}$	Output	No	External data bus's low-order byte enable output	P90/WRL
NMI	Input	Yes	Non-maskable interrupt request input	P00
$\overline{\mathrm{RD}}$	Output	No	Read strobe output	P93/ $\overline{\text { DSTB }}$
REGC	-	-	Regulator output stabilization capacitance connection	-
RESET	Input	-	System reset input	-
RTP0	Output	Yes	Real-time output port	P100/KR0/A5
RTP1				P101/KR1/A6
RTP2				P102/KR2/A7
RTP3				P103/KR3/A8
RTP4				P104/KR4/A9
RTP5				P105/KR5/A10
RTP6				P106/KR6/A11
RTP7				P107/KR7/A12
RTPTRG	Input	Yes	Real-time output port external trigger input	P06/INTP5
R/W	Output	No	External read/write status output	P92/WRH
RXD0	Input	Yes	Serial receive data input for UART0 and UART1	P13/SI1
RXD1				P23/SI3
$\overline{\text { SCK0 }}$	1/0	Yes	Serial clock I/O (3-wire type) for CSIO to CSI3	P12/SCL0
$\overline{\text { SCK1 }}$				P15/ASCK0
$\overline{\text { SCK2 }}$				P22/SCL1
$\overline{\text { SCK3 }}$				P25/ASCK1
$\overline{\text { SCK4 }}$	1/O	Yes	Serial clock I/O (3-wire type) for variable length CSI4	P34/TO0/A13

Remark PULL: On-chip pull-up resistor

Pin Name	1/0	PULL	Function	Alternate Function
SCLO	I/O	Yes	Serial clock I/O for $I^{2} \mathrm{CO}$ and $\mathrm{I}^{2} \mathrm{C} 1$ (μ PD703031AY, 703033AY, 70F3033AY only)	P12/ $\overline{\text { SCK0 }}$
SCL1				P22/SCK2
SDAO	I/O	Yes	Serial transmit/receive data I/O for $I^{2} \mathrm{CO}$ and $I^{2} \mathrm{C} 1$ (μ PD703031AY, 703033AY, 70F3033AY only)	P10/SIO
SDA1				P20/SI2
SIO	Input	Yes	Serial receive data input (3-wire type) for CSIO to CSI3	P10/SDA0
SI1				P13/RXD0
SI2				P20/SDA1
SI3				P23/RXD1
SI4	Input	Yes	Serial receive data input (3-wire type) for variable length CSI4	P32/TI10
SOO	Output	Yes	Serial transmit data output (3-wire type) for CSIO to CSI3	P11
SO1				P14/TXD0
SO2				P21
SO3				P24/TXD1
SO4	Output	Yes	Serial transmit data output (3-wire type) for variable length CSI4	P33/TI11
TIOO	Input	Yes	External count clock input for TMO/external capture trigger input for TMO	P30
TIO1			External capture trigger input for TM0	P31
TI10			External count clock input for TM1/external capture trigger input for TM1	P32/SI4
TI11			External capture trigger input for TM1	P33/SO4
TI2	Input	Yes	External count clock input for TM2 to TM5	P26/TO2
TI3				P27/TO3
TI4				P36/TO4/A15
TI5				P37/TO5
TOO	Output	Yes	Pulse signal output for TM0 and TM1	P34/A13/SCK4
TO1				P35/A14
TO2	Output	Yes	Pulse signal output for TM2 to TM5	P26/TI2
TO3				P27/TI3
TO4				P36/T14/A15
TO5				P37/T15
TXD0	Output	Yes	Serial transmit data output for UART0 and UART1	P14/SO1
TXD1				P24/SO3
$\overline{\text { UBEN }}$	Output	No	High-order byte enable output for external data bus	P91
VDD	-	-	Positive power supply pin	-
VPP	-	-	High voltage apply pin for program write/verify (μ PD70F3033A, 70F3033AY only)	-
Vss	-	-	Ground potential	-
WAIT	Input	Yes	Control signal input for inserting wait in bus cycle	P110/A1
$\overline{\text { WRH }}$	Output	No	High-order byte write strobe signal output for external data bus	P92/R/W

Remark PULL: On-chip pull-up resistor

Pin Name	I/O	PULL	Function	Alternate Function
$\overline{\text { WRL }}$	Output	No	Low-order byte write strobe signal output for external data bus	P90/ $\overline{\mathrm{LBEN}}$
X1	Input	No	Resonator connection for main clock	-
X2	-			-
XT1	Input	No	Resonator connection for subsystem clock	-
XT2	-			-

Remark PULL: On-chip pull-up resistor

2.3 Pin I/O Circuits and Recommended Connection of Unused Pins

The input/output circuit type of each pin and recommended connection of unused pins are show in Table 2-1. For the input/output schematic circuit diagram of each type, refer to Figure 2-1.

Table 2-1. Types of Pin I/O Circuits (1/2)

Pin	Alternate Function	I/O Circuit Type	I/O Buffer Power Supply	Recommended Connection of Unused Pins
P00	NMI	8-A	EVDD	Input state: Independently connect to EVDD or EVss via a resistor. Output state: Leave open.
P01	INTP0			
P02	INTP1			
P03	INTP2			
P04	INTP3			
P05	INTP4/ADTRG			
P06	INTP5/RTPTRG			
P07	INTP6			
P10	SIO/SDA0	10-A	EVdd	Input state: Independently connect to EVDD or EVss via a resistor. Output state: Leave open.
P11	SOO	26		
P12	$\overline{\text { SCK0/SCL0 }}$	10-A		
P13	SI1/RXD0	8-A		
P14	SO0/TXD0	26		
P15	$\overline{\text { SCK1/ASCK0 }}$	10-A		
P20	SI2/SDA1	10-A	EVdD	Input state: Independently connect to EVDD or EVss via a resistor. Output state: Leave open.
P21	SO2	26		
P22	$\overline{\text { SCK2/SCL1 }}$	10-A		
P23	SI3/RXD1			
P24	SO3/TXD1	26		
P25	$\overline{\text { SCK3} / A S C K 1 ~}$	10-A		
P26	TI2/TO2	8-A		
P27	TI3/TO3			
P30	TIOO	8-A	EVdD	Input state: Independently connect to EVDD or EVss via a resistor. Output state: Leave open.
P31	TI01			
P32	TI10/SI4			
P33	TI11/SO4			
P34	TO0/A13/SCK4			
P35	TO1/A14	5-A		
P36	TI4/TO4/A15	8-A		
P37	TI5/TO5			
P40 to P47	AD0 to AD7	5	BVDD	Input state: Independently connect to BVid or $B V$ ss via a resistor. Output state: Leave open.
P50 to P57	AD8 to AD15	5	$B V_{\text {dD }}$	
P60 to P65	A16 to A21	5	$B V_{\text {dD }}$	

Table 2-1. Types of Pin I/O Circuits (2/2)

Pin	Alternate Function	I/O Circuit Type	I/O Buffer Power Supply	Recommended Connection of Unused Pins
P70 to P77	ANIO to ANI7	9	AVdo	Independently connect to AV dD or AV ss via a resistor.
P80 to P83	ANI8 to ANI11	9	$A V_{\text {dD }}$	
P90	$\overline{\text { LBEN }} / \overline{W R L}$	5	$B V_{\text {dD }}$	Input state: Independently connect to $B V_{D D}$ or $B V$ ss via a resistor. Output state: Leave open.
P91	$\overline{\text { UBEN }}$			
P92	$\mathrm{R} / \overline{\mathrm{W}} / \overline{\mathrm{WRH}}$			
P93	$\overline{\mathrm{DSTB}} / \overline{\mathrm{RD}}$			
P94	ASTB			
P95	$\overline{\text { HLDAK }}$	26		
P96	$\overline{\text { HLDRQ }}$			
P100	RTP0/A5/KR0	10-A	EVdd	Input state: Independently connect to EVDD or $E V_{s s}$ via a resistor. Output state: Leave open.
P101	RTP1/A6/KR1			
P102	RTP2/A7/KR2			
P103	RTP3/A8/KR3			
P104	RTP4/A9/KR4			
P105	RTP5/A10/KR5			
P106	RTP6/A11/KR6			
P107	RTP7/A12/KR7			
P110	A1/ $\overline{\text { WAIT }}$	5-A	EVdd	Input state: Independently connect to EVDD or EVss via a resistor. Output state: Leave open.
P111	A2			
P112	A3			
P113	A4			
CLKOUT	-	4	BVdd	Leave open.
RESET	-	2	EVdD	-
XT1	-	16	-	Connect to Vss via a resistor.
XT2	-	16	-	Leave open.
AVref	-	-	-	Connect to AV ss via a resistor.
$I C^{\text {Note } 1}$	-	-	-	Connect directly to Vss.
$V_{\text {PP }}{ }^{\text {Note } 2}$	-	-	-	Connect to Vss.

Notes 1. μ PD703031A, 703031AY, 703033A, 703033AY
2. μ PD70F3033A, 70F3033AY

Caution Three power supply systems are available to supply power to the I/O buffers of the V850/SB1's pins: EVdd, BVdd, and AVdd. The voltage ranges that can be used for these I/O buffer power supplies are shown below.

EVdd, BVdd: 3.0 V to 5.5 V
AVdd: 4.5 V to 5.5 V

The electrical specifications differ depending on whether the power supply voltage range is $\mathbf{3 . 0}$ V to under 4.0 V, or 4.0 V to 5.5 V.

Figure 2-1. Pin Input/Output Circuits (1/2)

Caution VDD in the circuit diagrams can be read as EVDD, BVDD, or $A V_{D D}$, as appropriate.

Figure 2-1. Pin Input/Output Circuits (2/2)

Caution $V_{D D}$ in the circuit diagrams can be read as EVDD, BVDD, or $A V_{D D}$, as appropriate.

3. PROGRAMMING FLASH MEMORY (μ PD70F3033A, 70F3033AY ONLY)

There are the following two methods for writing a program to the flash memory.
(1) On-board programming

Write a program to the flash memory using a dedicated flash programmer after the μ PD70F3033A and 70F3033AY have been mounted on the target board. Also mount a connector, etc. on the target board to communicate with the dedicated flash programmer.
(2) Off-board programming

Write a program using a dedicated adapter before the μ PD70F3033A and 70F3033AY have been mounted on the target board.

3.1 Selecting Communication Mode

To write the flash memory, use a dedicated flash programmer and serial communication. Select a serial communication mode from those listed in Table 3-1 in the format shown in Figure 3-1. Each communication mode is selected by the number of Vpp pulses shown in Table 3-1.

Table 3-1. Communication Modes

Communication Mode	Pins Used	Number of VPP Pulses
CSIO	SOO (serial data output) SIO (serial data input) SCKO (serial clock input)	0
CSIO + HS	SOO (serial data output) SIO (serial data input) SCKO (serial clock input) P15 (3-wire + handshake signal output of handshake communication)	
UART0	TXD0 (serial data output) RXDO (serial data input)	8

Figure 3-1. Communication Mode Selecting Format

3.2 Function of Flash Memory Programming

Operations such as writing to flash memory are performed by various command/data transmission and reception operations according to the selected communication mode. The major functions are shown below.

Table 3-2. Major Functions of Flash Memory Programming

Function		Description
Category	Command	
Verify	Batch verify	Compares the contents of the entire memory and the input data.
Erase	Batch erase	Erases the contents of the entire memory.
	Write back	Writes back the contents which is overerased.
Blank check	Batch blank check	Checks the erase state of the entire memory.
Data write	High-speed write	Writes data by the specification of the write start address and the number of bytes to be written, and executes verify check.
	Continuous write	Writes data from the address following the high-speed write command executed immediately before, and executes verify check.
System setting/control	Status read out	Reads out the status of operations.
	Oscillation frequency setting	Sets the oscillation frequency.
	Erase time setting	Sets the erase time of batch erase.
	Write time setting	Sets the write time of data write.
	Write back time setting	Sets the write back time.
	Baud rate setting	Sets the baud rate when using UART0.
	Silicon signature	Reads out the silicon signature information.
	Reset	Restarts the system of flash programmer.

3.3 Connecting Dedicated Flash Programmer

The connection of the dedicated flash programmer and the μ PD70F3033A and 70F3033AY differs according to the communication mode. The connections for each communication mode are shown below.

Figure 3-2. Connection of Dedicated Flash Programmer in CSIO Mode

Figure 3-3. Connection of Dedicated Flash Programmer in CSIO + HS Mode

Figure 3-4. Connection of Dedicated Flash Programmer in UARTO Mode

Dedicated flash programmer	μ PD70F3033A, 70F3033AY
$\begin{array}{r} \mathrm{V}_{\mathrm{PP}} \\ \mathrm{~V}_{\mathrm{DD}} \\ \mathrm{GND} \\ \hline \text { RESET } \end{array}$	$=\begin{aligned} & V_{P P} \\ & V_{D D} \end{aligned}$
	RESET
TxD	RXDO

4. ELECTRICAL SPECIFICATIONS

Absolute Maximum Ratings ($\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, $\mathrm{Vss}=0 \mathrm{~V}$)

Parameter	Symbol	Conditions	Ratings	Unit
Supply voltage	Vdo	Vod pin	-0.5 to +7.0	V
	AVdD	AVdo pin	-0.5 to +7.0	V
	BV ${ }_{\text {dD }}$	$B V_{\text {do }}$ pin	-0.5 to +7.0	V
	EVdD	EVdo pin	-0.5 to +7.0	V
	AVss	$A V_{\text {ss }}$ pin	-0.5 to +0.5	V
	BVss	$B \mathrm{Vss}$ pin	-0.5 to +0.5	V
	EVss	EVss pin	-0.5 to +0.5	V
Input voltage	V_{11}	Note 1 (BVDD pin)	-0.5 to BVDD $+0.5^{\text {Note } 4}$	V
	V_{12}	Note 2 (EVDD pin)	-0.5 to EVDD $+0.5^{\text {Nole } 4}$	V
	V_{13}	Vpp pin (μ PD70F3033A, 70F3033AY only)	-0.5 to +8.5	V
Analog input voltage	Vian	Note 3 (AVDD pin)	-0.5 to AV DD $+0.5^{\text {Note } 4}$	V
Analog reference input voltage	AVREF	A $V_{\text {ref }}$ pin	-0.5 to $A V D D+0.5^{\text {Note } 4}$	V
Output current, low	loL	Per pin	4.0	mA
		Total for P00 to P07, P10 to P15, P20 to P25	25	mA
		Total for P26, P27, P30 to P37, P100 to P107, P110 to P113	25	mA
		Total for P40 to P47, P90 to P96, CLKOUT	25	mA
		Total for P50 to P57, P60 to P65	25	mA
Output current, high	Іон	Per pin	-4.0	mA
		Total for P00 to P07, P10 to P15, P20 to P25	-25	mA
		Total for P26, P27, P30 to P37, P100 to P107, P110 to P113	-25	mA
		Total for P40 to P47, P90 to P96, CLKOUT	-25	mA
		Total for P50 to P57, P60 to P65	-25	mA
Output voltage	Vo1	Note 1 (BVdD pin)	-0.5 to BVDD $+0.5^{\text {Nole } 4}$	V
	Vo2	Note 2 (EVdD pin)	-0.5 to EVDD $+0.5^{\text {Nole } 4}$	V
Operating ambient temperature	TA	Normal operation mode	-40 to +85	${ }^{\circ} \mathrm{C}$
		Flash memory programming mode (μ PD70F3033A, 70F3033AY only)	10 to 85	${ }^{\circ} \mathrm{C}$
Storage temperature	$\mathrm{T}_{\text {stg }}$	$\mu \mathrm{PD} 703031 \mathrm{~A}, 703031 \mathrm{AY}$	-65 to +150	${ }^{\circ} \mathrm{C}$
		$\mu \mathrm{PD} 703033 \mathrm{~A}, 703033 \mathrm{AY}$		
		μ PD70F3033A, 70F3033AY	-40 to +125	${ }^{\circ} \mathrm{C}$

Notes 1. Ports $4,5,6,9$, CLKOUT, and their alternate-function pins
2. Ports $0,1,2,3,10,11, \overline{\text { RESET }}$, and their alternate-function pins
3. Ports 7,8 , and their alternate-function pins
4. Be sure not to exceed the absolute maximum ratings (MAX. value) of each supply voltage.

Cautions 1. Do not directly connect the output (or I/O) pins of IC products to each other, or to Vdd, Vcc, and GND. Open-drain pins or open-collector pins, however, can be directly connected to each other. Direct connection of the output pins between an IC product and an external circuit is possible, if the output pins can be set to the high-impedance state and the output timing of the external circuit is designed to avoid output conflict.
2. Product quality may suffer if the absolute maximum rating is exceeded even momentarily for any parameter. That is, the absolute maximum ratings are rated values at which the product is on the verge of suffering physical damage, and therefore the product must be used under conditions that ensure that the absolute maximum ratings are not exceeded.
The ratings and conditions indicated for DC characteristics and AC characteristics represent the quality assurance range during normal operation.

Capacitance ($\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Input capacitance	Cl_{1}	$\mathrm{fc}=1 \mathrm{MHz}$ Unmeasured pins returned to 0 V			15	pF
I/O capacitance	$\mathrm{Cı}$				15	pF
Output capacitance	Co				15	pF

Operating Conditions

(1) Operating frequency

Operating Frequency (fxx)		V ${ }_{\text {d }}$	AVDD	BVdd	EVdd	Remark
2 to 20 MHz		4.0 to 5.5 V	4.5 to 5.5 V	4.0 to 5.5 V	4.0 to 5.5 V	Note 1
2 to 17 MHz		4.0 to 5.5 V	4.5 to 5.5 V	3.0 to 5.5 V	3.0 to 5.5 V	Note 1
32.768 kHz	Other than IDLE mode	4.0 to 5.5 V	4.5 to 5.5 V	3.0 to 5.5 V	3.0 to 5.5 V	-
	IDLE mode	3.5 to 5.5 V	4.5 to 5.5 V	3.0 to 5.5 V	3.0 to 5.5 V	Note 2

Notes 1. During STOP mode (subsystem oscillator operating), Vdd $=3.5$ to 5.5 V . Shifting to STOP mode or restoring from STOP mode must be performed at $\mathrm{VDD}=4.0 \mathrm{~V}$ min.
2. Shifting to IDLE mode or restoring from IDLE mode must be performed at $\mathrm{VDD}=4.0 \mathrm{~V}$ min.
(2) CPU operating frequency

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.
CPU operating frequency	fcPu	Main system clock operation			
		Subsystem clock operation	0.25		20

Recommended Oscillator

(1) Main system clock oscillator ($\mathrm{T}_{\mathrm{A}}=-40$ to $+85^{\circ} \mathrm{C}$)
(a) Connection of ceramic resonator or crystal resonator

Note The TYP. value differs depending on the setting of the oscillation stabilization time select register (OSTS).

Cautions 1. Main system clock oscillator operates on the output voltage of the on-chip regulator. External clock input is prohibited.
2. When using the main system clock oscillator, wire as follows in the area enclosed by the broken lines in the above figure to avoid an adverse effect from wiring capacitance.

- Keep the wiring length as short as possible.
- Do not cross the wiring with the other signal lines.
- Do not route the wiring near a signal line through which a high fluctuating current flows.
- Always make the ground point of the oscillator capacitor the same potential as Vss.
- Do not ground the capacitor to a ground pattern through which a high current flows.
- Do not fetch signals from the oscillator.

3. Ensure that the duty of oscillation waveform is between 5.5 and 4.5.
4. Sufficiently evaluate the matching between the μ PD703031A, 703031AY, 703033A, 703033AY, 70F3033A, 70F3033AY and the resonator.
(2) Subsystem clock oscillator ($\mathrm{T}_{\mathrm{A}}=-40$ to $+85^{\circ} \mathrm{C}$)
(a) Connection of crystal resonator

Cautions 1. Subsystem clock oscillator operates on the output voltage of the on-chip regulator. External clock input is prohibited.
2. When using the subsystem clock oscillator, wire as follows in the area enclosed by the broken lines in the above figure to avoid an adverse effect from wiring capacitance.

- Keep the wiring length as short as possible.
- Do not cross the wiring with the other signal lines.
- Do not route the wiring near a signal line through which a high fluctuating current flows.
- Always make the ground point of the oscillator capacitor the same potential as Vss.
- Do not ground the capacitor to a ground pattern through which a high current flows.
- Do not fetch signals from the oscillator.

3. Sufficiently evaluate the matching between the μ PD703031A, $703031 \mathrm{AY}, 703033 \mathrm{~A}, 703033 \mathrm{AY}$, 70F3033A, 70F3033AY and the resonator.

DC Characteristics

($\mathrm{T}_{\mathrm{A}}=-40$ to $+85^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}=4.0$ to $5.5 \mathrm{~V}, \mathrm{BV} \mathrm{dD}=\mathrm{EVDD}=3.0$ to $5.5 \mathrm{~V}, \mathrm{AV} \mathrm{DD}=4.5$ to 5.5 V , $\mathrm{Vss}=\mathrm{AVss}=\mathrm{BV} \mathrm{ss}=\mathrm{EV} \mathrm{Ss}=0 \mathrm{~V}$)

Parameter	Symbol	Conditions		MIN.	TYP.	MAX.	Unit
Input voltage, high	$\mathrm{V}_{\mathrm{H} 1}$	Note 1	$4.0 \mathrm{~V} \leq \mathrm{BV} \mathrm{DD} \leq 5.5 \mathrm{~V}$	$0.7 B V_{\text {d }}$		$B V_{\text {do }}$	V
			$3.0 \mathrm{~V} \leq \mathrm{BV} \mathrm{DD}^{2} 4.0 \mathrm{~V}$	$0.8 B V_{\text {do }}$		BVDD	V
	V_{1+2}	Note 2	$4.0 \mathrm{~V} \leq \mathrm{EV} \mathrm{DD} \leq 5.5 \mathrm{~V}$	$0.7 \mathrm{EV} \mathrm{Vd}^{\text {d }}$		EVDD	V
			$3.0 \mathrm{~V} \leq \mathrm{EV} \mathrm{DD}<4.0 \mathrm{~V}$	0.8EVdd		EVdo	V
	Vінз	Note 3	$4.0 \mathrm{~V} \leq \mathrm{EV} \mathrm{DD}^{5} 5.5 \mathrm{~V}$	$0.7 E V_{\text {do }}$		EVdo	V
			$3.0 \mathrm{~V} \leq E V_{\text {dD }}<4.0 \mathrm{~V}$	0.8 EV do		EVdo	V
	V_{1+4}	Note 4	$4.5 \mathrm{~V} \leq \mathrm{AV} \mathrm{DD} \leq 5.5 \mathrm{~V}$	0.7 AVDD		AVDD	V
Input voltage, low	VLL1	Note 1		BVss		$0.3 B V_{D D}$	V
	VIL2	Note 2		EVss		$0.3 E V_{\text {do }}$	V
	VIL3	Note 3		EVss		$0.3 E V_{\text {dD }}$	V
	VIL4	Note 4		AVss		$0.3 A V_{\text {do }}$	V
Output voltage, high	Voh1	Note 1	$\begin{aligned} & 3.0 \mathrm{~V} \leq \mathrm{BVDD} \leq 5.5 \mathrm{~V}, \\ & \text { Іон }=-100 \mu \mathrm{~A} \end{aligned}$	BVDD-0.5			V
			$\begin{aligned} & 4.0 \mathrm{~V} \leq \mathrm{BV} \mathrm{DD} \leq 5.5 \mathrm{~V}, \\ & \mathrm{IoH}=-3 \mathrm{~mA} \end{aligned}$	BVDD-1.0			V
	Vон2	Notes 2, 3 (except RESET)	$\begin{aligned} & 3.0 \mathrm{~V} \leq \mathrm{EV} \mathrm{DD} \leq 5.5 \mathrm{~V}, \\ & \text { loH }=-100 \mu \mathrm{~A} \end{aligned}$	EVDD-0.5			V
			$\begin{aligned} & 4.0 \mathrm{~V} \leq \mathrm{EV} \mathrm{DD} \leq 5.5 \mathrm{~V}, \\ & \mathrm{loH}=-3 \mathrm{~mA} \end{aligned}$	EVDD-1.0			V
Output voltage, low	VoL	$\begin{aligned} & \mathrm{loL}=3 \mathrm{~mA}, \\ & 3.0 \mathrm{~V} \leq \mathrm{BVDD}, \mathrm{EV} \mathrm{DD} \leq 5.5 \mathrm{~V} \end{aligned}$				0.5	V
		$\begin{aligned} & \mathrm{loL}=3 \mathrm{~mA}, \\ & 4.0 \mathrm{~V} \leq \mathrm{BVDD}, \mathrm{EV} V_{D D} \leq 5.5 \mathrm{~V} \end{aligned}$				0.4	V
Input leakage current, high	ІІІн					5	$\mu \mathrm{A}$
Input leakage current, low	lıLI	$\mathrm{V}_{1}=0 \mathrm{~V}$				-5	$\mu \mathrm{A}$
Output leakage current, high	ILoн					5	$\mu \mathrm{A}$
Output leakage current, low	ILoL					-5	$\mu \mathrm{A}$

Notes 1. Ports 4, 5, 6, 9, CLKOUT, and their alternate-function pins
2. P11, P14, P21, P24, P34, P35, P110 to P113, and their alternate-function pins
3. P00 to P07, P10, P12, P13, P15, P20, P22, P23, P25 to P27, P30 to P33, P36, P37, P100 to P107, $\overline{\text { RESET, and their alternate-function pins }}$
4. Ports 7, 8, and their alternate-function pins

DC Characteristics

Parameter		Symbol		Conditions	MIN.	TYP.	MAX.	Unit
Supply current	μ PD703031A, μ PD703031AY, μ PD703033A, μ PD703033AY	Ido1	In normal operation mode ${ }^{\text {Note } 1}$			25	40	mA
		IDD2	In HALT mode ${ }^{\text {Note } 1}$			10	20	mA
		IdD3	In IDLE mode ${ }^{\text {Note } 2}$	Watch timer operating		1	4	mA
		IDD4	In STOP mode	Watch timer, subsystem oscillator operating		13	70	$\mu \mathrm{A}$
				Subsystem oscillator stopped, XT1 = Vss		8	70	$\mu \mathrm{A}$
		IdD5	In normal mode (subsystem operation) ${ }^{\text {Note } 3}$			50	150	$\mu \mathrm{A}$
		Ido6	In IDLE mode (subsystem operation) ${ }^{\text {Note } 3}$			13	70	$\mu \mathrm{A}$
	μ PD70F3033A, μ PD70F3033AY	IdD1	In normal operation mode ${ }^{\text {Note } 1}$			33	60	mA
		IdD2	In HALT mode ${ }^{\text {Note } 1}$			10	20	mA
		IdD3	In IDLE mode ${ }^{\text {Note } 2}$	Watch timer operating		1	4	mA
		IDD4	In STOP mode	Watch timer, subsystem oscillator operating		13	100	$\mu \mathrm{A}$
				Subsystem oscillator stopped, XT1 = Vss		8	100	$\mu \mathrm{A}$
		IdD5	In normal operation)	de (subsystem		200	600	$\mu \mathrm{A}$
		Ido6	In IDLE m operation)	(subsystem		90	180	$\mu \mathrm{A}$
Pull-up resistance		RL	$\mathrm{V} \mathrm{IN}^{\text {a }}=0 \mathrm{~V}$		10	30	100	k Ω

Notes 1. $f C P U=f x x=20 \mathrm{MHz}$, all peripheral functions operating, output buffer: OFF
2. $f x x=20 M H z$
3. $\mathrm{fCPU}=\mathrm{fxt}=32.768 \mathrm{kHz}$, main system clock oscillator stopped

Remark TYP. values are reference values for when $T_{A}=25^{\circ} \mathrm{C}, V_{D D}=B V_{D D}=E V_{D D}=A V D D=5.0 \mathrm{~V}$. The current consumed by the output buffer is not included.

Data Retention Characteristics ($\mathrm{TA}_{\mathrm{A}}=\mathbf{- 4 0}$ to $+85^{\circ} \mathrm{C}$)

Parameter	Symbol	Conditions		MIN.	TYP.	MAX.	Unit
Data retention voltage	VdDdr	STOP mode		$3.0{ }^{\text {Note }}$		5.5	V
Data retention current	IdDDR	$\begin{aligned} & \text { VDD = VDDDR, } \\ & \text { XT1 = Vss } \\ & \text { (subsystem } \\ & \text { stopped) } \end{aligned}$	μ PD703031A, μ PD703031AY, μ PD703033A, μ PD703033AY		8	70	$\mu \mathrm{A}$
			μ PD70F3033A, μ PD70F3033AY		8	100	$\mu \mathrm{A}$
Supply voltage rise time	trvo			200			$\mu \mathrm{s}$
Supply voltage fall time	tfvo			200			$\mu \mathrm{s}$
Supply voltage hold time (from STOP mode setting)	thvo			0			ms
STOP release signal input time	torel			0			ms
Data retention high-level input voltage	VIHDR	All input ports		0.9 V dDd		Vdodr	V
Data retention low-level input voltage	VILDR	All input ports		0		$0.1 \mathrm{~V}_{\text {dodr }}$	V

Note During STOP mode (subsystem oscillator operating), VDD $=3.5$ to 5.5 V . Shifting to STOP mode or restoring from STOP mode must be performed at $\mathrm{V} D \mathrm{D}=4.0 \mathrm{~V}$ min.

Remark TYP. values are reference values for when $T_{A}=25^{\circ} \mathrm{C}$.

AC Characteristics $\left(\mathrm{TA}_{\mathrm{A}}=-40\right.$ to $+85^{\circ} \mathrm{C}, \mathrm{VdD}=4.0$ to 5.5 V , $\mathrm{BVDD}=\mathrm{EVDD}=3.0$ to 5.5 V , $\mathrm{AVDD}=4.5$ to 5.5 V , $\mathrm{Vss}=$ AVss = BVss $=E V s s=0 \mathrm{~V}$)

AC Test Input Waveform (VdD: EVdd, BVdd, AVdD)

AC Test Output Test Points (EVdd, BVdd)

Load Conditions

Caution If the load capacitance exceeds 50 pF due to the circuit configuration, bring the load capacitance of the device to 50 pF or less by inserting a buffer or by some other means.
(1) Clock timing
(a) $\mathrm{T}_{\mathrm{A}}=-40$ to $+85^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}=\mathrm{BVDD}=4.0$ to $5.5 \mathrm{~V}, \mathrm{~V}_{s \mathrm{~s}}=\mathrm{BV} \mathrm{VS}=0 \mathrm{~V}$

Parameter	Symbol		Conditions	MIN.	MAX.	Unit
CLKOUT output cycle	$<1>$	tcYk		50 ns	$31.2 \mu \mathrm{~s}$	
CLKOUT high-level width	$<2>$	twKH		$0.4 \mathrm{tčk}-12$		
CLKOUT low-level width	$<3>$	twKL		0.4 tcyk -12		ns
CLKOUT rise time	$<4>$	tKR			ns	
CLKOUT fall time	$<5>$	tKF			12	ns

(b) $\mathrm{T}_{\mathrm{A}}=-40$ to $+85^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{dD}}=4.0$ to $5.5 \mathrm{~V}, \mathrm{BV} \mathrm{dD}=3.0$ to 4.0 V , $\mathrm{V} s \mathrm{ss}=\mathrm{BV} \mathrm{Ss}=0 \mathrm{~V}$

Parameter	Symbol		Conditions	MIN.	MAX.	Unit
CLKOUT output cycle	$<1>$	tčk		58.8 ns	$31.2 \mu \mathrm{~s}$	
CLKOUT high-level width	$<2>$	twKH		0.4 tcyk -15		
CLKOUT low-level width	$<3>$	twKL		0.4 tcyk -15		ns
CLKOUT rise time	$<4>$	tKR			ns	
CLKOUT fall time	$<5>$	tKF			15	ns

CLKOUT (output)

(2) Output waveform (other than port 4, port 5, port 6, port 9, X1, and CLKOUT)
$\left(\mathrm{T}_{\mathrm{A}}=-40\right.$ to $+85^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{dD}}=4.0$ to $5.5 \mathrm{~V}, \mathrm{BV} \mathrm{dD}=\mathrm{EV} \mathrm{DD}=3.0$ to $\left.5.5 \mathrm{~V}, \mathrm{~V} s \mathrm{~s}=\mathrm{BV} \mathrm{ss}=\mathrm{EVss}=0 \mathrm{~V}\right)$

Parameter	Symbol		Conditions	MIN.	MAX.	Unit
Output rise time	$<6>$	tor			20	ns
Output fall time	$<7>$	tof			20	ns

(3) Reset timing

Parameter	Symbol		Conditions	MIN.	MAX.	Unit
$\overline{\text { RESET } p i n ~ h i g h-l e v e l ~ w i d t h ~}$	$<8>$	twrsh		500		
$\overline{\text { RESET pin low-level width }}$	$<9>$	twrsL		500		

(4) Bus timing

(a) Clock asynchronous ($\mathrm{T}_{\mathrm{A}}=-40$ to $+85^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{dD}}=\mathrm{BV} \mathrm{DD}=4.0$ to $5.5 \mathrm{~V}, \mathrm{Vss}=\mathrm{BV} \mathrm{Vs}=0 \mathrm{~V}$)

Parameter	Symbol		Conditions	MIN.	MAX.	Unit
Address setup time (to ASTB \downarrow)	<10>	tsast		0.5T-16		ns
Address hold time (from ASTB \downarrow)	<11>	thsta		$0.5 \mathrm{~T}-15$		ns
Address float from $\overline{\text { DSTB }} \downarrow$	<12>	trda			0	ns
Data input setup time from address	<13>	tsaid			$(2+n) T-40$	ns
Data input setup time from $\overline{\text { DSTB }} \downarrow$	<14>	tsdid			$(1+n) T-40$	ns
Delay time from ASTB \downarrow to $\overline{\text { DSTB }} \downarrow$	<15>	tosto		0.5T-15		ns
Data input hold time (from $\overline{\text { DSTB }} \uparrow$)	<16>	thdid		0		ns
Address output time from $\overline{\text { DSTB }} \uparrow$	<17>	toda		$(1+i) T-15$		ns
	<18>	todst1		0.5T-15		ns
Delay time from $\overline{\text { DSTB }} \uparrow$ to ASTB \downarrow	<19>	todst2		$(1.5+i) T-15$		ns
$\overline{\text { DSTB }}$ low-level width	<20>	twDL		$(1+n) T-22$		ns
ASTB high-level width	<21>	twsth		T-15		ns
Data output time from $\overline{\text { DSTB }} \downarrow$	<22>	tddod			10	ns
Data output setup time (to $\overline{\mathrm{DSTB}} \uparrow$)	<23>	tsodd		$(1+n) T-25$		ns
Data output hold time (from $\overline{\text { DSTB }} \uparrow$)	<24>	thdod		T-20		ns
$\overline{\text { WAIT }}$ setup time (to address)	<25>	tsawt1	$n \geq 1$		$1.5 \mathrm{~T}-40$	ns
	<26>	tsawt2	$\mathrm{n} \geq 1$		$(1.5+n) T-40$	ns
$\overline{\text { WAIT }}$ hold time (from address)	<27>	thawt1	$\mathrm{n} \geq 1$	$(0.5+n) T$		ns
	<28>	thawt2	$n \geq 1$	$(1.5+n) T$		ns
$\overline{\text { WAIT }}$ setup time (to ASTB \downarrow)	<29>	tsstwT1	$\mathrm{n} \geq 1$		T-32	ns
	<30>	tsstwT2	$n \geq 1$		$(1+n) T-32$	ns
$\overline{\text { WAIT }}$ hold time (from ASTB \downarrow)	<31>	thstwT1	$\mathrm{n} \geq 1$	nT		ns
	<32>	thstwT2	$\mathrm{n} \geq 1$	$(1+n) T$		ns
$\overline{\text { HLDRQ }}$ high-level width	<33>	twhoh		T + 10		ns
$\overline{\text { HLDAK }}$ low-level width	<34>	twhal		T-15		ns
Bus output delay time from HLDAK \uparrow	<35>	tDhac		-6		ns
Delay time from $\overline{H L D R Q} \downarrow$ to $\overline{\text { HLDAK }} \downarrow$	<36>	tDhohat			$(2 \mathrm{n}+7.5) \mathrm{T}+25$	ns
Delay time from $\overline{H L D R Q} \uparrow$ to $\overline{\mathrm{HLDAK}} \uparrow$	<37>	tDhohaz		0.5T	$1.5 \mathrm{~T}+25$	ns

Remarks 1. $T=1 / \mathrm{fcPu}$ (fcpu: CPU clock frequency)
2. n : Number of wait clocks inserted in the bus cycle.

The sampling timing changes when a programmable wait is inserted.
3. The values in the above specifications are values for when clocks with a $5: 5$ duty ratio are input from X1.
(b) Clock asynchronous ($\mathrm{T}_{\mathrm{A}}=-40$ to $+85^{\circ} \mathrm{C}, \mathrm{VdD}=4.0$ to 5.5 V , $\mathrm{BVDD}=3.0$ to 4.0 V , Vss $=\mathrm{BVss}=0 \mathrm{~V}$)

Parameter	Symbol		Conditions	MIN.	MAX.	Unit
Address setup time (to ASTB \downarrow)	<10>	tsast		0.5T-20		ns
Address hold time (from ASTB \downarrow)	<11>	thsta		$0.5 \mathrm{~T}-20$		ns
Address float from $\overline{\text { DSTB }} \downarrow$	<12>	tFDA			0	ns
Data input setup time from address	<13>	tsaid			$(2+n) T-50$	ns
Data input setup time from $\overline{\text { DSTB }} \downarrow$	<14>	tsdid			$(1+n) T-50$	ns
Delay time from ASTB \downarrow to $\overline{\text { DSTB }} \downarrow$	<15>	tostd		0.5T-15		ns
Data input hold time (from $\overline{\text { DSTB }} \uparrow$)	<16>	thdid		0		ns
Address output time from $\overline{\text { DSTB }} \uparrow$	<17>	tDDA		$(1+i) T-15$		ns
Delay time from $\overline{\text { DSTB }} \uparrow$ to ASTB \uparrow	<18>	todst1		$0.5 \mathrm{~T}-15$		ns
Delay time from $\overline{\text { DSTB }} \uparrow$ to ASTB \downarrow	<19>	todst2		$(1.5+i) T-15$		ns
$\overline{\text { DSTB }}$ low-level width	<20>	twDL		$(1+n) T-35$		ns
ASTB high-level width	<21>	twsth		T-15		ns
Data output time from $\overline{\text { DSTB }} \downarrow$	<22>	todod			10	ns
Data output setup time (to $\overline{\mathrm{DSTB}} \uparrow$)	<23>	tsodd		$(1+n) T-35$		ns
Data output hold time (from $\overline{\text { DSTB }} \uparrow$)	<24>	thdod		T-25		ns
$\overline{\text { WAIT }}$ setup time (to address)	<25>	tsawt1	$n \geq 1$		$1.5 \mathrm{~T}-55$	ns
	<26>	tsawt2	$n \geq 1$		$(1.5+n) T-55$	ns
$\overline{\text { WAIT }}$ hold time (from address)	<27>	thawt1	$n \geq 1$	$(0.5+n) T$		ns
	<28>	thawt2	$n \geq 1$	$(1.5+n) T$		ns
$\overline{\text { WAIT }}$ setup time (to ASTB \downarrow)	<29>	tsstwT1	$n \geq 1$		T-45	ns
	<30>	tsstwT2	$n \geq 1$		$(1+n) T-45$	ns
$\overline{\text { WAIT }}$ hold time (from ASTB \downarrow)	<31>	thetwt1	$n \geq 1$	nT		ns
	<32>	thstwt2	$n \geq 1$	$(1+n) T$		ns
HLDRQ high-level width	<33>	twhor		T+10		ns
HLDAK low-level width	<34>	twhal		T-25		ns
Bus output delay time from $\overline{\text { HLDAK }} \uparrow$	<35>	tDHAC		-6		ns
Delay time from $\overline{H L D R Q} \downarrow$ to $\overline{H L D A K} \downarrow$	<36>	tDHQHA1			$(2 n+7.5) T+25$	ns
Delay time from $\overline{H L D R Q} \uparrow$ to $\overline{H L D A K} \uparrow$	<37>	tDHohaz		0.5T	$1.5 \mathrm{~T}+25$	ns

Remarks 1. $\mathrm{T}=1 / \mathrm{fcPu}$ (fcru: CPU clock frequency)
2. n : Number of wait clocks inserted in the bus cycle.

The sampling timing changes when a programmable wait is inserted.
3. The values in the above specifications are values for when clocks with a $5: 5$ duty ratio are input from X .
(c) Clock synchronous ($\mathrm{T}_{\mathrm{A}}=-40$ to $+85^{\circ} \mathrm{C}, \mathrm{VdD}=\mathrm{BVdD}=4.0$ to 5.5 V , $\mathrm{Vss}=\mathrm{BVss}=0 \mathrm{~V}$)

Parameter	Symbol		Conditions	MIN.	MAX.	Unit
Delay time from CLKOUT \uparrow to address	<38>	toka		0	19	ns
Delay time from CLKOUT \uparrow to address float	<39>	trka		-12	10	ns
Delay time from CLKOUT \downarrow to ASTB	<40>	tokst		0	19	ns
Delay time from CLKOUT \uparrow to $\overline{\text { DSTB }}$	<41>	tokd		0	19	ns
Data input setup time (to CLKOUT \uparrow)	<42>	tsidk		20		ns
Data input hold time (from CLKOUT \uparrow)	<43>	thkid		5		ns
Data output delay time from CLKOUT \uparrow	<44>	tokod			19	ns
$\overline{\text { WAIT }}$ setup time (to CLKOUT \downarrow)	<45>	tswtk		20		ns
$\overline{\text { WAIT }}$ hold time (from CLKOUT \downarrow)	<46>	tнкwt		5		ns
	<47>	tshak		20		ns
$\overline{\text { HLDRQ }}$ hold time (from CLKOUT \downarrow)	<48>	tнкнQ		5		ns
Delay time from CLKOUT \uparrow to address float (during bus hold)	<49>	tokF			19	ns
Delay time from CLKOUT \uparrow to $\overline{\text { HLDAK }}$	<50>	tokha			19	ns

Remark The values in the above specifications are values for when clocks with a 5:5 duty ratio are input from X1.
(d) Clock synchronous ($\mathrm{T}_{\mathrm{A}}=-40$ to $+85^{\circ} \mathrm{C}, \mathrm{VdD}=4.0$ to 5.5 V , $\mathrm{BV} \mathrm{DD}=3.0$ to 4.0 V , V ss $=\mathrm{BV}$ ss $=0 \mathrm{~V}$)

Parameter	Symbol		Conditions	MIN.	MAX.	Unit
Delay time from CLKOUT \uparrow to address	<38>	toka		0	22	ns
Delay time from CLKOUT \uparrow to address float	<39>	tFkA		-16	10	ns
Delay time from CLKOUT \downarrow to ASTB	<40>	tokst		0	19	ns
Delay time from CLKOUT \uparrow to $\overline{\text { DSTB }}$	<41>	tokd		0	22	ns
Data input setup time (to CLKOUT \uparrow)	<42>	tsiok		20		ns
Data input hold time (from CLKOUT \uparrow)	<43>	tHKID		5		ns
Data output delay time from CLKOUT \uparrow	<44>	tokod			22	ns
$\overline{\text { WAIT }}$ setup time (to CLKOUT \downarrow)	<45>	tswtk		24		ns
$\overline{\text { WAIT }}$ hold time (from CLKOUT \downarrow)	<46>	thkwt		5		ns
	<47>	tshak		24		ns
$\overline{\text { HLDRQ }}$ hold time (from CLKOUT \downarrow)	<48>	tнкнQ		5		ns
Delay time from CLKOUT \uparrow to address float (during bus hold)	<49>	tokf			19	ns
Delay time from CLKOUT \uparrow to $\overline{\text { HLDAK }}$	<50>	tokha			19	ns

Remark The values in the above specifications are values for when clocks with a $5: 5$ duty ratio are input from X1.
(e) Read cycle (CLKOUT synchronous/asynchronous, 1 wait)

Note R $\bar{M}, \overline{U B E N}, \overline{L B E N}$

Remark The broken lines indicate high impedance.
(f) Write cycle (CLKOUT synchronous/asynchronous, 1 wait)

Note $R / \bar{W}, \overline{U B E N}, \overline{\text { LBEN }}$

Remark The broken lines indicate high impedance.
(g) Bus hold timing

Note $\mathrm{R} / \overline{\mathrm{W}}, \overline{\mathrm{UBEN}}, \overline{\mathrm{LBEN}}$

Remark The broken lines indicate high impedance.
(5) Interrupt timing

Parameter	Symbol		Conditions	MIN.	MAX.	Unit
NMI high-level width	<51>	twnir		500		ns
NMI low-level width	<52>	twnil		500		ns
INTPn high-level width	<53>	twith	$\mathrm{n}=0$ to 3 , analog noise elimination	500		ns
			$n=4,5$, digital noise elimination	$3 \mathrm{~T}+20$		ns
			$\mathrm{n}=6$, digital noise elimination	$3 T$ smp + 20		ns
INTPn low-level width	<54>	twitL	$\mathrm{n}=0$ to 3 , analog noise elimination	500		ns
			$n=4,5$, digital noise elimination	$3 \mathrm{~T}+20$		ns
			$\mathrm{n}=6$, digital noise elimination	3 3Tsmp + 20		ns

Remarks 1. $T=1 / f x x$
2. Tsmp = Noise elimination sampling clock cycle

(6) RPU timing ($\mathrm{T}_{\mathrm{A}}=-40$ to $+85^{\circ} \mathrm{C}, \mathrm{VdD}=4.0$ to $5.5 \mathrm{~V}, \mathrm{EVDD}=3.0$ to 5.5 V , $\mathrm{Vss}=\mathrm{AVss}=\mathrm{BVss}=\mathrm{EVss}=0 \mathrm{~V}$)

Parameter	Symbol		Conditions	MIN.	MAX.	Unit
TIn0, Tln1 high-level width	<55>	ttiln	$\mathrm{n}=0,1$	$2 T_{\text {sam }}+20^{\text {Note }}$		ns
TIn0, Tln1 low-level width	<56>	ttıLn	$\mathrm{n}=0,1$	$2 T_{\text {sam }}+20^{\text {Note }}$		ns
TIn high-level width	<57>	telinn	$\mathrm{n}=2$ to 5	$3 T+20$		ns
TIn low-level width	<58>	ttiLn	$\mathrm{n}=2$ to 5	$3 T+20$		ns

Note Tsam can select the following count clocks by setting the PRMn2 to PRMn0 bits of prescaler mode registers n0, n1 (PRMn0, PRMn1).

When $\mathrm{n}=0$ (TM0), $\mathrm{T}_{\text {sam }}=2 \mathrm{~T}, 4 \mathrm{~T}, 16 \mathrm{~T}, 64 \mathrm{~T}, 256 \mathrm{~T}$, or $1 / I N T W T N I$ cycle

$$
\text { When } \mathrm{n}=1 \text { (TM1), } \mathrm{T} \text { sam = 2T, 4T, 16T, 32T, 128T, or } 256 \mathrm{~T}
$$

However, when the $\mathrm{T} \ln 0$ valid edge is selected as the count clock, $\mathrm{T}_{\text {sam }}=4 \mathrm{~T}$.

Remark $T=1 / f x x$

Remark $\mathrm{n}=0$ to 5
(7) Asynchronous serial interface (UART0, UART1) timing
($\mathrm{T}_{\mathrm{A}}=-40$ to $+85^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}=4.0$ to $5.5 \mathrm{~V}, \mathrm{EV} \mathrm{DD}=3.0$ to 5.5 V , $\mathrm{V} s \mathrm{ss}=\mathrm{EV} \mathrm{Ss}=0 \mathrm{~V}$)

Parameter	Symbol		Conditions	MIN.	MAX.	Unit
ASCKn cycle time	<59>	tkcy13		200		ns
ASCKn high-level width	<60>	tkH13		80		ns
ASCKn low-level width	<61>	tksol3		80		ns

Remark $\mathrm{n}=0,1$

Remark $\mathrm{n}=0,1$
(8) 3-wire serial interface (CSIO to CSI3) timing
(a) Master mode ($\mathrm{T}_{\mathrm{A}}=-40$ to $+85^{\circ} \mathrm{C}$, $\mathrm{V} \mathrm{DD}=4.0$ to $5.5 \mathrm{~V}, \mathrm{EV} \mathrm{DD}=3.0$ to 5.5 V , $\mathrm{Vss}=\mathrm{EVss}=0 \mathrm{~V}$)

Parameter	Symbol		Conditions	MIN.	MAX.	Unit
$\overline{\text { SCKn cycle }}$	<62>	tkcy1		400		ns
$\overline{\text { SCKn }}$ high-level width	<63>	$\mathrm{t}_{\mathrm{K} H 1}$		140		ns
$\overline{\text { SCKn }}$ low-level width	<64>	tKL1		140		ns
Sln setup time (to $\overline{\text { SCKn }} \uparrow$)	<65>	tsik1		50		ns
SIn hold time (from $\overline{\mathrm{SCKn}} \uparrow$)	<66>	tkSI1		50		ns
Delay time from $\overline{\text { SCKn }} \downarrow$ to SOn output	<67>	tKsO1			60	ns

Remark $\mathrm{n}=0$ to 3
(b) Slave mode ($\mathrm{T}_{\mathrm{A}}=-40$ to $+85^{\circ} \mathrm{C}, \mathrm{V} D \mathrm{DD}=4.0$ to 5.5 V , $\mathrm{EV} \mathrm{DD}=3.0$ to 5.5 V , $\mathrm{Vss}=\mathrm{EVss}=0 \mathrm{~V}$)

Parameter	Symbol		Conditions	MIN.	MAX.	Unit
$\overline{\text { SCKn }}$ cycle	<62>	tkcy2		400		ns
$\overline{\text { SCKn }}$ high-level width	<63>	tKH2		140		ns
$\overline{\text { SCKn }}$ low-level width	<64>	tKL2		140		ns
SIn setup time (to $\overline{\text { SCKn }} \uparrow$)	<65>	tsIK2		50		ns
SIn hold time (from $\overline{\mathrm{SCKn}} \uparrow$)	<66>	tKsı2		50		ns
Delay time from $\overline{\text { SCKn }} \downarrow$ to SOn output	<67>	tkso2	$4.0 \mathrm{~V} \leq \mathrm{EV}$ DD $\leq 5.5 \mathrm{~V}$		60	ns
			$3.0 \mathrm{~V} \leq E V_{\text {dD }}<4.0 \mathrm{~V}$		100	ns

Remark $\mathrm{n}=0$ to 3

Remarks 1. The broken lines indicate high impedance.
2. $\mathrm{n}=0$ to 3
(9) 3-wire variable length serial interface (CSI4) timing
(a) Master mode ($\mathrm{T}_{\mathrm{A}}=-40$ to $+85^{\circ} \mathrm{C}, \mathrm{VDD}=4.0$ to $5.5 \mathrm{~V}, \mathrm{EV}$ DD $=3.0$ to 5.5 V , V ss $=E V_{\text {ss }}=0 \mathrm{~V}$)

Parameter	Symbol		Conditions	MIN.	MAX.	Unit
$\overline{\text { SCK4 }}$ cycle	<68>	tkcy 1	$4.0 \mathrm{~V} \leq \mathrm{EV}$ DD $\leq 5.5 \mathrm{~V}$	200		ns
			$3.0 \mathrm{~V} \leq \mathrm{EV}$ DD $<4.0 \mathrm{~V}$	400		ns
$\overline{\text { SCK4 }}$ high-level width	<69>	tKH1	$4.0 \mathrm{~V} \leq \mathrm{EV} \mathrm{DD} \leq 5.5 \mathrm{~V}$	60		ns
			$3.0 \mathrm{~V} \leq \mathrm{EVDD}<4.0 \mathrm{~V}$	140		ns
$\overline{\text { SCK4 }}$ low-level width	<70>	tkL1	$4.0 \mathrm{~V} \leq \mathrm{EV}$ do $\leq 5.5 \mathrm{~V}$	60		ns
			$3.0 \mathrm{~V} \leq E V_{\text {do }}<4.0 \mathrm{~V}$	140		ns
SI4 setup time (to $\overline{\text { SCK4 }} \uparrow$)	<71>	tsIK1	$4.0 \mathrm{~V} \leq \mathrm{EV}$ DD $\leq 5.5 \mathrm{~V}$	25		ns
			$3.0 \mathrm{~V} \leq E V_{\text {dd }}<4.0 \mathrm{~V}$	50		ns
SI4 hold time (from $\overline{\text { SCK4 }} \uparrow$)	<72>	tksı1		20		ns
Delay time from $\overline{\mathrm{SCK} 4} \downarrow$ to SO4 output	<73>	tksO1			55	ns

(b) Slave mode ($\mathrm{T}_{\mathrm{A}}=-40$ to $+85^{\circ} \mathrm{C}, \mathrm{VdD}=4.0$ to $5.5 \mathrm{~V}, \mathrm{EV} \mathrm{DD}=3.0$ to 5.5 V , $\mathrm{Vss}=\mathrm{EVss}=0 \mathrm{~V}$)

Parameter	Symbol		Conditions	MIN.	MAX.	Unit
$\overline{\text { SCK4 }}$ cycle	<68>	tксү2	$4.0 \mathrm{~V} \leq \mathrm{EV}$ DD $\leq 5.5 \mathrm{~V}$	200		ns
			$3.0 \mathrm{~V} \leq E V_{\text {dD }}<4.0 \mathrm{~V}$	400		ns
$\overline{\text { SCK4 }}$ high-level width	<69>	tKH2	$4.0 \mathrm{~V} \leq \mathrm{EV}$ DD $\leq 5.5 \mathrm{~V}$	60		ns
			$3.0 \mathrm{~V} \leq E V_{\text {dD }}<4.0 \mathrm{~V}$	140		$n \mathrm{n}$
$\overline{\text { SCK4 }}$ low-level width	<70>	tKL2	$4.0 \mathrm{~V} \leq \mathrm{EV}_{\mathrm{dd}} \leq 5.5 \mathrm{~V}$	60		ns
			$3.0 \mathrm{~V} \leq E V_{\text {dD }}<4.0 \mathrm{~V}$	140		ns
SI4 setup time (to $\overline{\text { SCK4 }} \uparrow$)	<71>	tsIK2	$4.0 \mathrm{~V} \leq \mathrm{EV}$ DD $\leq 5.5 \mathrm{~V}$	25		ns
			$3.0 \mathrm{~V} \leq \mathrm{EVDD}<4.0 \mathrm{~V}$	50		ns
SI4 hold time (from $\overline{\text { SCK4 }} \uparrow$)	<72>	tкsı2		20		$n s$
Delay time from $\overline{\mathrm{SCK}} \downarrow$ to SO4 output	<73>	tkso2	$4.0 \mathrm{~V} \leq \mathrm{EV}$ DD $\leq 5.5 \mathrm{~V}$		55	ns
			$3.0 \mathrm{~V} \leq \mathrm{EV}_{\mathrm{DD}}<4.0 \mathrm{~V}$		100	ns

Remark The broken lines indicate high impedance.
(10) $I^{2} C$ bus mode (μ PD703031AY, 703033AY, 70F3033AY only)

Parameter		Symbol		Normal Mode		High-Speed Mode		Unit		
		MIN.	MAX.	MIN.	MAX.					
SCLn clock frequency				-	fcık	0	100	0	400	kHz
Bus-free time (between stop/start conditions)		<74>	tbuF	4.7	-	1.3	-	$\mu \mathrm{S}$		
Hold time ${ }^{\text {Note } 1}$		<75>	thd:sta	4.0	-	0.6	-	$\mu \mathrm{s}$		
SCLn clock low-level width		<76>	tıow	4.7	-	1.3	-	$\mu \mathrm{s}$		
SCLn clock high-level width		<77>	thigh	4.0	-	0.6	-	$\mu \mathrm{s}$		
Setup time for start/restart conditions		<78>	tsu:sta	4.7	-	0.6	-	$\mu \mathrm{s}$		
Data hold time	CBUS compatible master	<79>	thd:dat	5.0	-	-	-	$\mu \mathrm{s}$		
	$I^{2} \mathrm{C}$ mode			$0^{\text {Note } 2}$	-	$0^{\text {Note } 2}$	$0.9{ }^{\text {Note } 3}$	$\mu \mathrm{S}$		
Data setup time		<80>	tsu:Dat	250	-	$100^{\text {Note } 4}$	-	ns		
SDAn and SCLn signal rise time		<81>	tr	-	1000	$20+0.1 \mathrm{Cb}^{\text {Note } 5}$	300	ns		
SDAn and SCLn signal fall time		<82>	tF	-	300	$20+0.1 \mathrm{Cb}^{\text {Note } 5}$	300	ns		
Stop condition setup time		<83>	tsu:sto	4.0	-	0.6	-	$\mu \mathrm{s}$		
Pulse width of spike suppressed by input filter		<84>	tsp	-	-	0	50	ns		
Capacitance load of each bus line		-	Cb	-	400	-	400	pF		

Notes 1. At the start condition, the first clock pulse is generated after the hold time.
2. The system requires a minimum of 300 ns hold time internally for the SDAn signal (at ViHmin. of SCLn signal) in order to occupy the undefined area at the falling edge of SCLn.
3. If the system does not extend the SCLn signal low hold time (tlow), only the maximum data hold time (tнд:DAT) needs to be satisfied.
4. The high-speed mode $I^{2} C$ bus can be used in the normal-mode $I^{2} C$ bus system. In this case, set the high-speed mode $I^{2} \mathrm{C}$ bus so that it meets the following conditions.

- If the system does not extend the SCLn signal's low state hold time:
thd:Dat $\geq 250 \mathrm{~ns}$
- If the system extends the SCLn signal's low state hold time:

Transmit the following data bit to the SDAn line prior to the SCLn line release (trmax. + tsu:DAT = 1000 $+250=1250$ ns: Normal mode ${ }^{2} \mathrm{C}$ bus specification).
5. Cb : Total capacitance of one bus line (unit: pF)

Remark $\mathrm{n}=0,1$

Remark $\mathrm{n}=0,1$
 capacitance: $\mathrm{CL}_{\mathrm{L}}=50 \mathrm{pF}$)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Resolution	-		10	10	10	bit
Overall error ${ }^{\text {Note } 1}$	-	ADM2 $=00 \mathrm{H}$			± 0.6	\%FSR
		ADM2 $=01 \mathrm{H}$			± 1.0	\%FSR
Conversion time	tconv		5		10	$\mu \mathrm{s}$
Zero-scale error ${ }^{\text {Note } 1}$	AINL				± 0.4	\%FSR
Full-scale error ${ }^{\text {Note } 1}$	AINL	ADM2 $=00 \mathrm{H}$			± 0.4	\%FSR
		ADM2 $=01 \mathrm{H}$			± 0.6	\%FSR
Integral linearity error ${ }^{\text {Note } 2}$	INL	ADM2 $=00 \mathrm{H}$			± 4.0	LSB
		ADM2 $=01 \mathrm{H}$			± 6.0	LSB
Differential linearity error ${ }^{\text {Note } 2}$	DNL	ADM2 $=00 \mathrm{H}$			± 4.0	LSB
		ADM2 $=01 \mathrm{H}$			± 6.0	LSB
Analog reference voltage	AVref	$A V_{\text {REF }}=A V_{\text {d }}$	4.5		5.5	V
Analog power supply voltage	AVDD		4.5		5.5	V
Analog input voltage	Vian		AVss		AV ${ }_{\text {ref }}$	V
A $V_{\text {ref }}$ input current	Alref			1	2	mA
AVDD current	Aldo	ADM2 $=00 \mathrm{H}$		3	6	mA
		ADM2 $=01 \mathrm{H}$		4	8	mA

Notes 1. Excluding quantization error ($\pm 0.05 \%$ FSR $)$
2. Excluding quantization error $(\pm 0.5 \mathrm{LSB})$

Remarks 1. LSB: Least Significant Bit
FSR: Full Scale Range
2. $\mathrm{ADM} 2: \mathrm{A} / \mathrm{D}$ converter mode register 2

Regulator ($\mathrm{T}_{\mathrm{A}}=-40$ to $+85^{\circ} \mathrm{C}, \mathrm{VdD}=4.0$ to 5.5 V , $\mathrm{Vss}=0 \mathrm{~V}$)

| Parameter | Symbol | | Conditions | MIN. | TYP. | MAX. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | Unit | Output stabilization time | $<85>$ | tREG |
| :---: | :---: | :---: |
| Stabilization capacitance $\mathrm{C}=1 \mu \mathrm{~F}$
 (Connected to REGC pin) | 1 | |

Cautions 1. Be sure to start inputting supply voltage (VDD) when $\overline{\operatorname{RESET}}=\mathrm{V}_{\mathrm{ss}}=\mathrm{EV}$ ss $=B V \mathrm{ss}=0 \mathrm{~V}$ (the above state), and make $\overline{\operatorname{RESET}}$ high level after the treg period has elapsed.
2. If supply voltage ($B V_{D D}$ or $E V_{D D}$) is input before the treg period has elapsed following the input of supply voltage (VDD), data may be driven from the pins until the treg period has elapsed because the I/O buffers' power supply was turned on while the circuit was in an undefined state. To avoid this situation, it is recommended to input supply voltage ($B V_{D D}$ or EVDD) after the treg period has elapsed following the input of supply voltage (VdD).

4.1 Flash Memory Programming Mode (μ PD70F3033A, 70F3033AY only)

Basic characteristics ($\mathrm{T}_{\mathrm{A}}=10$ to $85^{\circ} \mathrm{C}$)

Parameter	Symbol	Conditions		MIN.	TYP.	MAX.	Unit
Operating frequency	fx			2		20	MHz
Power supply voltage	VDD			4.5		5.5	V
Write current	Idow	When VPP = VPP1	Vdo pin			63	mA
	IPPW		Vpp pin			50	mA
Erase current	Idde	When VPP = VPP1	Vdo pin			63	mA
	IPPE		VPP pin			100	mA
VPP power supply voltage	Vppo	During normal operation		0		0.6	V
	Vpp1	During flash memory programming		7.5	7.8	8.1	V
Write count ${ }^{\text {Note }}$	Cwrt			20	20	20	Times
Unit erase time	ter			0.2	0.2	0.2	S
Total erase time	tert					5.8	S

Note Erase/write are regarded as 1 cycle.

5. PACKAGE DRAWINGS

100-PIN PLASTIC LQFP (FINE PITCH) (14x14)

detail of lead end

NOTE
Each lead centerline is located within 0.08 mm of its true position (T.P.) at maximum material condition.

ITEM	MILLIMETERS
A	16.00 ± 0.20
B	14.00 ± 0.20
C	14.00 ± 0.20
D	16.00 ± 0.20
F	1.00
G	1.00
H	$0.22_{-0.04}^{+0.05}$
I	0.08
J	0.50 (T.P.)
K	1.00 ± 0.20
L	0.50 ± 0.20
M	$0.17_{-0}^{+0.03}$
N	0.08
P	1.40 ± 0.05
Q	0.10 ± 0.05
R	$3_{-3^{\circ}}^{\circ}$
S	1.60 MAX.
	S100GC-50-8EU-1

100-PIN PLASTIC QFP (14x20)

NOTE

Each lead centerline is located within 0.15 mm of its true position (T.P.) at maximum material condition.

ITEM	MILLIMETERS
A	23.6 ± 0.4
B	20.0 ± 0.2
C	14.0 ± 0.2
D	17.6 ± 0.4
F	0.8
G	0.6
H	0.30 ± 0.10
I	0.15
J	0.65 (T.P.)
K	1.8 ± 0.2
L	0.8 ± 0.2
M	$0.15_{-0}^{+0.10}$
N	0.10
P	2.7 ± 0.1
Q	0.1 ± 0.1
R	$5^{\circ} \pm 5^{\circ}$
S	3.0 MAX.
	P100GF-65-3BA1-4

6. RECOMMENDED SOLDERING CONDITIONS

The μ PD703031A, 703031AY, 703033A, 703033AY, 70F3033A, and 70F3033AY should be soldered and mounted under the following recommended conditions.

For the details of the recommended soldering conditions, refer to the document Semiconductor Device Mounting Technology Manual (C10535E).

For soldering methods and conditions other than those recommended below, contact your NEC sales representative.

Table 6-1. Surface Mounting Type Soldering Conditions (1/2)
(1) μ PD703031AGC- $\times \times \times-8 E U$: 100 -pin plastic LQFP (fine pitch) (14×14)
μ PD703031AYGC- $\times x \times-8 E U: 100-$ pin plastic LQFP (fine pitch) (14×14)
μ PD703033AGC- $x \times x-8 E U:$ 100-pin plastic LQFP (fine pitch) (14×14)
μ PD703033AYGC- $\times \times \times-8 E U$: 100-pin plastic LQFP (fine pitch) (14×14)

Soldering Method	Soldering Conditions	Recommended Condition Symbol
Infrared reflow	Package peak temperature: $235^{\circ} \mathrm{C}$, Time: 30 seconds max. (at $210^{\circ} \mathrm{C}$ or higher), Count: Two times or less Exposure limit: 7 days ${ }^{\text {Note }}$ (after that, prebake at $125^{\circ} \mathrm{C}$ for 10 hours)	IR35-107-2
VPS	Package peak temperature: $215^{\circ} \mathrm{C}$, Time: 40 seconds max. (at $200^{\circ} \mathrm{C}$ or higher), Count: Two times or less Exposure limit: 7 days ${ }^{\text {Note }}$ (after that, prebake at $125^{\circ} \mathrm{C}$ for 10 hours)	VP15-107-2
Partial heating	Pin temperature: $300^{\circ} \mathrm{C}$ max., Time: 3 seconds max. (per pin row)	-

Note After opening the dry pack, store it at $25^{\circ} \mathrm{C}$ or less and $65 \% \mathrm{RH}$ or less for the allowable storage period.

Caution Do not use different soldering methods together (except for partial heating).

(2) μ PD70F3033AGC-8EU: 100 -pin plastic LQFP (fine pitch) (14×14)
μ PD70F3033AYGC-8EU: $\quad 100$-pin plastic LQFP (fine pitch) (14×14)

Soldering Method	Soldering Conditions	Recommended Condition Symbol
Infrared reflow	Package peak temperature: $235^{\circ} \mathrm{C}$, Time: 30 seconds max. (at $210^{\circ} \mathrm{C}$ or higher), Count: Two times or less Exposure limit: 3 days ${ }^{\text {Note }}$ (after that, prebake at $125^{\circ} \mathrm{C}$ for 10 hours)	IR35-103-2
VPS	Package peak temperature: $215^{\circ} \mathrm{C}$, Time: 40 seconds max. (at $200^{\circ} \mathrm{C}$ or higher), Count: Two times or less Exposure limit: 3 days ${ }^{\text {Note }}$ (after that, prebake at $125^{\circ} \mathrm{C}$ for 10 hours)	VP15-103-2
Partial heating	Pin temperature: $300^{\circ} \mathrm{C}$ max., Time: 3 seconds max. (per pin row)	-

Note After opening the dry pack, store it at $25^{\circ} \mathrm{C}$ or less and $65 \% \mathrm{RH}$ or less for the allowable storage period.

Caution Do not use different soldering methods together (except for partial heating).

Table 6-1. Surface Mounting Type Soldering Conditions (2/2)
(3) μ PD703031AGF- $x x x-3 B A: 100$-pin plastic QFP (14×20)
μ PD703031AYGF- $x \times x-3 B A: 100-$ pin plastic QFP (14×20)
μ PD703033AGF- $x \times x-3 B A: \quad 100-$ pin plastic QFP (14×20)
μ PD703033AYGF-××x-3BA: 100-pin plastic QFP (14×20)
μ PD70F3033AGF-3BA: \quad 100-pin plastic QFP (14×20)
μ PD70F3033AYGF-3BA: $\quad 100-$ pin plastic QFP (14×20)

Soldering Method	Soldering Conditions	Recommended Condition Symbol
Infrared reflow	Package peak temperature: $235^{\circ} \mathrm{C}$, Time: 30 seconds max. (at $210^{\circ} \mathrm{C}$ or higher), Count: Two times or less Exposure limit: 7 days ${ }^{\text {Noe }}$ (after that, prebake at $125^{\circ} \mathrm{C}$ for 20 hours)	IR35-207-2
VPS	Package peak temperature: $215^{\circ} \mathrm{C}$, Time: 40 seconds max. (at $200^{\circ} \mathrm{C}$ or higher), Count: Two times or less Exposure limit: 7 days ${ }^{\text {Noee }}$ (after that, prebake at $125^{\circ} \mathrm{C}$ for 20 hours)	VP15-207-2
Wave soldering	Solder bath temperature: $260^{\circ} \mathrm{C}$ max., Time: 10 seconds max., Count: once Preheating temperature: $120^{\circ} \mathrm{C}$ max. (package surface temperature) Exposure limit: 7 days ${ }^{\text {Note }}$ (after that, prebake at $125^{\circ} \mathrm{C}$ for 20 hours)	WS60-207-1
Partial heating	Pin temperature: $300^{\circ} \mathrm{C}$ max., Time: 3 seconds max. (per pin row)	-

Note After opening the dry pack, store it at $25^{\circ} \mathrm{C}$ or less and $65 \% \mathrm{RH}$ or less for the allowable storage period.

Caution Do not use different soldering methods together (except for partial heating).

NOTES FOR CMOS DEVICES

PRECAUTION AGAINST ESD FOR SEMICONDUCTORS

Note:
Strong electric field, when exposed to a MOS device, can cause destruction of the gate oxide and ultimately degrade the device operation. Steps must be taken to stop generation of static electricity as much as possible, and quickly dissipate it once, when it has occurred. Environmental control must be adequate. When it is dry, humidifier should be used. It is recommended to avoid using insulators that easily build static electricity. Semiconductor devices must be stored and transported in an anti-static container, static shielding bag or conductive material. All test and measurement tools including work bench and floor should be grounded. The operator should be grounded using wrist strap. Semiconductor devices must not be touched with bare hands. Similar precautions need to be taken for PW boards with semiconductor devices on it.
(2) HANDLING OF UNUSED INPUT PINS FOR CMOS

Note:
No connection for CMOS device inputs can be cause of malfunction. If no connection is provided to the input pins, it is possible that an internal input level may be generated due to noise, etc., hence causing malfunction. CMOS devices behave differently than Bipolar or NMOS devices. Input levels of CMOS devices must be fixed high or low by using a pull-up or pull-down circuitry. Each unused pin should be connected to VDD or GND with a resistor, if it is considered to have a possibility of being an output pin. All handling related to the unused pins must be judged device by device and related specifications governing the devices.

(3) STATUS BEFORE INITIALIZATION OF MOS DEVICES

Note:
Power-on does not necessarily define initial status of MOS device. Production process of MOS does not define the initial operation status of the device. Immediately after the power source is turned ON, the devices with reset function have not yet been initialized. Hence, power-on does not guarantee out-pin levels, I/O settings or contents of registers. Device is not initialized until the reset signal is received. Reset operation must be executed immediately after power-on for devices having reset function.

Caution Purchase of NEC I ${ }^{2} \mathrm{C}$ components conveys a license under the Philips $I^{2} \mathrm{C}$ Patent Rights to use these components in an $I^{2} C$ system, provided that the system conforms to the $I^{2} C$ Standard Specification as defined by Philips.

Reference document Electrical Characteristics for Microcomputer (IEI-601) Note
Note This document number is that of the Japanese version.
V850/SB1, V850/SB2, and V850 Family are trademarks of NEC Corporation.

Regional Information

Some information contained in this document may vary from country to country. Before using any NEC product in your application, please contact the NEC office in your country to obtain a list of authorized representatives and distributors. They will verify:

- Device availability
- Ordering information
- Product release schedule
- Availability of related technical literature
- Development environment specifications (for example, specifications for third-party tools and components, host computers, power plugs, AC supply voltages, and so forth)
- Network requirements

In addition, trademarks, registered trademarks, export restrictions, and other legal issues may also vary from country to country.

NEC Electronics Inc. (U.S.)
Santa Clara, California
Tel: 408-588-6000
800-366-9782

Fax: 408-588-6130
800-729-9288
NEC Electronics (Germany) GmbH
Duesseldorf, Germany
Tel: 0211-65 0302
Fax: 0211-65 03490
NEC Electronics (UK) Ltd.
Milton Keynes, UK
Tel: 01908-691-133
Fax: 01908-670-290
NEC Electronics Italiana s.r.I. Milano, Italy
Tel: 02-66 7541
Fax: 02-66 754299

NEC Electronics (Germany) GmbH
Benelux Office
Eindhoven, The Netherlands
Tel: 040-2445845
Fax: 040-2444580
NEC Electronics (France) S.A.
Velizy-Villacoublay, France
Tel: 01-30-67 5800
Fax: 01-30-675899
NEC Electronics (France) S.A.
Spain Office
Madrid, Spain
Tel: 91-504-2787
Fax: 91-504-2860
NEC Electronics (Germany) GmbH
Scandinavia Office
Taeby, Sweden
Tel: 08-63 80820
Fax: 08-63 80388

NEC Electronics Hong Kong Ltd.
Hong Kong
Tel: 2886-9318
Fax: 2886-9022/9044

NEC Electronics Hong Kong Ltd.

Seoul Branch
Seoul, Korea
Tel: 02-528-0303
Fax: 02-528-4411
NEC Electronics Singapore Pte. Ltd.
United Square, Singapore 1130
Tel: 65-253-8311
Fax: 65-250-3583
NEC Electronics Taiwan Ltd.
Taipei, Taiwan
Tel: 02-2719-2377
Fax: 02-2719-5951
NEC do Brasil S.A.
Electron Devices Division
Rodovia Presidente Dutra, Km 214
07210-902-Guarulhos-SP Brasil
Tel: 55-11-6465-6810
Fax: 55-11-6465-6829

The export of these products from Japan is regulated by the Japanese government. The export of some or all of these products may be prohibited without governmental license. To export or re-export some or all of these products from a country other than Japan may also be prohibited without a license from that country. Please call an NEC sales representative.

- The information in this document is subject to change without notice. Before using this document, please confirm that this is the latest version.
- No part of this document may be copied or reproduced in any form or by any means without the prior written consent of NEC Corporation. NEC Corporation assumes no responsibility for any errors which may appear in this document.
- NEC Corporation does not assume any liability for infringement of patents, copyrights or other intellectual property rights of third parties by or arising from use of a device described herein or any other liability arising from use of such device. No license, either express, implied or otherwise, is granted under any patents, copyrights or other intellectual property rights of NEC Corporation or others.
- Descriptions of circuits, software, and other related information in this document are provided for illustrative purposes in semiconductor product operation and application examples. The incorporation of these circuits, software, and information in the design of the customer's equipment shall be done under the full responsibility of the customer. NEC Corporation assumes no responsibility for any losses incurred by the customer or third parties arising from the use of these circuits, software, and information.
- While NEC Corporation has been making continuous effort to enhance the reliability of its semiconductor devices, the possibility of defects cannot be eliminated entirely. To minimize risks of damage or injury to persons or property arising from a defect in an NEC semiconductor device, customers must incorporate sufficient safety measures in its design, such as redundancy, fire-containment, and anti-failure features.
- NEC devices are classified into the following three quality grades:
"Standard", "Special", and "Specific". The Specific quality grade applies only to devices developed based on a customer designated "quality assurance program" for a specific application. The recommended applications of a device depend on its quality grade, as indicated below. Customers must check the quality grade of each device before using it in a particular application.

Standard: Computers, office equipment, communications equipment, test and measurement equipment, audio and visual equipment, home electronic appliances, machine tools, personal electronic equipment and industrial robots
Special: Transportation equipment (automobiles, trains, ships, etc.), traffic control systems, anti-disaster systems, anti-crime systems, safety equipment and medical equipment (not specifically designed for life support)
Specific: Aircraft, aerospace equipment, submersible repeaters, nuclear reactor control systems, life support systems or medical equipment for life support, etc.
The quality grade of NEC devices is "Standard" unless otherwise specified in NEC's Data Sheets or Data Books. If customers intend to use NEC devices for applications other than those specified for Standard quality grade, they should contact an NEC sales representative in advance.

